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Abstract
In this paper, the authors consider nonlinear error-in-variables regression models with
right censored data. Based on the validation data, the authors use the Kaplan-Meier
estimate and kernel estimate to repair the censored response variable Y and
explanatory X with measurement error. Based on the repaired data, the authors
introduce an auxiliary vector suitable to define an estimated empirical log-likelihood
function of the unknown parameter which has an asymptotic weighted sum of the
χ 2
1 variables. Using the result the authors can construct the asymptotic confidence

regions of β . But the method of estimating weights will reduce the precision of the
confidence regions. Further, the authors adjust the preceding log-likelihood, and it is
shown that the adjusted empirical log-likelihood has the asymptotic standard χ 2

1
distribution. The result can be used to construct the confidence regions of β .
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1 Introduction
Consider the following nonlinear model:

Y = g(X,β) + ε, ˜X = φ(X, e), (.)

where X is p-variate explanatory variable, Y is a scalar response variable, and where
β = (β,β, . . . ,βp)τ is a p ×  column vector of the unknown regression parameter, g(·)
is a known measurable function, and ε is a random statistical error. In this model, X is an
explanatory variable which cannot be observed directly, and ˜X is the observable substi-
tute variable of X, where e is a measurement error, φ(·) is an unconditional known func-
tion. Usually, there is a complicated relationship between˜X and X. However, this situation
presents serious difficulties toward obtaining a correct statistical analysis. One solution is
to use validation data, and the solution has gained much attention by many scholars in
recent years. For example: Sepanki and Lee [] considered error-in-covariable nonlinear
models with the help of validation data. Wang [–] considered the empirical likelihood
inference of the error-in-covariable linear model and partially linear model based on val-
idation data. Xue [] used the validation data to explore the empirical likelihood infer-
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ence of nonlinear semiparasitic error-in-variable models. Fang and Hu [] considered the
error-in-response to be nonlinear addressing the dimension reduction estimation of β

with validation data.
In practice, the response Y ’s may be censored by the censoring variable C. So we cannot

observe (Xi, Yi), but we may observe

(˜Xi, Zi, δi), i = , . . . , n,

with Zi = min(Yi, Ci), δi = I(Yi ≤ Ci), where I(·) is the indicator function and δ =  if Yi is
censored, otherwise δ = . (˜Xi, Zi, δi), i = , . . . , n, are i.i.d. random samples from (˜X, Z, δ).
Suppose that ˜X, Z, are given and δ is independent of Y . In fact, regression models with
censored data have been researched in much of the literature. For example, Buckley and
James [] made an unbiased change for data and established a new regression model. Based
on [], Li and Wang [] supposed the censored variable to be independent of the covariable
and applied a new data change to proceed with the empirical likelihood inference in linear
models. Cheng et al. [] developed the empirical likelihood inference in nonlinear models
with a right censored response based on the validation data.

In this paper, we consider the model (.), where the response Y is randomly censored,
and explanatory X with measurement error. We try to construct the confidence region for
the parameter β . Similarly, we propose to use the empirical likelihood method to construct
the confidence region for β . A typical nonparametric approach to this problem generally
includes the following steps: () repair the incomplete data with the help of validation
data and derive an β̂ to estimate β , () define the empirical likelihood function, () invert
the confidence region by the limiting χ

 distribution. To complete these steps, we will
carry out the following approach. First, based on the validation data, we use the Kaplan-
Meier estimate and the kernel estimate to repair the censored response variable Y and
explanatory X, which has been measured erroneously. Second, based on the repaired data,
we introduce an auxiliary vector suitable to define an estimated empirical log-likelihood
function of the unknown parameter which has an asymptotic weighted sum of the χ



variables. Because the weights are unknown, we can give the corresponding estimators of
the weights. Finally, using the result we can construct the asymptotic confidence regions
of β . But the method of estimating weights will reduce the precision of the confidence
regions. Further, we adjust the preceding log-likelihood, and it is shown that the adjusted
empirical log-likelihood has the asymptotic standard χ

 distribution.

2 Results and discussion
2.1 Definition of estimated empirical function
Suppose the primary data set (˜Xi, Zi, δi)n

i= is independent of the validation data set
(˜Xj, Xj)n+m

j=n+, E[ε|X] = , and E[ε|˜X] = . Further we suppose F(·) and G(·) are the density
functions of Y and C, respectively. Because {Yi} is censored, and the completely observed
variable Zi has different expectations to Yi, we cannot directly use the general method to
estimate β . When G is known, we define

YiG =
δiZi

 – G(Zi–)
.
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Denote m(˜X,β) = E[g(X,β)|˜X]. It is well known that E[YiG|˜Xi] = E[Yi|˜Xi] = m(˜Xi,β).
Then based on the complete observed data, from model (.) can be switched to the fol-
lowing models:

YiG = m(˜Xi,β) + ηi, (.)

where ηi = YiG – m(˜Xi,β). Write

g()(X,β) =
(

∂

∂β
g(X,β)

)τ

=
((

∂

∂β
, . . . ,

∂

∂βp

)

g(X,β)
)τ

,

m()(˜Xi,β) =
∂

∂β
m(˜Xi,β) = E

[

g()(X,β)|˜Xi
]

.

Suppose G is known, introduce an auxiliary random vector

Wi(β) = m()(˜Xi,β)
[

YiG – m(˜Xi,β)
]

. (.)

It is easily shown that E[Wi(β)] = E{m()(˜Xi,β)E[ηi|˜Xi]} = , if β is the true value of the
parameter.

In practice, m(˜X,β), m()(˜X,β) and G are usually unknown. For establishing the empir-
ical likelihood, their estimators need to be given first. To do this, for G, we employ the
Kaplan-Meier estimator

̂G(t) =  –
n
∏

i=

[

n – i
n – i + 

]I[Z(i)≤t,δ(i)=]

,

where Z() ≤ Z() ≤ · · · ≤ Z(n) are the order statistics of Z, Z, . . . , Zn, and δ(i) are the indi-
cators associated with Z(i), i = , . . . , n. Suppose

̂Rm(x̃,β) =


mhp

n+m
∑

j=n+

g(Xj,β)K
(

˜Xj – x̃
h

)

,

f̂m(x̃) =


mhp

n+m
∑

j=n+

K
(

˜Xj – x̃
h

)

, ̂R()
m (x̃,β) =

∂

∂β
̂Rm(x̃,β).

Here K(·) is a kernel function and h = hm is a bandwidth tending to . Denote f̂bm (x̃) =
max{f̂m(x̃), bm}, where bm is bounded zero positive numbers. Using the validation data, we
define the blocked estimators of m(˜X,β) and m()(˜X,β) as follows:

m̂(x̃,β) =
̂Rm(x̃,β)

f̂bm (x̃)
, m̂()(x̃,β) =

̂R()
m (x̃,β)
f̂bm (x̃)

.

Use their estimators m̂(˜X,β), m̂()(˜X,β), and ̂G(·) to replace the unknown functions
m(˜X,β), m()(˜X,β), and G in (.), and write

̂Wi(β) = m̂()(˜Xi,β)
[

YîG – m̂(˜Xi,β)
]

. (.)
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It is easily proved that E[̂Wi(β)] = o() when β is the true value. Using this, an estimated
empirical log-likelihood-ratio function is defined as

l̂(β) = – max

{ n
∑

i=

log(npi)
∣

∣

∣

∣

pi ≥ ,
n
∑

i=

pi ̂Wi(β) = ,
n
∑

i=

pi = 

}

.

By introducing the Lagrange multipliers, the most fines value of pi is pi = n–( + λτ
̂W )–,

where λ is determined by


n

n
∑

i=

̂Wi(β)
 + λτ

̂Wi(β)
= . (.)

So l̂(β) can be represented as

l̂(β) = 
n
∑

i=

log
(

 + λτ
̂Wi(β)

)

. (.)

In succession, we define the β ’s estimator by minimizing

β̂ = arg min
β




n
∑

i=

[

YîG – m̂(˜Xi,β)
]. (.)

2.2 Construction of confidence region
Throughout this section, we use c > o to represent any constant which does not rely on n
and m and may take different values for each appearance. Let Mk be a class of all continu-
ous function classes in Rp (k > p) or subdomains of Rp which make the partial derivatives
∂ i

∂xi


· ∂ i

∂xi


· · · ∂ ip

∂x
ip
p

ϕ(x, . . . , xp) uniformly bounded for o < ii + · · · + ip ≤ k.

To obtain our result, we need to list the following conditions.

Condition C

C. E‖X‖ < ∞, EY  < ∞.
C. g(x,β) has bounded continuous partial derivatives up to order two in � where � is the

bounded support of x.
C. For some k (> p), there is m(x̃,β) ∈ Mk , m()

s (x̃,β) ∈ Mk , s = , , . . . , p.
C. K(u) is a bounded nonnegative kernel function of order k (k > p) with bounded sup-

port.
C. The density of ˜X , say f (x̃), satisfies

(i) f (x̃) ∈ Mk ,
(ii) there exists a positive constant sequence bm, such that

√
mP{f (x̃) < bm} →  as

m → ∞.
C. mhpb

m → ∞, mhkb–
m → , hk– 

 pbm → .
C. sup(x̃,x) E[e|˜X = x̃, X = x] < ∞.
C. n

m → γ , where γ >  is a nonnegative constant.
C. For any  ≤ s < ∞, there exists �(s) = E[m()(˜X,β)I[s < Y ]].
C. (i) For any s ≤ τQ = inf t : Q(t) = , G(s), and F(s) has no common jumps where

Q(t) = P(Z ≤ t),
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(ii) E ‖g()(X,β)‖Y

[(–G(Y ))(–F(Y ))]



< ∞,

(iii)
∫ τQ

 ‖H(s)‖ [–F(s)]
[–F(s–)][–G(s)] dG(s) < ∞, where H(s) = E[m()(˜X,β)YGI[s<Z]]

[–F(s–)][–G(s)] .
C. �(β) = E[YG – m(˜X,β)]m()(˜X,β)(m()(˜X,β))τ = E[W(β)(W(β))τ ], � = Em()(˜X,

β)(m()(˜X,β))τ , �(β) =
∫ +∞

 H(s)HT (s)F̄(s–)( – �G(s)) dG(S), where �G(s) =
∫ t

–∞ Ḡ–(s–) dG(s), and �(β), �(β), and � are all positive definite matrices.

Remark . These conditions are some usual assumptions for studying the semipara-
metric model and can be satisfied. Here, condition C is only explained, h was taken to be
h = cm– 

p+k if bm = cm
p–k

(p+k) log m, where c and c are positive constants.

Theorem . Under Condition C, if β is the true value of the parameter, we have

√
n(β̂ – β)

L−→ N
(

,�–��–),

where � is defined in condition C, � = �(β) = �(β) – �(β) + �(β), with �(β), �(β)
being defined in condition C, and �(β) = γ E{m()(˜X,β)(m()(˜X,β))τ [m(˜X,β) – g(X,β)]}
where γ is defined in condition C.

Theorem . Under Condition C, if β is the true value of the parameter, we have

l̂(β)
L−→ ωχ


, + ωχ


, + · · · + ωpχ


,p, (.)

where χ
,i ( ≤ i ≤ p) are independent standard χ random variables with  degree of free-

dom, and ωi ( ≤ i ≤ p) are the eigenvalues of D(β) = �–
 (β)�(β).

In order to use the result of Theorem . to construct the confidence regions of β , the
corresponding estimators of the unknown weights ωi ( ≤ i ≤ p) must be given. Denote
bŷF the Kaplan-Meier estimator of F , and let Qn(s) = 

n
∑n

i= I(Zi ≤ s). Using the plug-in
method, we give the following notations:

̂Hn(s) =

n
∑n

i= m̂()(˜Xi ,β̂)YîGI(s<Zi)
(–̂G(s))(–̂F(s–)) ,

�
̂G
n (s) =

∫ s
–∞


–̂G(t–) d̂G(t) = 

n
∑n

i=
(–δi)I(Zi≤t)

(–̂G(t–))(–Qn(t–)) ,
̂�(β̂) = 

n
∑n

i=[YîG – m̂(˜Xi, β̂)]m̂()(˜Xi, β̂)(m̂()(˜Xi, β̂))τ = 
n
∑n

i=
̂Wi(β)̂W T

i (β),
̂�(β) = 

n
∑n

i=( – δi)̂Hn(Zi)̂Hτ
n (Zi)( – �

̂G
n (Zi)),

̂�(β̂) = γ

m
∑n+m

j=n+ m̂()(˜Xj, β̂)(m̂()(˜Xj, β̂))τ [m̂(˜Xj, β̂) – g(Xj,β)],
̂�(β̂) = ̂�(β̂) – ̂�(β) + ̂�(β̂).

From this, we can infer that ω̂i (i = , , . . . , p) (the eigenvalues of̂D(β̂) = ̂�–
 (β̂)̂�(β̂)) are

the corresponding estimators of ωi (i = , , . . . , p). Denote ŝ = ω̂χ

, + ω̂χ


, + · · · + ω̂pχ


,p.

Bf (·) expresses the conditional distribution of ŝ given (˜Xi, Zi, δi)n
i= and (˜Xj, Xj)n+m

j=n+. Let ĉα

be the  – α fractile of Bf (·), and the  – α confidence region for β is

Îα(β̃) =
{

β̃ : l̂(β̃) ≤ ĉα

}

.

Actually, it is convenient to obtain the conditional distribution Bf (·), we can generate
independent samples χ

,, . . . ,χ
,p from the χ

 distribution and then get it through the
Monte Carlo simulation method.
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2.3 Definition of adjusted empirical function
Applying the result of Theorem . to construct the confidence region of β , we need to
estimate the weights ωi, which will reduce the accuracy of the confidence region. So we
need to adjust the empirical likelihood function. Let r(β) = p

tr{D(β)} , according to the result
given by Rao and Scott [], r(β)

∑p
i= ωiχ


,i has an asymptotic standard χ-distribution

with p degrees of freedom. From Theorem . and the consistency of ̂�(β̂) and ̂�(β̂), we
can find that r̂(β̂)l̂(β) also has an asymptotic standard χ-distribution with p degrees of
freedom, where r̂(β̂) = p

tr{̂D(β̂)} = p
tr{̂�–

 (β̂)̂�(β̂)} . For improving the approximation accuracy,

we replace β̂ with β in r̂(β̂) and the accuracy will depend on the value of ωi. We can
refine the result given by Rao and Scott [], and then we give an adjusted empirical log-
likelihood ratio. Denote ̂A(β) = {∑n

i=
̂Wi(β)}{∑n

i=
̂Wi(β)}τ . If we replace ̂�(β) with ̂A(β)

in r̂(β), we will get a new adjustment factor ρ̂(β) = tr{̂�–(β)̂A(β)}
tr{̂�–

 (β)̂A(β)} , then the adjusted empirical
log-likelihood ratio function can be defined as

l̂ad(β) = ρ̂(β)l̂(β).

Theorem . Under Condition C, if β is the true value of the parameter, we have

l̂ad(β)
L−→ χ

p .

Based on Theorem ., l̂ad(β) can be used to construct a confidence region for β ,

Îad(β̃) =
{

β̃ : l̂ad(β) ≤ cα

}

,

where P(χ
p ≤ cα) =  – α, and P{β ∈ Îad(β̃)} =  – α + o().

3 Proofs of theorems
Before the proofs of the theorems, we introduce some preliminary results.

Lemma . Under Condition C, for any  ≤ i ≤ n, we have
(i) E[(m̂(˜Xi,β) – m(˜Xi,β))|˜Xi] ≤ c(mhpb

m)– + chkb–
m + cI[F(˜Xi) < bm];

(ii) E[(m̂()
s (˜Xi,β) – m()

s (˜Xi,β))|˜Xi] ≤ c(mhpb
m)– + chkb–

m + cI[F(˜Xi) < bm].

This proof is similar to that of Lemma  of Xue []. Here we omit the details.

Lemma . Under Condition C, if β is the true value of the parameter, we have

√
n

n
∑

i=

̂Wi(β)
L−→ N

(

,�(β)
)

.

Proof

√
n

n
∑

i=

̂Wi(β) =
√
n

n
∑

i=

m̂()(˜Xi,β)
(

YîG – m̂(˜Xi,β)
)

=
√
n

n
∑

i=

m()(˜Xi,β)
[

YiG – m(˜Xi,β)
]
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+
√
n

n
∑

i=

m()(˜Xi,β)[YîG – YiG]

+
√
n

n
∑

i=

m̂()(˜Xi,β)
[

m(˜Xi,β) – m̂(˜Xi,β)
]

+
√
n

n
∑

i=

[

YîG – m(˜Xi,β)
][

m̂()(˜Xi,β) – m()(˜Xi,β)
]

=: M + M + M + M. (.)

Employing C-C, similar to the proof of Lemma  in Lai et al. [], we have

M =
√
n

n
∑

i=

m()(˜Xi,β)(YîG – YiG)

=
√
n

n
∑

i=

m()(˜Xi,β)
m()(˜Xi,β)δiZi

 –̂G(Zi–)

∫

t<Zi

 –̂G(t–)
 – G(t)

∑n
j= dMj(t)
Yn(t)

=
√
n

n
∑

j=

∫ τF

–∞

{ N
∑

i=

m()(˜Xi,β)δiZi

 –̂G(Zi–)
I(Zi > t)

}

 –̂G(t–)
 – G(t)

dMj(t)
Yn(t)

+ op()

= –
√
n

n
∑

j=

∫ τF

–∞

{∫

s>t
s d�(s)

}

dMj(t)
( – G(t))( – F(t))

+ op()

=
√
n

n
∑

i=

∫ τF

–∞
E
[

m()(˜Xi,β)YiGI[s < Zi]
] dMj(t)

( – G(t))( – F(t))
+ op()

=: M + op(),

where Mi(t) = ( – δi)I(Zi < t) –
∫ t

–∞ I(ci ≥ s, yi > s) d�(s), Yn(t) =
∑n

i= I(Zi < t). The first
item M is a martingale sequence which has a limiting normal distribution with mean 
and covariance � according to the Rebolledo central limit theorem of martingales. We
have

M =
√
n

n
∑

i=

m̂()(˜Xi,β)
[

m(˜Xi,β) – m̂(˜Xi,β)
]

=
√
n

n
∑

i=

m()(˜Xi,β)
[

m(˜Xi,β) – m̂(˜Xi,β)
]

+
√
n

n
∑

i=

[

m̂()(˜Xi,β) – m()(˜Xi,β)
][

m(˜Xi,β) – m̂(˜Xi,β)
]

=: M + M.

Write mb(x̃,β) = m(x̃,β)f (x̃)f –
b (x̃), fb(x̃) = max{f (x̃), bm}, then

M =
√
n

n
∑

i=

m()(˜Xi,β)
[

m(˜Xi,β) – m̂(˜Xi,β)
]

=
√
n

n
∑

i=

m()(˜Xi,β)
[

mb(˜Xi,β) – m̂(˜Xi,β)
]



Fang and Wu Journal of Inequalities and Applications  (2015) 2015:379 Page 8 of 16

+
√
n

n
∑

i=

m()(˜Xi,β)
[

m(˜Xi,β) – mb(˜Xi,β)
]

=: M + M.

For ∀ε > , we have

P
(|M| > ε

) ≤ P

{

√
n

n
∑

i=

∣

∣m()(˜Xi,β)
∣

∣

∣

∣m(˜Xi,β) – mb(˜Xi,β)
∣

∣ > ε

}

= P

{

√
n

n
∑

i=

∣

∣m()(˜Xi,β)
∣

∣

∣

∣m(˜Xi,β)
∣

∣

∣

∣

∣

∣

fb(˜Xi) – f (˜Xi)
fb(˜Xi)

∣

∣

∣

∣

> ε

}

≤ P

{

√
n

n
∑

i=

∣

∣m()(˜Xi,β)
∣

∣

∣

∣m(˜Xi,β)
∣

∣I
[

f (˜Xi) < bm
]

> ε

}

≤ 
ε

√
nP
(

f (˜Xi) < bm
)→ .

Hence, M = op(). Write

ζm(x) =


mhp

n+m
∑

j=n+

[

m(˜Xj,β) – g(˜Xj,β)
]

K
(

˜Xj – x
h

)

,

ξm(x) =


mhp

n+m
∑

j=n+

[

m(x,β) – m(˜Xj,β)
]

K
(

˜Xj – x
h

)

,

φm(x) =
[

f (x)f̂bm (x) – fb(x)f̂m(x)
]

f –
b (x),

�m(x) = fbm (x) – fb(x).

A series simple calculation yields

M =

n

n
∑

i=

m()(˜Xi,β)ζm(˜Xi)f –
b (˜Xi)

+

n

n
∑

i=

m()(˜Xi,β)ξm(˜Xi)f –
b (˜Xi)

+

n

n
∑

i=

m()(˜Xi,β)m(˜Xi,β)φm(˜Xi)

+

n

n
∑

i=

m()(˜Xi,β)
[

m̂(˜Xi,β)f̂bm (˜Xi) – m(˜Xi,β)f (˜Xi)
]

�m(˜Xi)f –
b (˜Xi)

+

n

n
∑

i=

m()(˜Xi,β)m̂(˜Xi,β)�
m(˜Xi)f –

b (˜Xi)

=:
√

n

∑

i=

Jmi,

Jm =

n

n
∑

i=

m()(˜Xi,β)ζm(˜Xi)f –
b (˜Xi)
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=


mhp

n+m
∑

j=n+

[

m(˜Xj,β) – g(Xj,β)
]

∫

m()(x,β)K
(

˜Xj – x
h

)

f –
b (x)f (x) dx

+


mhp

n+m
∑

j=n+

[

m(˜Xj,β) – g(Xj,β)
]

×
[


n

n
∑

i=

m()(˜Xi,β)K(
˜Xj–˜Xi

h )
fb(˜Xi)

–
∫ m()(x,β)K(

˜Xj–x
h )

fb(x)
f (x) dx

]

=: Jm + Jm,

Jm =


mhp

n+m
∑

j=n+

[

m(˜Xj,β) – g(Xj,β)
]

∫

m()(x,β)K
(

˜Xj – x
h

)

dx

+


mhp

n+m
∑

j=n+

[

m(˜Xj,β) – g(Xj,β)
]

∫

m()(x,β)K
(

˜Xj – x
h

)

[

f (x) – fb(x)
]

f –
b (x) dx

=: Km + Km.

By conditions C, C, and
√

mhk → , applying a Taylor expansion, we can prove

Km =


mhp

n+m
∑

j=n+

[

m(˜Xj,β) – g(Xj,β)
]

∫

m()(˜Xj + μh,β)K(μ)hp dμ

=

m

n+m
∑

j=n+

[

m(˜Xj,β) – g(Xj,β)
]

∫

m()(˜Xj,β)K(μ)hp dμ + op
(

m– 

)

=

m

n+m
∑

j=n+

[

m(˜Xj,β) – g(Xj,β)
]

m()(˜Xj,β) + op
(

m– 

)

.

Notice that f (x̃) – fb(x̃) =  when f (x̃) ≥ bm. By conditions C-C, it is easy to see that
E(

√
mKm) → . Hence, we have Km = op(m– 

 ).
Using the standard kernel estimation method, we can prove that Jm = op(m– 

 ).
Now, let us prove Jmi = op(m– 

 ), i = , . . . , . By conditions C and C, applying a Taylor
expansion, we have

E
[

ξ 
m(˜Xi)|˜Xi

]

= Var
[

ξm(˜Xi)|˜Xi
]

+
[

E
[

ξm(˜Xi)|˜Xi
]]

≤ 
mhp

∫

[

m(˜Xi,β) – m(˜Xi + hμ,β)
]K(μ) dμ

+
[∫

[

m(˜Xi,β) – m(˜Xi + hμ,β)
]

K(μ) dμ

]

≤ c
(

mhp) + chk . (.)

According to the condition independence, together with (.), it is easily shown that
E(

√
mJm) → , hence Jm = op(m– 

 ). Now

Jm =

n

n
∑

i=

m()(˜Xi,β)m(˜Xi,β)φm(˜Xi)

=

n

n
∑

i=

m()(˜Xi,β)m(˜Xi,β)φm(˜Xi)I
[

f (˜Xi) < bm, f̂m(˜Xi) < bm
]
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+

n

n
∑

i=

m()(˜Xi,β)m(˜Xi,β)φm(˜Xi)I
[

f (˜Xi) ≥ bm, f̂m(˜Xi) < bm
]

+

n

n
∑

i=

m()(˜Xi,β)m(˜Xi,β)φm(˜Xi)I
[

f (˜Xi) < bm, f̂m(˜Xi) ≥ bm
]

=: Jm + Jm + Jm,

Jm =

n

n
∑

i=

m()(˜Xi,β)m(˜Xi,β)b–
m
[

f (˜Xi) – f̂m(˜Xi)
]

I
[

f (˜Xi) < bm, –bm < f̂m(˜Xi) < bm
]

+

n

n
∑

i=

m()(˜Xi,β)m(˜Xi,β)b–
m
[

f (˜Xi) – f̂m(˜Xi)
]

I
[

f (˜Xi) < bm, f̂m(˜Xi) < –bm
]

=: Lm + Lm.

By condition C, we easily get

sup
x̃

∣

∣f̂m(x̃) – f (x̃)
∣

∣ = Op
[(

mhp)– 

]

+ Op
(

hk). (.)

Together with condition C and (.), and the Markov inequality, it is easily proved that
Lm = op(m– 

 ). In addition, for ∀ε > , we have

P
(√

m|Lm| > ε
)≤ P

(

sup
x̃

∣

∣f̂m(x̃) – f (x̃)
∣

∣ > bm

)

→ .

Hence, we have Jm = op(m– 
 ). By an argument similar to Jm, we obtain

√
m|Jm| → ,

√
m|Jm| → .

Hence, we have Jm = op(m– 
 ). Now

Jm =

n

n
∑

i=

m()(˜Xi,β)
[

m̂(˜Xi,β) – m(˜Xi,β)
]

�
m(˜Xi)f –

b (˜Xi)

+

n

n
∑

i=

m()(˜Xi,β)
[

m̂(˜Xi,β) – m(˜Xi,β)
]

�m(˜Xi)f –
b (˜Xi)

+

n

n
∑

i=

m()(˜Xi,β)m(˜Xi,β)�
m(˜Xi)f –

b (˜Xi)

+

n

n
∑

i=

m()(˜Xi,β)m(˜Xi,β)�m(˜Xi)
[

bm – f (˜Xi)
]

b–
m I
[

f (˜Xi) < bm
]

.

Notice that

sup
x̃

∣

∣�m(x̃)
∣

∣≤ sup
x̃

∣

∣f̂m(x) – f (x̃)
∣

∣ = Op
[(

mhp)– 

]

+ Op
(

hk). (.)

Together with
√

mP(f (˜Xi) < bm) → , applying conditional independence, we can obtain
Jm = op(m– 

 ).
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Similarly, by conditional independence and (.), we can prove that Jm = op(m– 
 ).

Hence, we have

M =
√

n
m

n+m
∑

j=n+

[

m(˜Xj,β) – g(Xj,β)
]

m()(˜Xj,β) + op().

Consider the sth (s = , . . . , p) component of M, from the Cauchy-Schwarz inequality and
Lemma ., we have

E|Ms| =
√
n

E

∣

∣

∣

∣

∣

n
∑

i=

[

m̂()
s (˜Xi,β) – m()

s (˜Xi,β)
][

m(˜Xi,β) – m̂(˜Xi,β)
]

∣

∣

∣

∣

∣

≤ √
n

n
∑

i=

E
∣

∣

[

m̂()
s (˜Xi,β) – m()

s (˜Xi,β)
][

m(˜Xi,β) – m̂(˜Xi,β)
]∣

∣

≤ √
n

n
∑

i=

{

E
[

m̂()
s (˜Xi,β) – m()

s (˜Xi,β)
]E

[

m(˜Xi,β) – m̂(˜Xi,β)
]} 



= o().

Hence, we have M = op(),

M =
√

n
m

n+m
∑

j=n+

[

m(˜Xj,β) – g(Xj,β)
]

m()(˜Xj,β) + op
(

m– 

)

=: M + op(),

M =
√
n

n
∑

i=

[

YîG – m(˜Xi,β)
][

m̂()(˜Xi,β) – m()(˜Xi,β)
]

=
√
n

n
∑

i=

[

YiG – m(˜Xi,β)
][

m̂()(˜Xi,β) – m()(˜Xi,β)
]

+
√
n

n
∑

i=

[YîG – YiG]
[

m̂()(˜Xi,β) – m()(˜Xi,β)
]

=: M + M.

From Wang [, ], we can obtain M = op().
Write U = {Xj,˜Xj}n+m

j=n+, consider the sth (s = , . . . , p) component of M, from conditional
independence and Lemma . we have

E(Ms) =

n

E

{ n
∑

i=

[

YiG – m(˜Xi,β)
][

m̂()
s (˜Xi,β) – m()

s (˜Xi,β)
]

}

=

n

E

{

E

{ n
∑

i=

ηi
[

m̂()
s (˜Xi,β) – m()

s (˜Xi,β)
]
∣

∣

∣U

}}

=

n

n
∑

i=

E
{

ηi
[

m̂()
s (˜Xi,β) – m()

s (˜Xi,β)
]}

= o().
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So M = op(), then M = op(). Therefore, we have

√
n

n
∑

i=

̂Wi(β) = M + M + M + op(). (.)

From the central limit theorem and n
m → γ , we have

M
L−→ N

(

,�(β)
)

, M
L−→ N

(

,�(β)
)

, (.)

M
L−→ N

(

,�(β)
)

. (.)

In addition, M and M are independent of each other, M and M are independent of
each other. Then a simple calculation yields

EMM = , EMM = , EMM
P−→ –�(β). (.)

From the central limit theorem and by (.)-(.), Lemma . is proved. �

Lemma . Under Condition C, if β is the true value of the parameter, we have


n

n
∑

i=

̂Wi(β)̂W τ
i (β)

P−→ �(β).

Proof After a complex calculation, we have


n

n
∑

i=

̂Wi(β)̂W τ
i (β) =


n

n
∑

i=

m()(˜Xi,β)
(

m()(˜Xi,β)
)τ

η
i + op().

By the law of large numbers, we obtain Lemma .. �

Lemma . Let Z
L−→ N(, Ip), where Ip is the p × p identity matrix. Let Q be a p × p

nonnegative definite matrix with eigenvalues ω, . . . ,ωp. Then it follows that

Zτ QZ
L−→ ωχ


, + ωχ


, + · · · + ωpχ


p,.

Proof of Theorem . We have

β̂ = arg min
β




n
∑

i=

[

YîG – m̂(˜Xi,β)
].

Let

L(β) =



n
∑

i=

[

YîG – m̂(˜Xi,β)
].

Using the Lagrange multiplier method, let

∂L(β)
∂β

=
(

∂L(β)
∂β

, . . . ,
∂L(β)
∂βp

)

= ,
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that is,

n
∑

i=

m̂()(˜Xi,β)
[

YîG – m̂(˜Xi,β)
]

= .

Then we have


n

n
∑

i=

m̂()(˜Xi, β̂)
[

YîG – m̂(˜Xi,β)
]

= . (.)

Applying the Taylor expansion to m̂(˜Xi,β) and m̂()(˜Xi,β) in (.), we can obtain

m̂()(˜Xi, β̂) = m̂()(˜Xi,β) + op(),

m̂(˜Xi, β̂) = m̂(˜Xi,β) + m̂()(
˜Xi,β + θ (β̂ – β)

)

(β̂ – β) + op(),

 =

n

n
∑

i=

[

m̂()(˜Xi,β) + op
(

n


)]

× [

YîG – m̂(˜Xi,β) – m̂()(
˜Xi,β + θ (β̂ – β)

)

(β̂ – β) + op
(

n– 

)]

=

n

n
∑

i=

m̂()(˜Xi,β)
[

YiĜ – m̂(˜Xi,β)
]

–

n

n
∑

i=

m̂()(˜Xi,β)m̂()(
˜Xi,β + θ (β̂ – β)

)

(β̂ – β) + op
(

n– 

)

.

So

β̂ – β =̂�–(β)

{


n

n
∑

i=

m̂()(˜Xi,β)
[

YîG – m̂(˜Xi,β)
]

}

+ Op
(

n– 

)

,

wherê�–(β) = 
n
∑n

i= m̂()(˜Xi,β)m̂()(˜Xi,β + θ (β̂ – β))(β̂ – β), θ ∈ (, ) is a constant. This,

together with Lemma ., easily proves that ̂�–(β)
P−→ �(β). That is,

β̂ – β =

n
̂�–(β)

n
∑

i=

̂Wi(β) + Op
(

n– 

)

.

From Lemmas ., ., and ., we can obtain

√
n(β̂ – β)

L−→ N
(

,�–�(β)�–).

Theorem . is proved. �

Proof of Theorem . Applying a Taylor expansion to equation (.), we have

l̂(β) = 
n
∑

i=

log
(

 + λτ
̂Wi(β)

)

= 
n
∑

i=

[

log  +
(

log′ x
)

x=

(

λT
̂Wi
)

+
(log x)()|x=


(

λτ
̂Wi
) +

(log x)()|x=ξ


(

λτ
̂Wi
)
]
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( < ξ < )

= 
n
∑

i=

[

λτ
̂Wi –



(

λτ
̂Wi
)
]

+ op(). (.)

By Lemmas . and ., using the result of Wang [–], we can prove
⎧

⎪

⎨

⎪

⎩

max≤i≤n ̂Wi(β) = op(n 
 ),

λ = Op(n– 
 ),


n
∑n

i=
̂Wi(β)̂W τ

i (β) = op().
(.)

Again,

 =

n

n
∑

i=

̂Wi(β)
 + λτ

̂Wi(β)

=

n

n
∑

i=

̂Wi(β)( + λτ
̂Wi(β)) – ̂Wi(β)λτ

̂Wi(β)
 + λτ

̂Wi(β)

=

n

n
∑

i=

̂Wi(β) –

n

n
∑

i=

λτ
(

̂Wi(β)
) +


n

n
∑

i=

̂Wi(β)λτλ̂Wi(β)̂W τ
i (β)

 + λτ
̂Wi(β)

. (.)

By (.), we can obtain


n

n
∑

i=

λτ
̂Wi(β) =


n

n
∑

i=

λτ
(

λτ
̂Wi(β)

) + op(). (.)

By (.), we can obtain

λ =

( n
∑

i=

̂Wi(β)̂W τ
i (β)

)–( n
∑

i=

̂Wi(β)

)

+ op
(

n– 

)

. (.)

By (.), (.), (.), we can obtain

l̂(β) = λτ

( n
∑

i=

̂Wi(β)

)

+ op()

=

(

√
n

n
∑

i=

̂Wi(β)

)τ

̂�–
 (β)

(

√
n

n
∑

i=

̂Wi(β)

)

+ op(). (.)

By (.) and Lemmas ., ., and ., we can obtain

l̂(β) =

{

√
n

�– 
 (β)

n
∑

i=

̂Wi(β)

}τ

D(β)

{

√
n

�– 
 (β)

n
∑

i=

̂Wi(β)

}

+ op(),

where D(β) = �

 (β)�–

 (β)� 
 (β).

Write ˜D = diag(ω, . . . ,ωp) where ωi (i = , . . . , p) are the eigenvalues of D, then there
exists an orthogonal matrix Q which makes Qτ

˜DQ = D(β). Therefore, we have

l̂(β) =

{

√
n

Q�– 
 (β)

n
∑

i=

̂Wi(β)

}τ

˜D(β)

{

√
n

Q�– 
 (β)

n
∑

i=

̂Wi(β)

}

+ op(). (.)
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From Lemma ., we have

√
n

Q�– 
 (β)

n
∑

i=

̂Wi(β)
L−→ N(, Ip). (.)

By (.) and (.), we finish the proof of Theorem .. �

Proof of Theorem . Review the definition of l̂ad(β), combined with (.), we can infer

l̂ad(β) =

{

√
n

n
∑

i=

̂Wi(β)

}τ

̂�–(β)

{

√
n

n
∑

i=

̂Wi(β)

}

+ op().

Combined with the process of the above proof, similar to the proof of Lemma ., it is

easily shown that ̂�(β)
P−→ �(β).

By Lemmas ., ., and (.), we can prove

l̂ad(β)
L−→ χ

p . �

4 Conclusions
In this text, with the help of validation data, the empirical likelihood method is extended to
the nonlinear error-in-variables regression models with randomly censored response. We
construct an estimated empirical log-likelihood function l̂(β) of the unknown interesting
parameter β , and we get the asymptotic distribution of l̂(β). By giving estimators of the
weights ωi and Monte Carlo simulation method, we construct the confidence region for
the parameter β . To avoid estimating ωi, the adjusted empirical log-likelihood l̂ad(β) has
been defined and the asymptotic distribution of l̂ad(β) is obtained. Using the result, we
may better construct a confidence region for the parameter β . The theoretical analysis
shows that the empirical likelihood method can be applied to the nonlinear model with
complex incomplete data, and it can be used to obtain a better result.
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