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Abstract
In this paper, we use the local C2-conjugate transformation to transform nonlinear
stochastic differential systems to ordinary differential systems and give some
sufficient conditions for the exponential stability and instability of stochastic
differential systems. Our conditions just depend on the derivatives of drift terms and
diffusion terms at equilibrium points.
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1 Introduction
The exponential stability of nonlinear stochastic differential systems is always a point
which has attracted a significant amount of concern in the last two decades and produced
a lot of results and methods (see [–]). Because of the complexities of differential sys-
tems, one used to employ Lyapunov function to discuss these problems in most of the
literature, the methods have the advantage of discussing the stability of the systems if one
only knows the existence of these solutions.

However, there are many inconveniences in the application on account of the difficulties
in the construction of the Lyapunov function. So we try to transform nonlinear stochastic
differential systems to ordinary differential systems in which the Brownian motion is just
a parameter of them, and then discuss the stability in different situations.

We consider a simple example when the dimension of stochastic differential system is
one as an illustration of our ideas:

{
dX(t) = b(X(t)) dt + σX(t) dW (t),
X() = x,

(.)

where W (t) is a standard one dimensional Brownian motion, σ is a constant, and b(x)
is a function which satisfies the Lipschitz condition and the linear growth condition. Let
Y (t) = X(t) exp{–σW (t)}, by the Ito formula of continuous semi-martingales (see [], p.),
we have

dY (t) =
[

exp
{

–σW (t)
}

b
(
X(t)

)
–

σ 


Y (t)

]
dt,
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which is the same as
{

dY (t) = [exp{–σW (t)}b(exp{σW (t)}Y (t)) – σ

 Y (t)] dt,
Y () = x.

(.)

We remark that equation (.) is different from equation (.). It is an ordinary differ-
ential equation and the Brownian motion W (t) is a parameter in (.). We can get the
solution of (.) for many b(x), such as b(x) = kx or b(x) = kx + hxn.

By the law of the iterated logarithm for Brownian motion (see [], p.), the exponential
stability of Y (t) is equivalent to that of X(t). Because (.) is an ordinary differential equa-
tion with the parameter W (t), we can discuss the stability of (.) with a lot of methods.

The main purpose of this paper is to extend this result to a wider range. This paper will
be organized as follows: We shall first give preliminaries: some definitions and fundamen-
tal lemmas which will be used in the following and together with the transformations in
different situations. Next we shall give the main results of this paper. In this section we not
only discuss the exponential stability of nonlinear stochastic differential systems in a one
dimensional situation but also consider the high dimensional situation in two cases.

2 Preliminaries: transformation
Throughout this paper, unless otherwise specified, we let (�,F , {Ft}t≥, P) be a complete
probability space with the filter {Ft}t≥ which satisfies the following usual conditions:

(i) F includes all the events whose probability is ;
(ii) Ft is right continuous.
Let {W (t)}t≥ be the standard d dimensional Brownian motion which is defined on

(�,F , {Ft}t≥, P) and is adapted to {Ft}t≥.
In this paper, we mainly consider the stochastic differential equation

{
dX(t) = b(X(t)) dt + σ (X(t)) dW (t),
X() = x.

(.)

Here b(x) and σ (x) are two continuous functions on R
m and satisfy the following condi-

tions:
(A) b(x) and σ (x) are continuous differentiable;
(A) there exists a positive constant M such that |b(x)| + |σ (x)| < M( + |x|).
We know that equation (.) has a unique solution (see []). We suppose that
(A)  is the only  point of b(x) and σ (x), and ∂σ () is not .
If σ (x) and b(x) satisfy (A), (A), and (A), then (.) has the unique solution X(t) ≡ 

corresponding to the initial value. We call the solution a trivial solution or equilibrium
position.

From Lemma . of [], we have the following result.

Lemma  If we denote the solution of (.) as X(t; x), then

P
{∃t > , X(t; x) = 

}
= , ∀x �= ,

which means that almost all the sample paths of the solution of (.) starting from a nonzero
state will never reach the origin.
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Definition  If

lim
x→

sup
t>

∣∣X(t; x)
∣∣ = , a.s.,

then we call the trivial solution of (.) stable. If not, the trivial solution of (.) is unstable.
Furthermore, if there exists a positive constant γ such that

lim
x→

sup
t>

eγ t∣∣X(t; x)
∣∣ = , a.s.,

then the trivial solution of (.) is exponentially stable.

Definition  We suppose that U and V are the vector spaces on R
m, U() = V () = . If

there exist a positive constant ρ and H : Oρ() → H(Oρ()) satisfying the following two
conditions:

(i) H is C-differentiable homeomorphism;
(ii) ∂H(x)U(x) = V (H(x)), ∀x ∈ Oρ().

Then U and V are C-equivalent and H is the C-conjugate mapping between U and V .

2.1 One dimensional situation
Let m = d = . By (A), we can suppose that σ (x) >  when x ∈ (,∞). If x ∈ (–∞, ), then
we have σ (x) <  and σ ′() > , where σ ′(x) is the derivative of σ (x).

Let

F(x) =

{
exp{∫ x


σ ′()
σ (u) du}, x ≥ ,

– exp{∫ x
–

σ ′()
σ (u) du}, x < .

(.)

It is obvious that F() = , and F(x) is a strictly monotonically increasing function. We
denote its inverse function by G(x) and then we have from (.)

lim
x→+

F(x)
x

= lim
x→+

exp

{
–

∫ 

x

σ ′()
σ (u)

du – log x
}

= lim
x→+

exp

{
–

∫ 

x

σ ′()
σ (u)

–

u

du
}

= exp

{
– lim

x→+

∫ 

x

σ ′()u – σ (u)
σ (u)u

du
}

= exp

{∫ 



σ (u) – σ ′()u
σ (u)u

du
}

.

In the same way we can get

lim
x→–

F(x)
x

= exp

{∫ 

–

σ (u) – σ ′()u
σ (u)u

du
}

.

For any x �= , we note X(t; x) as X(t) for short as long as it will not cause any ambiguity.
Let

Y (t) = exp
{

–σ ′()W (t)
}

F
(
X(t)

)
,

where σ (x), W (t) and X(t) are used in (.).
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By the Ito formula we get

d exp
{

–σ ′()W (t)
}

= –σ ′() exp
{

–σ ′()W (t)
}

dW (t)

+
σ ′()


exp

{
–σ ′()W (t)

}
dt, (.)

dF
(
X(t)

)
= F ′(X(t)

)
b
(
X(t)

)
dt + F ′(X(t)

)
σ
(
X(t)

)
dW (t)

+



F ′′(X(t)
)
σ
(
X(t)

) dt

= F
(
X(t)

)σ ′()b(X(t))
σ (X(t))

dt + F
(
X(t)

)
σ ′() dW (t)

+



F
(
X(t)

)[
σ ′() – σ ′()σ ′(X(t)

)]
dt, (.)

and

〈
d exp

{
–σ ′()W (t)

}
, dF

(
X(t)

)〉
= –σ ′() exp

{
–σ ′()W (t)

}
F
(
X(t)

)
σ ′() dt. (.)

According to the product formula of continuous semi-martingales, (.), (.), and (.),
we have

dY (t) = d exp
{

–σ ′()W (t)
}

F
(
X(t)

)
= F

(
X(t)

)
d exp

{
–σ ′()W (t)

}
+ exp

{
–σ ′()W (t)

}
dF

(
X(t)

)
+

〈
d exp

{
–σ ′()W (t)

}
, dF

(
X(t)

)〉
=

[
σ ′()b(X(t))

σ (X(t))
–

σ ′()σ ′(X(t))


]
exp

{
–σ ′()W (t)

}
F
(
X(t)

)
dt. (.)

Let

σ ′()b(x)
σ (x)

= b′() + h(x),
σ ′()σ ′(x)


=

σ ′()


+ q(x),

R(x) = h(x) – q(x).
(.)

It is easy to see that limx→ R(x) = .
By (.) and (.) we know that Y (t) satisfies

{
dY (t)

dt = [b′() – σ ′()
 + R(exp{σ ′()W (t)}G(Y (t)))]Y (t),

Y () = F(x).
(.)

We notice that equation (.) is an ordinary differential equation, where W (t) is a param-
eter of it. Thus (.) has a unique solution for every trajectory W (t) of Brownian motion.

2.2 High dimensional situation I
In the case m >  and d = . Let A = (aij)i,j≤m be a m × m matrix and suppose that every m
dimensional vector is a m ×  matrix. For any constant x, we make a convention

x ∗ A = A ∗ x = (xaij)i,j≤m.
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Let A(s) = (aij(s))i,j≤m and B(s) = (bij(s))i,j≤m be m×m matrix functions and 〈dA(s), dB(s)〉
be the abbreviated form of (

∑m
k=〈daik(s), dbkj(s)〉)i,j≤m. If aij(s) and bij(s) are all continuous

semi-martingales, then we have

dA(s)B(s) =
[
dA(s)

]
B(s) + A(s)

[
dB(s)

]
+

〈
dA(s), B(s)

〉
.

Let A be a m × m matrix, W (t) be a one dimensional Brownian motion, and

exp
{

AW (t)
}

= I + A ∗ W (t) +

!

A ∗ W (t) + · · · +

k!

Ak ∗ W (t)k + · · · ,

then we have

exp
{

AW (t)
}

A = A exp
{

AW (t)
}

and

d exp
{

AW (t)
}

= A exp
{

AW (t)
}

dW (t) +



A exp
{

AW (t)
}

dt.

Furthermore, if A and B are commutative (AB = BA, A and B are m × m matrices), then
we have

exp
{

(A + B)W (t)
}

= exp
{

BW (t)
}

exp
{

AW (t)
}

.

Let A = ∂σ (), σ (x) and Ax be smooth C-equivalent, H be the C-conjugate mapping
between σ (x), and Ax. Suppose that G(y) is the inverse mapping of H(x), then ∂G() =
(∂H())–. By Definition , we have ∂H(x)σ (x) = AH(x), ∀x ∈ Oρ(). Taking derivative of
both sides above, we can get ∂H()A = A∂H(), which means that ∂H() and A are com-
mutative.

Now suppose that X(t; x) is the solution of (.) for any x ∈ Oρ() and is noted as X(t).
Let

S = inf
{

t|X(t) /∈ Oρ()
}

and

Y (t) = exp
{

–AW (t)
}

H
(
X(t)

)
, t ∈ (, S),

where A = ∂σ () and H is the C-conjugate mapping. Then

dY (t) =
[
d exp

{
–AW (t)

}]
Y (t) + exp

{
–AW (t)

}[
dH

(
X(t)

)]
+

〈
d exp

{
–AW (t)

}
, dH

(
Y (t)

)〉
= –A exp

{
–AW (t)

}
H

(
Y (t)

)
dW (t)

+



A exp
{

–AW (t)
}

H
(
X(t)

)
dt

+ exp
{

–AW (t)
}
∂H

(
X(t)

)
b
(
X(t)

)
dt
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+ exp
{

–AW (t)
}
∂H

(
X(t)

)
σ
(
X(t)

)
dW (t)

+



exp
{

–AW (t)
}
σ
(
X(t)

)T
∂H

(
X(t)

)
σ
(
X(t)

)
dt

– A exp
{

–AW (t)
}
∂H

(
X(t)

)
σ
(
X(t)

)
dt

=
[

exp
{

–AW (t)
}
∂H

(
X(t)

)
b
(
X(t)

)

–



A exp
{

–AW (t)
}

H
(
X(t)

)]
dt

+



exp
{

–AW (t)
}
σ
(
X(t)

)T
∂H

(
X(t)

)
σ
(
X(t)

)
dt

=
[

exp
{

–AW (t)
}
∂H

(
X(t)

)
b
(
X(t)

)
–




AY (t)
]

dt

+



exp
{

–AW (t)
}
σ
(
X(t)

)T
∂H

(
X(t)

)
σ
(
X(t)

)
dt. (.)

Let

∂H
(
G(y)

)
b
(
G(y)

)
= ∂H()∂b()∂G()y + η(y), (.)

σ
(
G(y)

)T
∂H

(
G(y)

)
σ
(
G(y)

)
= η(y), (.)

and

η(y) = η(y) + η(y). (.)

Then we have

lim
y→

|η(y)|
|y| = .

So we can get from (.), (.), (.), and (.)

⎧⎪⎨
⎪⎩

dY (t)
dt = exp{–AW (t)}∂H()∂b()∂G() exp{AW (t)}Y (t)

– 
 AY (t) + η(exp{AW (t)}Y (t)),

Y () = H(x)
(.)

for t ∈ (, S), which means that equation (.) is an ordinary differential equation.

2.3 High dimensional situation II
Next we suppose d > . Let W (t) = (W(t), . . . , Wd(t)) and σ (x) = (σ(x), . . . ,σd(x)). Here
W(t), . . . , Wd(t) are d independent Brownian motions, σi(x) is a function defined on R

m,
where i = , , . . . , d.

Let A = ∂σ(), . . . , Ad = ∂σd(). Now suppose that σk(x) and Akx are C–equivalent,
where k = , . . . , d. For m = , the C–equivalence will be automatically established.

Suppose that H (k) is the C-conjugate mapping between σk(x) and Akx, k = , . . . , d. Let

Y (t) = exp
{

AdWd(t)
}

H (d) · · · exp
{

AW(t)
}

H ()(X(t)
)
.
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If ∂b(), A, . . . , Ad are commutative, then we have

⎧⎪⎨
⎪⎩

dY (t)
dt = ∂H (d)() · · · ∂H ()()�d∂(H ()())– · · · (H (d)())–Y (t)

+ η(exp{∑d
k= AkWk(t)}Y (t)),

Y () = y.
(.)

3 Main results: exponential stability and instability
3.1 One dimensional situation
Let γ = b′() – σ ′()

 in equation (.), then we have the following results.

Theorem  If γ < , then the trivial solution of (.) is exponentially stable.

Proof We only prove Theorem  in the case x > , because the proof of it is similar in the
case x ≤ .

By the law of iterated logarithm for Brownian motion, almost surely, we have

lim sup
t→∞

|W (t)|√
t log log t

= ,

so there is a corresponding MW such that

σ ′()
∣∣W (t)

∣∣ ≤ MW ( +
√

t log log t)

for every trajectory W (t) of Brownian motion, where t ≥ .
It is obvious that

exp

{
MW ( +

√
t log log t) +

γ t


}

is a bounded function. If we denote its upper bound by NW , then it is easy to get NW > .
Since limx→ R(x) = , we can find a ε >  such that R(x) < |γ |

 , where x ∈ (, ε). Notice
that C = limx→+

F(x)
x is a nonzero constant and G(x) is the inverse function of F(x), we

have limx→+
G(x)

x = 
C , which means that there exists a positive constant δ such that

G(x) ≤ 
C

x and F(x) ≤ Cx

for any x ∈ (, δ).
Let T = inf{t||R(X(t; x))| ≥ |γ |

 }, where x < min{δ,ε}
(+C)NW

. It is obvious that T > . If T is
finite and R(X(T)) = |γ |

 for t ∈ [, T], then we have from (.)

dY (t)
dt

=
[
γ + R

(
X(t)

)]
Y (t) ≤ γ t


.

So

Y (t) ≤ e
γ t
 Y () = e

γ t
 F(x) ≤ Ce

γ t
 x ≤ δ,

X(t) = exp
{
σ ′()W (t)

}
G

(
Y (t)

)
≤ exp

{
MW ( +

√
t log log t)

}
G

(
Ce

γ t
 x

)
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≤ exp
{

MW ( +
√

t log log t)
} 

C
· Ce

γ t
 x

=  exp

{
MW ( +

√
t log log t) +

γ t


}
x

≤ NW x < ε.

By the definition of ε we can get R(X(t)) < |γ |
 for any t ∈ [, T], which is a contradiction.

So we have R(X(t)) ≤ |γ |
 , which together with (.) gives Y (t) ≤ e

γ t
 F(x). This means that

X(t; x) = exp
{
σ ′()W (t)

}
G

(
Y (t)

) ≤  exp

{
MW ( +

√
t log log t) +

γ t


}
x,

where x < min{δ,ε}
(+C)NW

. According to Definition , we immediately know that the trivial so-
lution of (.) is exponentially stable.

The proof is similar in the case x < . So we omit it here. Then we complete the proof. �

Remark  In the proof of Theorem , the constant NW depends on W (t), which means
that NW may be different for different trajectories W (t) of Brownian motion. Theorem 
can be strengthened as follows. Almost surely, there exists a domain Oω() for every ω ∈ �,
we have for random x ∈ Oω()

lim
t→∞ e–λt∣∣X(t; x)

∣∣ = ,

where λ < b′() – σ ′()
 .

Theorem  If γ > , then the trivial solution of (.) is unstable.

Proof Suppose that x > . There exists a positive constant ε such that

F(x) >
Cx


and R(x) > –
γ


,

where x ∈ (, ε].
Let T = inf{t|X(t; x) ≥ ε}, where x ∈ (, ε]. It is easy to see that T > . For any t ∈ [, T),

we know that

Y (t)
dt

=
[
γ + R

(
X(t)

)]
Y (t) ≥ γ


Y (t),

which, together with the comparison principle of ordinary differential equation, gives

Y (t) ≥ Y ()e
γ
 t = F(x)e

γ
 t ≥ Ce

γ
 tx


.

If P{T = ∞} > , when t is sufficiently large, then we have T = ∞ and

X(t; x) = exp
{
σ ′()W (t)

}
G

(
Y (t)

) ≥ exp
{
σ ′()W (t)

}
G

(
Ce

γ
 tx



)
.

By the law of iterated logarithm of Brownian motion, almost surely, we know that
lim supt→∞ X(t; x) = ∞ when T = ∞, which is a contradiction.
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So P{T < ∞} = , which is the same as supt> |X(t; x)| ≥ ε, a.s., so the trivial solution of
(.) is unstable.

We can prove the conclusion in the case x <  similarly. So we omit it here.
Finally Theorem  is proved. �

3.2 High dimensional situation I
Let � = ∂b() – 

 A in equation (.). Then we have the following results.

Theorem  If ∂b() and A are commutative, and the real parts of all the eigenvalues of �

are negative, then the trivial solution of (.) is exponentially stable.

Proof Since ∂b() and A are commutative, ∂H() and A are also commutative and (.)
can be simplified to

{
dY (t)

dt = ∂H()[∂b() – 
 A]∂G()Y (t) + η(exp{AW (t)}Y (t)),

Y () = H(x).

We suppose that the maximum of the real part of all the eigenvalues of � is –λ (λ > ).
If Z(t) = e λt

 Y (t), then Z(t) satisfies

{
dZ(t)

dt = ∂H()[� + λ
 I]∂G()Z(t) + e λt

 η(exp{AW (t) – λt
 }Z(t)),

Z() = H(x).

Finally we complete the proof of Theorem  from Theorem . �

Theorem  If ∂b() and A are commutative, and there is a positive one in the real part of
all the eigenvalues of �, then the trivial solution of (.) is unstable.

Proof We omit the proof of Theorem  because we can obtain it in a completely parallel
way to the proof of Theorem . �

When the real part of all the eigenvalues of � is , we cannot judge the stability of the
trivial solution of (.).

Example  Let σ (x) = Ax and b(x) = 
 Ax. Then the solution of (.) is

X(t; x) = exp
{

AW (t)
}

x.

It is easy to see that if the multiplication of all the eigenvalues of A is , then the trivial
solution of (.) is stable. If not, the trivial solution of (.) is unstable.

3.3 High dimensional situation II
Let

�d = ∂b() –



d∑
k=

A
k

in equation (.). Similarly we have the following results in these situations.
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Theorem  If ∂b(), A, . . . , Ad are commutative and the real parts of all the eigenvalues
of �d are negative, then the trivial solution of (.) is exponentially stable.

Theorem  If ∂b(), A, . . . , Ad are commutative and there is a positive one in the real
parts of all the eigenvalues of �d , then the trivial solution of (.) is unstable.
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