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Abstract
In this paper, we establish a new refinement of the left-hand side of
Hermite-Hadamard inequality for convex functions of several variables defined on
simplices.
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1 Introduction, definitions, and notations
The classical Hermite-Hadamard inequality [] states that if a function f : [a, b] → R is
convex, then

f
(

a + b


)
≤ 

b – a

∫ b

a
f (t) dt ≤ f (a) + f (b)


.

This inequality has been discussed by many mathematicians. We refer to [–] and the ref-
erences therein. In the last few decades, several generalizations of the Hermite-Hadamard
inequality have been established and studied. One of them [–] says that if � ⊂ R

n is a
simplex with barycenter b and vertices x, . . . , xn and f : � →R is convex, then

f (b) ≤ 
Vol(�)

∫
�

f (x) dx ≤ f (x) + · · · + f (xn)
n + 

. (.)

Wąsowicz and Witkowski in [] and Mitroi and Spiridon in [] investigated the relation-
ship between the left- and right-hand sides of (.).

An interesting refinement of both inequalities in (.) was obtained by Raïssouli and
Dragomir in []. In this paper we use their method to obtain another refinement of the
left-hand side of Hermite-Hadamard inequality on simplices.

Before we formulate the main theorem of this paper, we first give some definitions and
notations. For a fixed natural number n ≥  let N = {, , . . . , n}. Suppose x, . . . , xn ∈R

n are
such that the vectors #     »xxi, i = , . . . , n are linearly independent. The set � = conv{xi : i ∈ N}
is called a simplex. Such a simplex is an n-dimensional object and we shall call it sometimes
an n-simplex if we would like to emphasize its dimension. The point

b =


n + 
(x + · · · + xn)
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is called the barycenter of �. For any subset K of N of cardinality k ≤ n we define an
(n – k)-simplex �[K ] as follows. For each j ∈ N \ K let

x[K ]
j =


n + 

∑
i∈K

xi +
n +  – k

n + 
xj (.)

and

�[K ] = conv
{

x[K ]
j : j ∈ N \ K

}
. (.)

Obviously �[∅] = � and �[K ] = b if card N \ K = .
The integration over a k-dimensional simplex will be always with respect to the

k-dimensional Lebesgue measure denoted by dx and the k-dimensional volume will be
denoted by Vol. There will be no ambiguity, as the dimension will be obvious from the
context.

The purpose of this paper is to prove that if f : � → R is convex and K ⊂ L � N , then
the average value of f on �[L] does not exceed its average on �[K ].

By H(a,λ) : Rn → R
n we denote the homothety with center a and scale λ, given by the

formula

H(a,λ)(x) = a + λ(x – a).

2 Refinement of the left-hand side
This is the main result of our paper.

Theorem . Let n ∈N and x, . . . , xn ∈R
n be such that the vectors #     »xxi, i = , . . . , n are lin-

early independent. If f : conv{x, . . . , xn} → R is a convex function and K ⊂ L � {, . . . , n},
then


Vol�[L]

∫
�[L]

f (x) dx ≤ 
Vol�[K ]

∫
�[K ]

f (x) dx,

where �[K ] := conv{ 
n+

∑
i∈K xi + n+–k

n+ xj : j ∈ {, . . . , n} \ K} and k is the cardinality of K .

Given the remark stated after equation (.) it is clear that Theorem . refines the left-
hand side of (.).

Let us begin with two observations, which will make clear the nature of simplices �[K ].
The first observation follows immediately from (.).

Observation . All simplices �[K ] have a common barycenter.

Observation . If K ⊂ L � N and card L = card K + , then �[L] arises from �[K ] in the
following way:

let l ∈ L \ K and let �
[K ]
l be the face of �[K ] opposite to x[K ]

l .
Then

�[L] = H
(

x[K ]
l ,

n – card K
n +  – card K

)(
�

[K ]
l

)
.
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Proof Assume, without loss of generality, that K = {, . . . , k} and L = {} ∪ K . Let k < s ≤ n.
By (.) the vertices of �[L] are

x[L]
s =


n + 

k∑
i=

xi +
n – k
n + 

xs.

Then

x[L]
s =


n + 

k∑
i=

xi +


n + 
x +

n – k
n + 

xs

=


n + 

k∑
i=

xi +
n +  – k

n + 
x +

n – k
n + 

xs –
n – k
n + 

x

=


n + 

k∑
i=

xi +
n +  – k

n + 
x +

n – k
n +  – k

(
n +  – k

n + 
xs –

n +  – k
n + 

x

)

= x[K ]
 +

n – k
n +  – k

(
x[K ]

s – x[K ]


)
= H

(
x[K ]

 ,
n – k

n +  – k

)(
x[K ]

s
)
. �

Let us brief on the approach proposed by Dragomir and Raïssouli in []. They con-
structed the sequence of subsimplices of � as follows.

Let b be the barycenter of �. One can divide � into n +  subsimplices

Di = conv{x, . . . , xi–, b, xi+, . . . , xn}, i = , , . . . , n.

It is important to note that all these simplices have the same volume.
Denote by D the set of simplices created this way. The set Dp+ is constructed by ap-

plying the above procedure to all simplices in Dp. Dragomir and Raïssouli proved that for
a convex function f : � →R one has

f (b) ≤ 
cardDp

∑
δ∈Dp

f (bδ) ≤ 
cardDp+

∑
δ∈Dp+

f (bδ)

and

lim
p→∞


cardDp

∑
δ∈Dp

f (bδ) =


Vol�

∫
�

f (x) dx, (.)

where bδ denotes the barycenter of δ.
We shall use the above procedure to prove the main result of this paper.

Proof of Theorem . Obviously it is enough to prove the result in the case card K +  =
card L. As above we may assume K = {, . . . , k} and L = {} ∪ K . Let � = �

[K ]
 denote the

face of �[K ] opposite to x[K ]
 . For simplicity denote by H the homothety with center x[K ]



and scale n–k
n+–k . Then, by Observation . we see that �[L] = H(�).

Let us apply the Dragomir-Raïssouli process to �. Thus we obtain a sequence of sets of
subsimplices of � denoted by Dp.
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Fix p ≥ . For every σ ∈ Dp let �σ = conv(σ ∪ {x[K ]
 }). Clearly the simplices �σ form a

partition of �[K ] into simplices of the same height thus Vol�σ = Vol�[K ]/ cardDp.
Now we apply the left-hand side of the Hermite-Hadamard inequality to all simplices

�σ to obtain


cardDp

∑
σ∈Dp

f (b�σ ) ≤
∑

σ∈Dp


Vol�σ

∫
�σ

f (x) dx =


Vol�[K ]

∫
�[K ]

f (x) dx. (.)

Since �[L] is the image of � by H , the sets

H(Dp) =
{

H(σ ) : σ ∈Dp
}

form the Dragomir-Raïssouli sequence for �[L]. Moreover, comme par miracle [], the
barycenters of �σ and that of H(σ ) coincide, i.e.

b�σ = bH(σ ). (.)

From (.) and (.) we conclude


cardDp

∑
σ∈Dp

f (bH(σ )) ≤ 
Vol�[K ]

∫
�[K ]

f (x) dx, (.)

and applying (.)

lim
p→∞


cardDp

∑
σ∈Dp

f (bH(σ )) =


Vol�[L]

∫
�[L]

f (x) dx. (.)

Now the assertion follows immediately from (.) and (.). �

From Theorem . we obtain the following corollary.

Corollary . Let K, K, . . . , Kn be a sequence of subsets of N such that

K ⊂ K ⊂ · · · ⊂ Kn and card Ki = i, i = , , . . . , n.

If f : � → R is convex, then

f (b) =


Vol(�[Kn])

∫
�[Kn]

f (x) dx ≤ 
Vol(�[Kn–])

∫
�[Kn–]

f (x) dx

≤ · · · ≤ 
Vol(�[K])

∫
�[K]

f (x) dx ≤ 
Vol(�[K])

∫
�[K]

f (x) dx

=


Vol(�)

∫
�

f (x) dx

(note that Vol(�[Ki]) denotes (n – i)-dimensional volume and
∫
�[Ki] · · · dx denotes integra-

tion with respect to (n – i)-dimensional Lebesgue measure).
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Applying Theorem . to all possible proper subsets of N of the same cardinality and
summing the obtained inequalities, we obtain the following corollary.

Corollary . If f : � →R is a convex function, then


Vol�

∫
�

f (x) dx ≥ (n+
k

) ∑
K�N

card K=k


Vol�[K ]

∫
�[K ]

f (x) dx.

From Theorem . we can derive the following corollary.

Corollary . Let f : � →R be a convex function and let k < l ≤ n. Then

(n+
l
) ∑

L
card L=l


Vol�[L]

∫
�[L]

f (x) dx ≤ (n+
k

) ∑
K

card K=k


Vol�[K ]

∫
�[K ]

f (x) dx.

Proof Clearly it is sufficient to prove the corollary only in the case l = k + . Fix K =
{, . . . , k}. We have n +  – k oversets of K of cardinality k + . Applying Theorem . to
K and all such oversets and summing the obtained inequalities, we deduce

∑
L⊃K

card L=k+


Vol�[L]

∫
�[L]

f (x) dx ≤ (n +  – k)


Vol�[K ]

∫
�[K ]

f (x) dx.

Summing this over all possible K , we obtain

(k + )
∑

L
card L=k+


Vol�[L]

∫
�[L]

f (x) dx ≤ (n +  – k)
∑

K
card K=k


Vol�[K ]

∫
�[K ]

f (x) dx,

since every L has k +  subsets of cardinality k. We complete the proof by multiplying both
sides by k!(n–k)!

(n+)! . �
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