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Abstract
In this paper, we investigate the reciprocal sums of even and odd terms in the
Fibonacci sequence, and we obtain four interesting families of identities which give
the partial finite sums of the even-indexed (resp., odd-indexed) reciprocal Fibonacci
numbers and the even-indexed (resp., odd-indexed) squared reciprocal Fibonacci
numbers.
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1 Introduction
The Fibonacci sequence is defined by the linear recurrence relation

Fn = Fn– + Fn– for n ≥ ,

where Fn is called the nth Fibonacci number with F =  and F = . There exists a simple
and non-obvious formula for the Fibonacci numbers,

Fn =
√


(
 +

√




)n

–
√


(
 –

√




)n

.

The Fibonacci sequence plays an important role in the theory and applications of
mathematics, and its various properties have been investigated by many authors; see
[–].

In recent years, there has been an increasing interest in studying the reciprocal sums
of the Fibonacci numbers. For example, Elsner et al. [–] investigated the algebraic rela-
tions for reciprocal sums of the Fibonacci numbers. In [], the partial infinite sums of the
reciprocal Fibonacci numbers were studied by Ohtsuka and Nakamura. They established
the following results, where �·� denotes the floor function.

Theorem . For all n ≥ ,

⌊( ∞∑
k=n


Fk

)–⌋
=

{
Fn–, if n is even;
Fn– – , if n is odd.

(.)
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Theorem . For each n ≥ ,

⌊( ∞∑
k=n


F

k

)–⌋
=

{
FnFn– – , if n is even;
FnFn–, if n is odd.

(.)

Wu and Zhang [, ] generalized these identities to the Fibonacci polynomials and
Lucas polynomials, and they considered the subseries of infinite sums derived from the
reciprocals of the Fibonacci polynomials and Lucas polynomials.

Recently, Wu and Wang [] studied the partial finite sum of the reciprocal Fibonacci
numbers and deduced the following main result.

Theorem . For all n ≥ ,

⌊( n∑
k=n


Fk

)–⌋
= Fn–. (.)

Inspired by Wu and Wang’s work, Wang and Wen [] strengthened Theorem . and .
to the finite sum case.

Theorem . If m ≥  and n ≥ , then

⌊( mn∑
k=n


Fk

)–⌋
=

{
Fn–, if n is even;
Fn– – , if n is odd.

(.)

Theorem . For all m ≥  and n ≥ , we have

⌊( mn∑
k=n


F

k

)–⌋
=

{
FnFn– – , if n is even;
FnFn–, if n is odd.

(.)

Applying elementary methods, we investigate the partial finite sums of the even-indexed
and odd-indexed reciprocal Fibonacci numbers in this paper, and obtain four interesting
families of identities. In Section , we consider the reciprocal sums of even and odd terms
in the Fibonacci sequence. In Section , we present the finite sums of the even-indexed
and odd-indexed squared reciprocal Fibonacci numbers.

2 Main results I: the reciprocal sums
We first present several well-known results on Fibonacci numbers, which will be used
throughout the article. The detailed proofs can be found in [].

Lemma . Let n ≥ , we have

F
n – Fn–Fn+ = (–)n– (.)

and

FaFb + Fa+Fb+ = Fa+b+ (.)

if a and b are positive integers.
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As a consequence of (.), we have the following result.

Corollary . If n ≥ , then

Fn = F
n+ – F

n–, (.)

Fn+ = Fn–Fn+ + FnFn+, (.)

Fn+ = Fn+Fn+ – Fn–Fn. (.)

The following is an interesting identity concerning the Fibonacci numbers.

Lemma . Assume that a and b are two integers with a ≥ b ≥ . If n > a, then

Fn+aFn–a– – Fn+bFn–b– = (–)n–aFa+b+Fa–b. (.)

Proof We proceed by induction on n. It is clearly true for n = a + . Assuming the result
holds for any integer n > a, we show that the same is true for n + .

Applying (.) repeatedly and by the induction hypothesis, we get

F(n+)+aF(n+)–a– – F(n+)+bF(n+)–b– = (Fn++aFn–a + Fn+aFn–a–)

– Fn++bFn–b – Fn+aFn–a–

= Fn – Fn++bFn–b – Fn+aFn–a–

= Fn+bFn–b– – Fn+aFn–a–

= –(Fn+aFn–a– – Fn+bFn–b–)

= (–)n+–aFa+b+Fa–b,

which completes the induction on n. �

Remark Recently, Akyiğit et al. [, ] defined the split Fibonacci quaternion, the split
Lucas quaternion and the split generalized Fibonacci quaternion, and they obtained some
similar identities to those above for these quaternions.

Before presenting our main results, we establish an inequality.

Proposition . If n ≥ , then


Fn+

>
n∑

k=n


Fk–FkFk+

. (.)

Proof A direct calculation shows that it is true for n = . Thus, we assume that n ≥  in
the rest of the proof.

Setting a =  and b = , and replacing n by n in (.) yields

Fn+Fn– = FnFn– + . (.)



Wang and Zhang Journal of Inequalities and Applications  (2015) 2015:376 Page 4 of 13

From (.), we know that

Fn+ = Fn+Fn+ – Fn–Fn. (.)

Applying (.), (.), and the fact Fn– ≥  and Fn–Fn > Fn+ if n ≥ , we obtain

Fn–Fn+ = Fn–(Fn+Fn+ – Fn–Fn)

= Fn–Fn+Fn+ – Fn–Fn–Fn

= (Fn–Fn + )Fn+ – Fn–Fn–Fn

= Fn–FnFn+ + Fn+ – Fn–Fn–Fn

= Fn–FnFn+ – (Fn–Fn–Fn – Fn+)

< Fn–FnFn+,

which is equivalent to

Fn+

Fn–FnFn+
<


Fn–

.

Now we have


Fn+

–
n∑

k=n


Fk–FkFk+

=


Fn+
–


Fn+

n∑
k=n

Fn+

Fk–FkFk+

>


Fn+
–


Fn+

n∑
k=n


Fn–

=


Fn+

(
Fn– – n – 

Fn–

)
.

It is not hard to see that for n ≥ , Fn– ≥ n + , which completes the proof. �

Now we introduce our main results on the reciprocal sums of Fibonacci numbers.

Theorem . For all n ≥ , we have

⌊( n∑
k=n


Fk

)–⌋
= Fn–. (.)

Proof By elementary manipulations and (.), we derive that, for k ≥ ,


Fk– + 

–


Fk
–


Fk+ + 

=
Fk(Fk+ – Fk–) – (Fk– + )(Fk+ + )

Fk(Fk– + )(Fk+ + )

=
F

k – Fk–Fk+ – Fk– – Fk+ – 
Fk(Fk– + )(Fk+ + )

=
(–)k– – Fk– – Fk+ – 

Fk(Fk– + )(Fk+ + )
.
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Hence, we have

n∑
k=n


Fk

=


Fn– + 
–


Fn+ + 

+
n∑

k=n

(


Fk(Fk– + )
+


Fk(Fk+ + )

)

>


Fn– + 
–


Fn+ + 

+


Fn(Fn– + )
.

It follows from (.) that

Fn+ > FnFn+ > Fn(Fn– + ),

which implies that

n∑
k=n


Fk

>


Fn– + 
. (.)

Invoking (.) again, we can readily deduce that


Fk–

–


Fk
–


Fk+

=
–

Fk–FkFk+
, (.)

from which we obtain

n∑
k=n


Fk

=


Fn–
–


Fn+

+
n∑

k=n


Fk–FkFk+

.

Because of (.), we get, if n ≥ ,

n∑
k=n


Fk

<


Fn–
. (.)

Combining (.) and (.), we have


Fn– + 

<
n∑

k=n


Fk

<


Fn–
,

which yields the desired identity. �

Theorem . If m ≥  and n ≥ , we have

⌊( mn∑
k=n


Fk

)–⌋
= Fn– – . (.)

Proof It is obviously true for n = . Now we assume that n ≥ .
By some calculations and (.), we obtain, for k ≥ ,


Fk– – 

–


Fk
–


Fk+ – 

=
Fk– + Fk+ – 

(Fk– – )Fk(Fk+ – )
> , (.)
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from which we have

mn∑
k=n


Fk

<


Fn– – 
–


Fmn+ – 

<


Fn– – 
. (.)

On the other hand, it follows from (.) that

mn∑
k=n


Fk

=


Fn–
–


Fmn+

+
mn∑
k=n


Fk–FkFk+

>


Fn–
+


Fn–FnFn+

–


Fmn+
.

We claim that if n ≥  and m ≥ ,

Fn–FnFn+ < Fmn+.

Replacing a by a –  in (.), we arrive at

Fa–Fb + FaFb+ = Fa+b,

which implies that

Fa+b ≥ FaFb+ ≥ FaFb. (.)

Thus, Fn–FnFn+ ≤ Fn < Fn+ ≤ Fmn+, which means

mn∑
k=n


Fk

>


Fn–
. (.)

Combining (.) and (.) yields


Fn–

<
mn∑
k=n


Fk

<


Fn– – 
,

from which the desired result follows immediately. �

Corollary . For all n ≥ , we have

⌊( ∞∑
k=n


Fk

)–⌋
= Fn– – . (.)

Proof By using (.) repeatedly, we have


Fn– – 

>


Fn
+


Fn+ – 

>


Fn
+


Fn+

+


Fn+ – 

>


Fn
+


Fn+

+


Fn+
+ · · · .
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Thus, we obtain

∞∑
k=n


Fk

<


Fn– – 
.

Applying the same argument to (.) yields

∞∑
k=n


Fk

>


Fn–
.

Hence we have


Fn–

<
∞∑

k=n


Fk

<


Fn– – 
,

which completes the proof. �

Remark Identity (.) can be regarded as the limit of (.) as m → ∞.

Theorem . For all n ≥  and m ≥ , we have

⌊( mn∑
k=n


Fk–

)–⌋
= Fn–. (.)

Proof It is clearly true for n = , hence we suppose that n ≥  in the following.
Invoking (.), we derive that for k ≥ ,


Fk–

–


Fk–
–


Fk

=


Fk–Fk–Fk
> ,

which implies that

mn∑
k=n


Fk–

<


Fn–
–


Fmn

<


Fn–
. (.)

It follows from (.) that

Fn+ > Fn+Fn > (Fn– + )Fn–,

based on which we conclude that, when n > ,

Fn + Fn–

(Fn– + )Fn–(Fn + )
>


(Fn– + )Fn–

>


Fn+
≥ 

Fmn+
.

Employing (.) again, we can readily obtain


Fk– + 

–


Fk–
–


Fk + 

=
–Fk – Fk–

(Fk– + )Fk–(Fk + )
,
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from which we arrive at

mn∑
k=n


Fk–

=


Fn– + 
–


Fmn + 

+
mn∑
k=n

Fk + Fk–

(Fk– + )Fk–(Fk + )

>


Fn– + 
–


Fmn + 

+
Fn + Fn–

(Fn– + )Fn–(Fn + )

>


Fn– + 
.

Combining the above inequality with (.), we have


Fn– + 

<
mn∑
k=n


Fk–

<


Fn–
,

which yields the desired result. �

As m approaches infinity, Theorem . becomes the following.

Corollary . If n ≥ , we have

⌊( ∞∑
k=n


Fk–

)–⌋
= Fn–. (.)

3 Main results II: the reciprocal square sums
We first introduce several preliminary results on the square of the Fibonacci numbers.

Lemma . For all n ≥ , we have

F
n–F

n+ – F
n–F

n+ = (–)n ·  · F
n . (.)

Proof It follows from

Fn–Fn+ = (Fn – Fn–)(Fn + Fn+)

= F
n + FnFn+ – Fn–Fn – Fn–Fn+

= F
n – Fn–Fn+

that

F
n–F

n+ – F
n–F

n+ = (Fn–Fn+ + Fn–Fn+)(Fn–Fn+ – Fn–Fn+)

= F
n
(
Fn–Fn+ – F

n
)

= (–)n ·  · F
n ,

where the last equality follows from (.). �

Lemma . If n ≥ , then

Fn–Fn+ – F
n– = . (.)
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Proof It is straightforward to check that

Fn–Fn+ – F
n– = (Fn– – Fn–)(Fn– + Fn) – F

n–

= F
n– + Fn–Fn – Fn–Fn– – Fn–Fn – F

n–

= Fn–Fn – Fn–Fn– – Fn–Fn

= Fn–Fn – Fn–Fn+

= ,

where the last equality follows from (.). �

Lemma . For each n ≥ , we have

F
n+ – F

n– > F
n–. (.)

Proof A direct calculation shows that

F
n+ – F

n– = (Fn+ + Fn–)(Fn+ – Fn–)

= (Fn– + Fn– + Fn–)(Fn– + Fn – Fn–)

> Fn–Fn–

= F
n–.

The proof is complete. �

Remark In fact, applying the equalities (ii) and (iv) of Proposition . of [], we can easily
obtain

F
n+ – F

n– = (Fn+ + Fn–)(Fn+ – Fn–) = Fn– · Ln–,

where Ln means the nth Lucas number. Then (.) follows immediately from the fact Ln >
Fn for n ≥ .

Now we are ready to present the reciprocal square sums of the Fibonacci numbers.

Theorem . For all n ≥  and m ≥ , we have

⌊( mn∑
k=n


F

k

)–⌋
= Fn– – . (.)

Proof It is clearly true for n = , so we assume that n ≥  in the rest of the proof.
For k ≥ , we have


Fk– – 

–


F
k

–


Fk+ – 
=

F
k(Fk+ – Fk–) – (Fk– – )(Fk+ – )

(Fk– – )F
k(Fk+ – )

>
F

k(Fk+ – Fk–) – Fk–Fk+ + Fk+

(Fk– – )F
k(Fk+ – )

.
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It follows from (.) that

F
k – F

k– = Fk–, (.)

F
k+ – F

k = Fk+. (.)

As a consequence of (.), we see

F
k–F

k+ – F
k–F

k+ = F
k . (.)

Applying (.), (.), (.), and (.), we derive that

F
k(Fk+ – Fk–) – Fk–Fk+ + Fk+

= F
k

(
F

k+ – F
k + F

k–
)

–
(
F

k – F
k–

)(
F

k+ – F
k

)
+ F

k+ – F
k

= –F
k + F

k–F
k+ + F

k+ – F
k

= –F
k

(
F

k + 
)

+ F
k–F

k+ + F
k+

= –(Fk–Fk+ – )Fk–Fk+ + F
k–F

k+ + F
k+

= –F
k–F

k+ + Fk–Fk+ + F
k–F

k+ + F
k+

= F
k+ – F

k–F
k+ + F

k–F
k+ + Fk–Fk+

= F
k+ – F

k + Fk–Fk+

= (Fk+ – Fk)(Fk+ + Fk) + Fk–Fk+

> ,

which implies that


Fk– – 

–


F
k

–


Fk+ – 
> .

Thus, we have

mn∑
k=n


F

k
<


Fn– – 

–


Fmn+ – 
<


Fn– – 

. (.)

Employing the same argument as above, we obtain, for k ≥ ,


Fk–

–


F
k

–


Fk+
= –

F
k – Fk–Fk+

Fk–F
kFk+

.

For each k ≥ , we have

F
k – Fk–Fk+ = F

k – Fk–(Fk– + Fk)

= F
k +

(
F

k – F
k–

)
+

(
F

k – Fk–Fk
)

> F
k .
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Therefore,


Fk–

–


F
k

–


Fk+
< –


Fk–Fk+

,

from which we arrive at

mn∑
k=n


F

k
>


Fn–

–


Fmn+
+


Fn–Fn+

>


Fn–
+


Fn

–


Fmn+

>


Fn–
. (.)

Combining (.) and (.) yields


Fn–

<
mn∑
k=n


F

k
<


Fn– – 

,

from which the desired result follows. �

As m tends to infinity in Theorem ., we have the following consequence.

Corollary . For all n ≥ , we have

⌊( ∞∑
k=n


F

k

)–⌋
= Fn– – . (.)

Theorem . If n ≥  and m ≥ , then

⌊( mn∑
k=n


F

k–

)–⌋
= Fn–. (.)

Proof It is obvious when n = , thus we assume that n ≥  in the following.
It follows from (.) that

F
k+ – F

k– = Fk ,

F
k– – F

k– = Fk–.

Therefore, applying (.), we deduce

F
k–(Fk – Fk–) – Fk–Fk = F

k–
(
F

k+ – F
k– + F

k–
)

–
(
F

k+ – F
k–

)(
F

k– – F
k–

)
= F

k–F
k+ – F

k–

=
(
Fk–Fk+ – F

k–
)(

Fk–Fk+ + F
k–

)
= Fk–Fk+ + F

k–. (.)
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For k ≥ , we have


Fk–

–


F
k–

–


Fk
=

F
k–(Fk – Fk–) – Fk–Fk

Fk–F
k–Fk

=
Fk–Fk+ + F

k–
Fk–F

k–Fk

> ,

from which we derive

mn∑
k=n


F

k–
<


Fn–

–


Fmn
<


Fn–

. (.)

Employing (.) and (.), we obtain

F
k–(Fk – Fk–) – (Fk– + )(Fk + ) = F

k– + F
k– – F

k+ < –F
k–,

where the last inequality follows from (.).
Now we see that, for k ≥ ,


Fk– + 

–


F
k–

–


Fk + 
=

F
k–(Fk – Fk–) – (Fk– + )(Fk + )

(Fk– + )F
k–(Fk + )

<
–

(Fk– + )(Fk + )
,

which implies that

mn∑
k=n


F

k–
>


Fn– + 

–


Fmn + 
+


(Fn– + )(Fn + )

.

It is easy to see that

(Fn– + )(Fn + ) = Fn–Fn + Fn– + Fn + 

< Fn– + Fn– + Fn– + 

= Fn + .

Hence,

mn∑
k=n


F

k–
>


Fn– + 

+


Fn + 
–


Fmn + 

≥ 
Fn– + 

. (.)

It follows from (.) and (.) that


Fn– + 

<
mn∑
k=n


F

k–
<


Fn–

,

which completes the proof. �
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Consequently, we have the following result.

Corollary . If n ≥ , then

⌊( ∞∑
k=n


F

k–

)–⌋
= Fn–. (.)

4 Conclusions
In this paper, we give the exact integral values of the reciprocal sums (resp., square sums) of
the even and odd terms in the Fibonacci sequence. The results are new and important for
those with closely related research interests. In addition, the methods used here are very
elementary and can be extended to the investigation of other combinatorial sequences.

In a future paper, the reciprocal sums and the reciprocal square sums of the Fibonacci
-subsequences will be presented.
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16. Akyiğit, M, Kösal, HH, Tosun, M: Fibonacci generalized quaternions. Adv. Appl. Clifford Algebras 24, 631-641 (2014)
17. Savin, D: Some properties of Fibonacci numbers, Fibonacci octonions, and generalized Fibonacci-Lucas octonions.

Adv. Differ. Equ. 2015, Article ID 298 (2015)


	The reciprocal sums of even and odd terms in the Fibonacci sequence
	Abstract
	MSC
	Keywords

	Introduction
	Main results I: the reciprocal sums
	Main results II: the reciprocal square sums
	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	References


