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Marija Cvetković1, Erdal Karapınar2,3* and Vladimir Rakocević1
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Abstract
In this paper, we investigate the existence and uniqueness of a fixed point of certain
operators in the setting of complete quasi-b-metric-like spaces via admissible
mappings. Our results improve, extend, and unify several well-known existence
results.
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1 Introduction and preliminaries
Throughout this paper, we denote R+

 = [, +∞) and N = N∪ {}, where N is the set of all
positive integers. First, we recall some basic concepts and notation.

The concept of b-metric was introduced by Czerwik [] as a generalization of metric
(see also Bakhtin [, ]) to extend the celebrated Banach contraction mapping principle.
Following the initial paper of Czerwik [], a number of researchers in nonlinear analy-
sis investigated the topology of the paper and proved several fixed point theorems in the
context of complete b-metric spaces (see [–] and references therein).

Definition . [] Let X be a nonempty set, and s ≥  be a given real number. A mapping
d : X × X → [, +∞) is said to be a b-metric if for all x, y, z ∈ X, the following conditions
are satisfied:

(b) d(x, y) =  if and only if x = y;
(b) d(x, y) = d(y, x);
(b) d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X, d) is called a b-metric space (with constant s).

Definition . [] Let X be a nonempty set, and s ≥  be a given real number. A map-
ping d : X × X → [, +∞) is said to be a quasi-b-metric if for all x, y, z ∈ X, the following
conditions are satisfied:

(bm) d(x, y) =  if and only if x = y;
(bm) d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X, d) is called a quasi-b-metric space (with constant s).
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Definition . [] Let X be a nonempty set, and s ≥  be a given real number. A mapping
d : X × X → [, +∞) is said to be a quasi-b-metric-like if for all x, y, z ∈ X, the following
conditions are satisfied:

(bM) d(x, y) =  implies x = y;
(bM) d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X, d) is called a quasi-b-metric-like space (with constant s).

Example . Let X = {, 
 , 

 } ∪ [,∞), and let d : X × X → [, +∞) be defined as

d(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

 if x = y = ,
 if x = y = 

 ,
 if x = , y = 

 ,

 if x = , y = 

 ,

 if x = 

 , y = ,
|x – y| otherwise.

It is clear that (X, d) is a quasi-b-metric-like space with constant s = .

Definition . (see e.g. []) Let (X, d) be a quasi-b-metric-like space. Then:

(i)a a sequence {xn} in X is called a left-Cauchy sequence if and only if for every ε > ,
there exists a positive integer N = N(ε) such that d(xn, xm) < ε for all n > m > N ;

(ii)b a sequence {xn} in X is called a right-Cauchy sequence if and only if for every ε > ,
there exists a positive integer N = N(ε) such that d(xn, xm) < ε for all m > n > N ;

(iii)a a quasi-partial metric space is said to be left-complete if every left-Cauchy sequence
{xn} in X converges with respect to d to a point u ∈ X such that

lim
n→∞ d(xn, u) = d(u, u) = lim

n,m→∞ d(xm, xn) = , where m ≥ n;

(iii)b a quasi-partial metric space is said to be right-complete if every left-Cauchy sequence
{xn} in X converges with respect to d to a point u ∈ X such that

lim
n→∞ d(u, xn) = d(u, u) = lim

n,m→∞ d(xn, xm) = , where m ≥ n.

Let (X, d) and (Y ,α) be quasi-b-metric-like spaces, and let f : X → Y be a continuous
mapping. Then

lim
n→∞ xn = u ⇒ lim

n→∞ fxn = fu.

In , Samet et al. [] introduced the concept of α-admissible mappings, and in ,
Karapınar et al. [] improved this notion as triangular α-admissible mappings.

Definition . [, ] Let α : X × X → [, +∞) be a function. A self-mapping f is called
an α-admissible mapping if

α(x, y) ≥  ⇒ α(fx, fy) ≥ 
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for all x, y ∈ X. If, further, f satisfies the condition

α(x, z) ≥  and α(z, y) ≥  ⇒ α(x, y) ≥ 

for all x, y, z ∈ X, then it is called triangular α-admissible mapping.

Very recently, Popescu [] improved these notions as follows.

Definition . [] Let α : X × X → [,∞) be a function. If f : X → X satisfies the condi-
tion

(T)′ α(x, fx) ≥  ⇒ α
(
fx, f x

) ≥ 

for all x ∈ X, then it is called a right-α-orbital admissible mapping. If f satisfies the condi-
tion

(T)′′ α(fx, x) ≥  ⇒ α
(
f x, fx

) ≥ 

for all x ∈ X, then it is called a left-α-orbital admissible mapping. Furthermore, if f is
both right-α-orbital admissible and left-α-orbital admissible, then f is called an α-orbital
admissible mapping.

Triangular α-admissible mappings defined by Popescu [] impose the following defi-
nitions.

Definition . [] Let f : X → X be a self-mapping, and α : X ×X → [,∞) be a function.
Then f is said to be triangular right-α-orbital admissible if f is right-α-orbital admissible
and

(T)′ α(x, y) ≥  and α(y, fy) ≥  ⇒ α(x, fy) ≥ 

and is said to be triangular left-α-orbital admissible if f is α-orbital admissible and

(T)′′ α(fx, x) ≥  and α(x, y) ≥  ⇒ α(fx, y) ≥ .

If T satisfies both (T)′ and (T)′′, then it is called triangular α-orbital admissible.

It is easy to conclude that each α-admissible mapping is an α-orbital admissible mapping
and each triangular α-admissible mapping is a triangular α-orbital admissible mapping.
However, the converses of the statements are false. In the following example, we see that
a mapping that is triangular α-orbital admissible need not be triangular α-admissible.

Example . Let X = {xi : i = , . . . , n} for some n ≥ , and d : X × X → R
+
 with d(x, y) =

|x – y|. We define a self-mapping f : X → X such that fxi = xi for i = , , fxi = xj for i, j ∈
{, }, i 
= j, fxi = xi+ for i ∈ {, . . . , n – }, and fxn = fx. Moreover, let α : X × X → R

+
 be

such that

α(x, y) =

⎧
⎪⎨

⎪⎩

 if (x, y) ∈ {(x, x), (x, x), (x, x), (x, x),
(x, x), (x, x), (x, x), (x, x)},

 otherwise.



Cvetković et al. Journal of Inequalities and Applications  (2015) 2015:374 Page 4 of 17

Note that f is α-orbital admissible since α(x, fx) = α(x, x) =  and α(x, fx) =
α(x, x) = . On the other hand, we have α(x, x) = α(x, x) = , but α(x, x) = . Hence,
T is not triangular α-admissible.

Definition . [] Let (X, d) be a quasi-b-metric-like space. Then X is said to be
α-regular if for every sequence {xn} in X such that α(xn, xn+) ≥  for all n and xn → x ∈ X
as n → ∞, there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥  for all k.

2 Main result
The notion of (b)-comparison was introduced by Berinde [] in order to extend the notion
of (c)-comparison.

Definition . [] Let s ≥  be a real number. A mapping ψ : R+
 → R

+
 is called a

(b)-comparison function if the following conditions are fulfilled:
() ψ is monotone increasing;
() there exist k ∈N, a ∈ (, ), and a convergent series of nonnegative terms

∑∞
k= vk

such that sk+ψk+(t) ≤ askψk(t) + vk for all k ≥ k and t ∈ [,∞).

The class of (b)-comparison functions will be denoted by �b. Notice that the notion of
a (b)-comparison function reduces to the concept of a (c)-comparison function if s = .

The following lemma will be used in the proof of our main result.

Lemma . [, ] Let s ≥  be a real number. If ψ : R+
 → R

+
 is a (b)-comparison func-

tion, then:
() the series

∑∞
k= skψk(t) converges for any t ∈R

+
 ;

() the function ps : [,∞) → [,∞) defined by

ps(t) =
∞∑

k=

skψk(t) for all t ∈ [,∞)

is increasing and continuous at .

Remark . It is easy to see that if ψ(t) ∈ �b, then ψ(t) < t for all t > . In fact, if there is a
t∗ >  such that ψ(t∗) ≥ t∗, then we have ψ(t∗) ≥ ψ(t∗) ≥ t∗ (since ψ is increasing). Con-
tinuing in the same manner, we get ψn(t∗) ≥ t∗ > , n ∈ N. This contradicts Lemma ..

Definition . Let (X, d) be a complete quasi-b-metric-like space with a constant s ≥ .
A self-mapping f : X → X is called (α,ψ)-contractive mapping if there exist two functions
ψ ∈ �b and α : X × X → [,∞) satisfying the following condition:

α(x, y)d(fx, fy) ≤ ψ
(
d(x, y)

)
(.)

for all x, y ∈ X.

Theorem . Let (X, d) be a complete quasi-b-metric-like space, and let f : X → X be an
(α,ψ)-contractive mapping. Suppose also that

(i) f is α-orbital admissible;
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(ii) there exists x ∈ X such that α(x, fx) ≥  and α(fx, x) ≥ ;
(iii) f is continuous.

Then f has a fixed point u in X, and d(u, u) = .

Proof By (ii) there exists x ∈ X such that α(x, fx) ≥  and α(fx, x) ≥ . Define the it-
erative sequence {xn} in X by xn+ = fxn for all n ∈ N. Note that if there exists n ∈ N

such that xn = xn+, then xn becomes a fixed point, which completes the proof. Hence,
throughout the proof, we suppose that xn 
= xn+ for all n ∈ N. Regarding the fact that f is
α-orbital admissible, from (ii) we derive that

α(x, x) = α(x, fx) ≥  ⇒ α(fx, fx) = α(x, x) ≥ .

Inductively, we get that

α(xn, xn+) ≥  for all n ∈ N. (.)

Analogously, again by (ii) and the fact that f is α-orbital admissible we find that

α(x, x) = α(fx, x) ≥  ⇒ α(fx, fx) = α(x, x) ≥ .

Consequently, we observe that

α(xn+, xn) ≥  for all n ∈ N. (.)

From (.), by taking x = xn and y = xn–, we find that

d(xn+, xn) = d(fxn, fxn–)

≤ α(xn, xn–)d(fxn, fxn–)

≤ ψ
(
d(xn, xn–)

)
.

In view of Remark ., we get that

d(xn+, xn) ≤ ψ
(
d(xn, xn–)

)
< d(xn, xn–) for all n ∈ N. (.)

By analogy, again by (.) and by substituting x = xn– and y = xn, we have

d(xn, xn+) = d(fxn–, fxn)

≤ α(xn–, xn)d(fxn–, fxn)

≤ ψ
(
d(xn–, xn)

)
.

Consequently,

d(xn, xn+) ≤ ψ
(
d(xn–, xn)

)
< d(xn–, xn) for all n ∈ N. (.)
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From (.) and (.) we derive that

d(xn, xn+) ≤ ψn(d(x, x)
)

and d(xn+, xn) ≤ ψn(d(x, x)
)

for all n ∈N. (.)

By Lemma .() and letting n → ∞ in (.), we have limn→∞ d(xn, xn+) = limn→∞ d(xn+,
xn) = .

We further prove that the sequence {xn} is right-Cauchy and left-Cauchy. For all n, p ∈N,
we have

d(xn, xn+p) ≤
p–∑

i=

sid(xn+i–, xn+i) + sp–d(xn+p–, xn+p)

<
p∑

i=

siψn+i–(d(x, x)
)

=


sn–

n+p–∑

k=n

skψk(d(x, x)
)
.

By letting n, p → ∞ we get that

lim
n,p→∞ d(xn, xn+p) = ,

that is, the sequence {xn} is right-Cauchy.
Analogously,

lim
n,p→∞ d(xn+p, xn) = ,

that is, the sequence {xn} is left-Cauchy. As a result, the sequence {xn} is a Cauchy se-
quence. Since (X, d) is complete, there exists a point u ∈ X such that

lim
n→∞ d(u, xn) = lim

n→∞ d(xn, u) = d(u, u) = lim
n,m→∞ d(xn, xm) = lim

n,m→∞ d(xm, xn) = . (.)

Since f is continuous, we have

u = lim
n→∞ xn+ = lim

n→∞ fxn = fu. �

Example . Let (X, d) be a quasi b-metric like space defined in Example ., and let the
mapping f : X �→ X be defined as

fx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩


 if x = ,

 if x = 

 ,

 if x = 

 ,
x +  if x ≥ .

Let ψ(t) = t
 , t ≥ , and let α : X × X → [,∞) be defined as

α(x, y) =

{
 if x, y ∈ {, 

 , 
 },

 otherwise.
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Then ψ ∈ �b, and f is an (α,ψ)-contractive mapping. Since the conditions of Theorem .
are satisfied, it follows that f has a fixed point in X.

It is possible to remove the heavy condition of continuity of the self-mapping f in Theo-
rem .. For this purpose, we need the following result, which is inspired from the results
in [].

Lemma . Let (X, d) be a quasi-b-metric-like space with constant s and assume that {xn}
and {yn} are sequences in X converging to x and y, respectively. Then


s d(x, y) –


s

d(x, x) – d(y, y) ≤ lim inf
n→∞ d(xn, yn) ≤ lim sup

n→∞
d(xn, yn)

≤ sd(x, x) + sd(y, y) + sd(x, y).

In particular, if d(x, y) = , then limn→∞ d(xn, yn) = .
Moreover, for each z ∈ X, we have


s

d(x, z) – d(x, x) ≤ lim inf
n→∞ d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ sd(x, z) + sd(x, x). (.)

If d(x, x) = , then


s

d(x, z) ≤ lim inf
n→∞ d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ sd(x, z).

Theorem . Let (X, d) be a complete quasi-b-metric-like space, and let f : X → X be an
(α,ψ)-contractive mapping. Suppose also that

(i) f is α-orbital admissible;
(ii) there exists x ∈ X such that α(x, fx) ≥  and α(fx, x) ≥ ;

(iii) X is α-regular.
Then f has a fixed point u in X, and d(u, u) = .

Proof By verbatim of the proof of Theorem . we find an iterative sequence {xn} that
converges to a point u ∈ X such that (.) holds.

Since d(u, u) = , by Lemma . we have


s

d(u, fu) ≤ lim inf
n→∞ d(xn+, fu)

≤ lim sup
n→∞

d(xn+, fu)

= lim sup
n→∞

d(fxn, fu)

≤ lim sup
n→∞

α(xn, u)d(fxn, fu)

≤ lim sup
n→∞

ψ
(
d(xn, u)

)
.

By letting n → ∞ in these inequalities we derive that 
s d(u, fu) =  and hence fu = u. �
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It is natural to consider the uniqueness of a fixed point of an (α,ψ)-contractive mapping.
We notice that we need to add an additional condition to guarantee the uniqueness.

(U) For all x, y ∈ Fix(f ), either α(x, y) ≥  or α(y, x) ≥ .
Here, Fix(f ) denotes the set of all fixed points of f .

Theorem . Adding condition (U) to hypotheses of Theorem . (or Theorem .), we
obtain the uniqueness of a fixed point of f .

Proof Suppose that x∗ and y∗ are two distinct fixed points of f , so that d(x∗, y∗) > .
If, for example, α(x∗, y∗) ≥ , then

d
(
x∗, y∗) = d

(
fx∗, fy∗)

≤ α
(
x∗, y∗)d

(
fx∗, fy∗)

≤ ψ
(
d
(
x∗, y∗))

< d
(
x∗, y∗),

which is a contradiction. �

Definition . Let (X, d) be a complete quasi-b-metric-like space with a constant s ≥ .
A self-mapping f : X → X is called a generalized (α,ψ)-contractive mapping of type (A) if
there exist two functions ψ ∈ �b and α : X × X → [,∞) satisfying the following condi-
tion:

α(x, y)d(fx, fy) ≤ ψ
(
M(x, y)

)
(.)

for all x, y ∈ X, where

M(x, y) = max
{

d(x, y), d(x, fx), d(y, fy)
}

. (.)

Theorem . Let (X, d) be a complete quasi-b-metric-like space, and let f : X → X be a
generalized (α,ψ)-contractive mapping of type (A). Assume that

(i) f is α-orbital admissible;
(ii) there exists x ∈ X such that α(x, fx) ≥  and α(fx, x) ≥ ;

(iii) f is continuous.
Then f has a fixed point u in X, and d(u, u) = .

Proof As in the proof of Theorem ., we construct an iterative sequence xn+ = fxn, n ∈
N, where the existence of x ∈ X is guaranteed by (ii). By the same reason as in the proof
of Theorem ., we may assume that xn 
= xn+ for all n ∈N, and we can conclude that

α(xn, xn+) ≥  and α(xn+, xn) ≥  for all n ∈N. (.)

From (.) we have

d(xn, xn+) = d(fxn–, fxn)

≤ α(xn–, xn)d(fxn–, fxn)

≤ ψ
(
M(xn–, xn)

)
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for all n ∈N, where

M(xn–, xn) = max
{

d(xn–, xn), d(xn, fxn), d(xn–, fxn–)
}

= max
{

d(xn–, xn), d(xn, xn+)
}

.

If M(xn–, xn) = d(xn, xn+), then since we assumed that xn 
= xn+,

d(xn, xn+) ≤ ψ
(
d(xn, xn+)

)
< d(xn, xn+),

which is a contradiction. It allows us to conclude that M(xn–, xn) = d(xn–, xn), n ∈N.
Thus,

d(xn, xn+) ≤ ψ
(
d(xn–, xn)

)
< d(xn–, xn) for all n ∈ N

and

d(xn, xn+) ≤ ψn(d(x, x)
)

for all n ∈N. (.)

Analogously, letting x = xn and y = xn– in (.), we get

d(xn+, xn) = d(fxn, fxn–)

≤ α(xn, xn–)d(fxn, fxn–)

≤ ψ
(
M(xn, xn–)

)
(.)

for all n ∈N, where

M(xn, xn–) = max
{

d(xn, xn–), d(xn, fxn), d(xn–, fxn–)
}

= max
{

d(xn, xn–), d(xn, xn+), d(xn–, xn)
}

.

For the estimation of d(xn+, xn), we will consider three different cases.
Case . If M(xn, xn–) = d(xn–, xn), then, by (.),

d(xn+, xn) ≤ ψ
(
d(xn–, xn)

)
. (.)

Case . If M(xn, xn–) = d(xn, xn+), then

d(xn+, xn) ≤ ψ
(
d(xn, xn+)

)
.

By Remark . we find that

d(xn+, xn) ≤ ψ
(
d(xn, xn+)

)
< ψn+(d(x, x)

)
.

Case . Otherwise, M(xn, xn–) = d(xn, xn–) and

d(xn+, xn) ≤ ψ
(
d(xn, xn–)

)
. (.)
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Observing (.) and (.), it follows that, for any n ∈N,

d(xn+, xn) ≤ max
{
ψn(d(x, x)

)
,ψn(d(x, x)

)}
. (.)

Obviously, in all considered cases, we deduce that

lim
n→∞ d(xn+, xn) = lim

n→∞ d(xn, xn+) = .

Since ψ is an increasing function, let

v = max
{

d(x, x), d(x, x)
}

.

Consequently, we have that d(xn+, xn) ≤ ψn(v) and d(xn, xn+) ≤ ψn(v). By applying (bM)
for any n, p ∈N it follows that

d(xn, xn+p) ≤
p–∑

i=

sid(xn+i–, xn+i) + sp–d(xn+p–, xn+p)

≤
p∑

i=

sid(xn+i–, xn+i)

≤
p∑

i=

siψn+i–(v)

=


sn–

p∑

i=

sn+i–ψn+i–(v).

Therefore, limn,p→∞ d(xn, xn+p) =  and, likewise, limn,p→∞ d(xn+p, xn) = . Since, X is com-
plete, there exists u ∈ X such that limn→∞ xn = u and

lim
n→∞ d(u, xn) = lim

n→∞ d(xn, u) = d(u, u) = . (.)

Furthermore, f is a continuous mapping, and hence u = limn→∞ xn = limn→∞ fxn– = fu.
�

Theorem . Adding condition (U) to hypotheses of Theorem ., we obtain the unique-
ness of a fixed point of T .

Proof Suppose that fx∗ = x∗ and fy∗ = y∗. Then

d
(
x∗, y∗) = d

(
fx∗, fy∗)

≤ α
(
x∗, y∗)ψ

(
d
(
fx∗, fy∗))

≤ ψ
(
M

(
x∗, y∗))

= ψ
(
d
(
x∗, y∗)),

so that d(x∗, y∗) =  ⇒ x∗ = y∗. �
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In the following example, we show the existence of a function satisfying conditions of
Theorem . but not satisfying conditions of Theorem ..

Example . Let (X, d) be a quasi-b-metric-like space described in Example ., and
f : X �→ X the mapping

fx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩


 if x = ,
, if x = 

 ,

 if x = 

 ,
x +  if x ≥ .

Let ψ(t) = t
 , t ≥ , and let α : X × X → [,∞) be defined as

α(x, y) =

{
 if (x, y) ∈ {(, 

 ), (, 
 ), ( 

 , ), ( 
 , 

 ), ( 
 , 

 )},
 otherwise.

Then (.) does not hold, for example, for x =  and y = 
 , but (.) holds, f has a unique

fixed point u = 
 , and d(u, u) = .

Definition . Let (X, d) be a complete quasi-b-metric-like space with a constant s ≥ .
A self-mapping f : X → X is called a generalized (α,ψ)-contractive mapping of type (B) if
there exist two functions ψ ∈ �b and α : X × X → [,∞) satisfying the following condi-
tion:

α(x, y)d(fx, fy) ≤ ψ
(
N(x, y)

)
(.)

for all x, y ∈ X, where

N(x, y) = max

{

d(x, y),
d(x, fx) + d(y, fy)



}

. (.)

The following theorem can be deduced from the inequality N(x, y) ≤ M(x, y) for all x, y,
together with the monotonicity of ψ .

Theorem . Let (X, d) be a complete quasi-b-metric-like space, and let f : X → X be a
generalized (α,ψ)-contractive mapping of type (B). Assume that

(i) f is α-orbital admissible;
(ii) there exists x ∈ X such that α(x, fx) ≥  and α(fx, x) ≥ ;

(iii) f is continuous.
Then f has a fixed point u in X, and d(u, u) = .

Definition . Let (X, d) be a complete quasi-b-metric-like space with a constant s ≥ .
A self-mapping f : X → X is called a generalized (α,ψ)-contractive mapping of type (C) if
there exist two functions ψ ∈ �b and α : X × X → [,∞) satisfying the following condi-
tion:

sα(x, y)d(fx, fy) ≤ ψ
(
M(x, y)

)
(.)
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for all x, y ∈ X, where

M(x, y) = max
{

d(x, y), d(x, fx), d(y, fy)
}

. (.)

The following theorem is easily observed from Theorem . since inequality (.) can
be easily derived from inequality (.).

Theorem . Let (X, d) be a complete quasi-b-metric-like space, and let f : X → X be a
generalized (α,ψ)-contractive mapping of type (C). Assume that

(i) f is α-orbital admissible;
(ii) there exists x ∈ X such that α(x, fx) ≥  and α(fx, x) ≥ ;

(iii) f is continuous.
Then f has a fixed point u in X, and d(u, u) = .

In the next theorems, we establish a fixed point result for a generalized (α,ψ)-
contractive mapping of type (C) without any continuity assumption on the mapping f .

Theorem . Let (X, d) be a complete quasi-b-metric-like space, and let f : X → X be a
generalized (α,ψ)-contractive mapping of type (C). Suppose that

(i) f is α-orbital admissible;
(ii) there exists x ∈ X such that α(x, fx) ≥  and α(fx, x) ≥ ;

(iii) X is α-regular.
Then f has a fixed point u in X, and d(u, u) = .

Proof As in the proof of Theorem ., we consider an iterative sequence {xn}, and we
obtain the existence of u ∈ X such that (.) holds. By Lemma . we get

d(u, fu) ≤ s lim inf
n→∞ d(xn+, fu)

≤ s lim sup
n→∞

d(xn+, fu)

≤ s lim sup
n→∞

α(xn, u)d(fxn, fu)

≤ lim sup
n→∞

ψ
(
M(xn, u)

)
,

where

M(xn, u) = max
{

d(xn–, u), d(xn–, xn), d(u, fu)
}

.

According to (.) and the fact that limn→∞ d(xn–, xn) = , it remains to discuss only
the case M(xn, u) = d(u, fu) because otherwise it follows d(u, fu) =  ⇒ u = fu.

Notice that, under this assumption, d(u, fu) ≤ ψ(d(u, fu)) also implies d(u, fu) =  since
ψ(t) < t for any t > . Hence, u is a fixed point of the mapping f . �

Theorem . Adding condition (U) to hypotheses of Theorem . (or Theorem .), we
obtain the uniqueness of a fixed point of T .
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Example . Let (X, d) be a quasi b-metric like space defined in Example ., and let the
mapping f : X �→ X be defined as

fx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

 if x = ,

 if x = 

 ,

 if x = 

 ,
x +  if x ≥ .

Let ψ(t) = t
 , t ≥ , and α : X × X → [,∞) be defined as

α(x, y) =

⎧
⎪⎨

⎪⎩

 if (x, y) ∈ {( 
 , 

 ), ( 
 , 

 )},

 if (x, y) ∈ {, 

 , 
 } × {, 

 , 
 } \ {( 

 , 
 ), ( 

 , 
 )},

 otherwise.

Then ψ ∈ �b, and f is a generalized (α,ψ)-contractive mapping of type (C). Since the
conditions of Theorem . are satisfied, it follows that f has a fixed point in X.

Definition . Let (X, d) be a complete quasi-b-metric-like space with a constant s ≥ .
A self-mapping f : X → X is called a generalized (α,ψ)-contractive mapping of type (D) if
there exist two functions ψ ∈ �b and α : X × X → [,∞) satisfying the following condi-
tion:

α(x, y)d(fx, fy) ≤ ψ
(
L(x, y)

)
(.)

for all x, y ∈ X, where

L(x, y) = max

{

d(x, y),
d(x, fx) + d(y, fy)

s

}

. (.)

Theorem . Let (X, d) be a complete quasi-b-metric-like space, and let f : X → X be a
generalized (α,ψ)-contractive mapping of type (D). Suppose that

(i) f is triangular α-orbital admissible;
(ii) there exists x ∈ X such that α(x, fx) ≥  and α(fx, x) ≥ ;

(iii) X is α-regular.
Then f has a fixed point in X, that is, there exists u ∈ X such that fu = u and d(u, u) = .

Proof As in the proof of Theorem ., we consider an iterative sequence {xn} and obtain
the existence of u ∈ X such that (.) holds. By Lemma . we get


s

d(u, fu) ≤ lim inf
n→∞ d(xn+, fu)

≤ lim sup
n→∞

d(xn+, fu)

≤ lim sup
n→∞

α(xn, u)d(fxn, fu)

≤ lim sup
n→∞

ψ
(
N(xn, u)

)
,

where

N(xn, u) = max

{

d(xn–, u),
d(xn–, xn) + d(u, fu)

s

}

.
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If N(xn, u) = d(xn–, u), then we conclude the result due to (.). Taking limn→∞ d(xn–,
xn) =  into account, we deduce that limn→∞ N(xn, u) = d(u,fu)

s . Notice that, under this as-
sumption, 

s d(u, fu) ≤ ψ( d(u,fu)
s ) also implies d(u, fu) =  since ψ(t) < t for any t > . Hence,

u is a fixed point of the mapping f . �

Theorem . Adding condition (U) to hypotheses of Theorem . (and respectively, The-
orem .), we obtain the uniqueness of a fixed point of T .

3 Consequences
In this section, we will list some consequences of our main results.

3.1 For standard quasi-b-metric-like
Corollary . Let (X, d) be a complete quasi-b-metric-like space, and let f : X → X be a
mapping such that

d(fx, fy) ≤ ψ
(
max

{
d(x, y), d(x, fx), d(y, fy)

})
(.)

for all x, y ∈ X, where ψ ∈ �b. If f is continuous, then f has a fixed point u in X, and
d(u, u) = .

Proof The proof of Corollary . follows from Theorem . by taking α(x, y) =  for all
x, y ∈ X, so (ii) is satisfied for any x ∈ X, f is obviously an α-orbital admissible, and (U)
holds. Inequality (.) allows us to conclude that f is a generalized (α,ψ)-contractive map-
ping of type (A). �

Corollary . Let (X, d) be a complete quasi-b-metric-like space, and let f : X → X be a
continuous mapping such that

d(fx, fy) ≤ ψ

(

max

{

d(x, y),
d(x, fx) + d(y, fy)



})

(.)

for all x, y ∈ X, where ψ ∈ �b. Then f has a fixed point u in X, and d(u, u) = .

Proof The proof of Corollary . follows from Theorem . by taking α(x, y) =  for all
x, y ∈ X since then (.) follows from (.). �

Notice that the continuity condition of f in Corollary . can be removed by adding an
extra term s.

Corollary . Let (X, d) be a complete quasi-b-metric-like space, and let f : X → X be a
mapping such that

d(fx, fy) ≤ sψ
(
max

{
d(x, y), d(x, fx), d(y, fy)

})
(.)

for all x, y ∈ X, where ψ ∈ �b. Then f has a fixed point u in X such that d(u, u) = .

Proof The proof of Corollary . follows from Theorem . by taking α(x, y) =  for all
x, y ∈ X. Then f is an α-orbital admissible mapping, and both inequalities in (ii) hold for
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any x ∈ X. Notice that since α(x, y) = , any constructive sequence turns to be regular, and
thus X is α-regular. �

Corollary . Let (X, d) be a complete quasi-b-metric-like space, and let f : X → X be a
mapping such that

d(fx, fy) ≤ ψ
(
d(x, y)

)
(.)

for all x, y ∈ X, where ψ ∈ �b. Then f has a fixed point u in X such that d(u, u) = .

Proof The proof of Corollary . follows from Theorem . by taking α(x, y) =  for all
x, y ∈ X and observing that X is α-regular and that (i) and (ii) hold. �

3.2 For standard quasi-b-metric-like spaces with a partial order
In this section, we deduce various fixed point results on a quasi-b-metric-like space en-
dowed with a partial order. We, first, recollect some basic notions and notation.

Definition . Let (X,) be a partially ordered set, and f : X → X be a given mapping.
We say that f is nondecreasing with respect to  if for all x, y ∈ X,

x  y ⇒ fx  fy.

Definition . Let (X,) be a partially ordered set. A sequence {xn} ⊆ X is said to be non-
decreasing (respectively, nonincreasing) with respect to  if xn  xn+, n ∈N (respectively,
xn+  xn, n ∈ N).

Definition . Let (X,) be a partially ordered set, and d be a b-metric-like on X. We say
that (X,, d) is regular if for every nondecreasing (respectively, nonincreasing) sequence
{xn} ⊆ X such that xn → x ∈ X as n → ∞, there exists a subsequence {xnk } of {xn} such
that xnk  x (respectively, x  xnk ) for all k.

We have the following result.

Corollary . Let (X,) be a partially ordered set (which does not contain an infinite
totally unordered subset), and d be a b-metric-like on X with constant s ≥  such that (X, d)
is complete. Let f : X → X be a nondecreasing mapping with respect to . Suppose that there
exists ψ ∈ �b such that

d(fx, fy) ≤ ψ
(
M(x, y)

)
(.)

for all x, y ∈ X with x  y or y  x, where M(x, y) is defined as in (.). Suppose also that
the following conditions hold:

(i) there exists x ∈ X such that x  fx and fx  x;
(ii) f is continuous or
(ii)′ (X,, d) is regular, and d is continuous.

Then f has a fixed point u ∈ X with d(u, u) = . Moreover, if for all x, y ∈ X, there exists
z ∈ X such that x  z and y  z, then f has a unique fixed point.
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Proof Define the mapping α : X × X → [,∞) by

α(x, y) =

{
 if x  y or x � y,
 otherwise.

Clearly, f satisfies (.), that is,

α(x, y)sd(fx, fy) ≤ ψ
(
M(x, y)

)

for all x, y ∈ X. From condition (i) we have x  fx and fx  x. Moreover, for all x, y ∈ X,
from the monotone property of f we have

α(x, y) ≥  ⇒ x � y or

x  y ⇒ fx � fy or

fx  fy ⇒ α(fx, fy) ≥ .

Hence, the self-mapping f is α-admissible. Similarly, we can prove that f is triangular
α-admissible and so triangular α-orbital admissible. Now, if f is continuous, then the ex-
istence of a fixed point follows from Theorem ..

Suppose that (X,, d) is regular. Let {xn} be a sequence in X such that α(xn, xn+) ≥  for
all n and xn → x ∈ X as n → ∞. By the regularity hypothesis, since X does not contain an
infinite totally unordered subset, there exists a subsequence {xnk } of {xn} such that xnk  x
or x  xnk for all k.

This implies from the definition of α that α(xnk , x) ≥  for all k. In this case, the existence
of a fixed point follows again from Theorem .. �

Corollary . Let (X,) be a partially ordered set (which does not contain an infinite
totally unordered subset), and d be a b-metric-like on X with constant s ≥  such that (X, d)
is complete. Let f : X → X be a nondecreasing mapping with respect to . Suppose that there
exists ψ ∈ �b such that

d(fx, fy) ≤ ψ
(
d(x, y)

)
(.)

for all x, y ∈ X with x � y or y � x. Suppose also that the following conditions hold:
(i) there exists x ∈ X such that x  fx and fx  x;

(ii) f is continuous.
Then T has a fixed point u ∈ X with d(u, u) = . Moreover, if for all x, y ∈ X, there exists
z ∈ X such that x  z and y  z, we have the uniqueness of a fixed point.
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‘Babeş-Bolyai’ Univ., Cluj-Napoca (1993)
17. Hussain, N, Roshan, JR, Parvaneh, V, Kadelburg, Z: Fixed points of contractive mappings in b-metric-like spaces. Sci.

World J. 2014, Article ID 471827 (2014)


	Some ﬁxed point results on quasi-b-metric-like spaces
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	Main result
	Consequences
	For standard quasi-b-metric-like
	For standard quasi-b-metric-like spaces with a partial order

	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


