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1 Introduction
Throughout the paper assume that n, k ∈ Z and  �= q ∈ R. The poly-Cauchy polynomials
with a q parameter of the first kind C(k)

n,q(x) and of the second kind ̂C(k)
n,q(x) are, respectively,

defined by

Lifk
(

log( + qt)/q
)

( + qt)x/q =
∑

n≥

C(k)
n,q(x)

tn

n!
,

Lifk
(

– log( + qt)/q
)

( + qt)–x/q =
∑

n≥

̂C(k)
n,q(x)

tn

n!
,

for all k ∈ Z, where

Lifk(x) =
∑

m≥

xm

m!(m + )k (.)

is the polylogarithm factorial function; see []. When x = , C(k)
n,q = C(k)

n,q(), and ̂C(k)
n,q =

̂C(k)
n,q() are, respectively, called the poly-Cauchy numbers with a q parameter of the first

kind and of the second kind. Note that Lif(x) = ex–
x .

Here the degenerate versions are introduced for the poly-Cauchy polynomials with a q
parameter.

Definition . The degenerate poly-Cauchy polynomials with a q parameter of the first
kind C(k)

n,q(λ, x) and of the second kind ̂C(k)
n,q(λ, x) are, respectively, given by
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Lifk

(

( + qt)λ – 
qλ

)

( + qt)
x
q =

∑

n≥

C(k)
n,q(λ, x)

tn

n!
, (.)

Lifk

(

–
( + qt)λ – 

qλ

)

( + t)– x
q =

∑

n≥

̂C(k)
n,q(λ, x)

tn

n!
. (.)

For q = , C(k)
n,(λ, x) = C(k)

n (λ, x) and ̂C(k)
n,(λ, x) = ̂C(k)

n (λ, x) are the degenerate poly-Cauchy
polynomials of the first kind and of the second kind, respectively, which are studied in [].
When x = , C(k)

n,q(λ, ) and ̂C(k)
n,q(λ, ) are, respectively, called the degenerate poly-Cauchy

numbers with a q parameter of the first kind and of the second kind.
In [, ], Carlitz introduced certain degenerate versions of Bernoulli and Euler polyno-

mials. Almost half a century later these Carlitz degenerate Bernoulli polynomials were
rediscovered under the name of Korobov polynomials of the second kind by Ustinov [],
while the degenerate version of the Bernoulli polynomials of the second kind were named
the Korobov polynomials [, ]. It is remarkable that in recent years various degenerate
versions of many important polynomials regained the attention of some researchers and
many interesting results of them were obtained [, –]. Thus these have become an ac-
tive area of research.

As was shown in the paper of Carlitz [, ], these degenerate versions have potential
importance in number theory and combinatorics. For example, the authors have made
some progress about symmetric identities involving the higher-order degenerate Euler
and q-Euler polynomials by using the fermionic p-adic integrals. In a forthcoming paper,
an investigation will be carried out as to some further results about the degenerate poly-
Cauchy polynomials with a q parameter which are of arithmetic and combinatorial nature.

The aim of this paper is to use umbral calculus techniques (see [, ]) in order to de-
rive some properties, recurrence relations, and identities for the degenerate poly-Cauchy
polynomials with a q parameter of the first kind and of the second kind.

From (.) and (.), one can see that C(k)
n,q(λ, x) is the Sheffer sequence for the pair

g(t) = 
Lifk ( eqλt –

qλ
)
, f (t) = eqt–

q , and that ̂C(k)
n,q(λ, x) is the Sheffer sequence for the pair g(t) =


Lifk (– e–qλt –

qλ
)
, f (t) = e–qt–

q . Thus,

C(k)
n,q(λ, x) ∼

(


Lifk( eqλt–

qλ
)
,

eqt – 
q

)

, ̂C(k)
n,q(λ, x) ∼

(


Lifk(– e–qλt–

qλ
)
,

e–qt – 
q

)

. (.)

Umbral calculus has been used in numerous problems of mathematics and applied
mathematics; for example, see [, –] and references therein.

2 Explicit expressions
Let us start by presenting several explicit formulas for the degenerate poly-Cauchy poly-
nomials with a q parameter, namely C(k)

n,q(λ, x) and ̂C(k)
n,q(λ, x). To do so, recall here that Stir-

ling numbers S(n, k) of the first kind can be defined by means of exponential generating
functions as

∑

�≥j

S(�, j)
t�

�
=


j!

logj( + t), (.)
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the Stirling numbers S(n, k) of the second kind can be defined by the exponential gener-
ating functions as

∑

n≥k

S(n, k)
xn

n!
=

(et – )k

k!
, (.)

and can be defined by means of ordinary generating functions as

(x|q)n = qn(x/q)n =
n

∑

m=

S(n, m)qn–mxm ∼
(

,
eqt – 

q

)

, (.)

where (x)n = x(x – )(x – ) · · · (x – n + ) with (x) = .

Theorem . For all n ≥ ,

C(k)
n,q(λ, x) =

n
∑

j=

( n
∑

�=j

�–j
∑

m=

(

�

j
)

(m + )k S(n,�)S(� – j, m)qn–m–jλ�–j–m

)

xj,

̂C(k)
n,q(λ, x) =

n
∑

j=

( n
∑

�=j

�–j
∑

m=

(–)m–j

(

�

j
)

(m + )k S(n,�)S(� – j, m)qn–m–jλ�–j–m

)

xj.

Proof By (.), one can see that


Lifk( eqλt–

qλ
)
C(k)

n,q(λ, x) ∼
(

,
eqt – 

q

)

. (.)

Thus, by (.) and (.), one obtains

C(k)
n,q(λ, x) = Lifk

(

eqλt – 
qλ

)

(x|q)n =
n

∑

m=

S(n, m)qn–m Lifk

(

eqλt – 
qλ

)

xm

=
n

∑

m=

m
∑

�=

S(n, m)qn–m (eqλt – )�

�!(� + )kλ�q�
xm

=
n

∑

m=

m
∑

�=

m
∑

j=�

S(n, m)S(j,�)qn–m λjqj

j!(� + )kλ�q�
tjxm

=
n

∑

m=

m
∑

�=

m
∑

j=�

(

m
j

)

S(n, m)S(j,�)qn–m λjqj

(� + )kλ�q�
xm–j

=
n

∑

�=

�
∑

m=

�–m
∑

j=

(

�

j

)

S(n,�)S(� – j, m)qn–m–jλ�–j–m xj

(m + )k

=
n

∑

j=

( n
∑

�=j

�–j
∑

m=

(

�

j
)

(m + )k S(n,�)S(� – j, m)qn–m–jλ�–j–m

)

xj,

which completes the proof of the first formula.
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The second formula follows by similar arguments from the facts that


Lifk(– e–qλt–

qλ
)
̂C(k)

n,q(λ, x) ∼
(

,
e–qt – 

q

)

(.)

and (–x|q)n =
∑n

m=(–)mS(n, m)qn–mxm ∼ (, e–qt–
q ). �

Theorem . For all n ≥ ,

C(k)
n,q(λ, x) =

n
∑

j=

( n
∑

�=j

�–j
∑

m=

(

�

j

)

S(n,�)S(� – j, m)qn–m–jC(k)
m,q(λ, )

)

xj,

̂C(k)
n,q(λ, x) =

n
∑

j=

( n
∑

�=j

�–j
∑

m=

(–)j
(

�

j

)

S(n,�)S(� – j, m)qn–m–j
̂C(k)

m,q(λ, )

)

xj.

Proof By (.) and (.), one has C(k)
n,q(λ, x) =

∑n
�= S(n,�)qn–� Lifk( eqλt–

qλ
)x�. By (.), one

obtains

C(k)
n,q(λ, x) =

n
∑

�=

S(n,�)qn–� Lifk

(

( + qs)λ – 
qλ

)∣

∣

∣

∣

s= eqt –
q

x�

=
n

∑

�=

�
∑

m=

S(n,�)qn–�C(k)
m,q(λ, )

( eqt–
q )m

m!
x�.

Thus, by (.), one gets

C(k)
n,q(λ, x) =

n
∑

�=

�
∑

m=

�
∑

j=m

S(n,�)S(j, m)qn–�C(k)
m,q(λ, )

qj–m

j!
tjx�

=
n

∑

�=

�
∑

m=

�
∑

j=m

(

�

j

)

S(n,�)S(j, m)qn–�+j–mC(k)
m,q(λ, )x�–j

=
n

∑

�=

�
∑

m=

�–m
∑

j=

(

�

j

)

S(n,�)S(� – j, m)qn–j–mC(k)
m,q(λ, )xj

=
n

∑

j=

( n
∑

�=j

�–j
∑

m=

(

�

j

)

S(n,�)S(� – j, m)qn–m–jC(k)
m,q(λ, )

)

xj,

which completes the proof of the first formula.
For the second formula, one uses (.) to obtain

̂C(k)
n,q(λ, x) =

n
∑

�=

(–)�S(n,�)qn–� Lifk

(

–
e–qλt – 

qλ

)

x�.

Along the lines of the proof of the first formula, one derives



Kim et al. Journal of Inequalities and Applications  (2015) 2015:364 Page 5 of 15

̂C(k)
n,q(λ, x) =

n
∑

�=

�
∑

m=

�
∑

j=m

(–)�+jS(n,�)S(j, m)qn–�
̂C(k)

m,q(λ, )
qj–m

j!
tjx�

=
n

∑

�=

�
∑

m=

�
∑

j=m

(–)�+j
(

�

j

)

S(n,�)S(j, m)qn–�+j–m
̂C(k)

m,q(λ, )x�–j

=
n

∑

�=

�
∑

m=

�–m
∑

j=

(–)j
(

�

j

)

S(n,�)S(� – j, m)qn–j–m
̂C(k)

m,q(λ, )xj

=
n

∑

j=

( n
∑

�=j

�–j
∑

m=

(–)j
(

�

j

)

S(n,�)S(� – j, m)qn–m–j
̂C(k)

m,q(λ, )

)

xj,

as required. �

Next, the transfer formula will be invoked. To do this, one observes that for any power
series g(t) =

∑

m≥ bm
tm

m! , n ≥ , a �= , and p(x) = g(t)xn, g(at)xn = anp(x/a). Recall that the
Bernoulli polynomials B(s)

n (x) of order s (see [, ]) are defined by the generating function
( t

et– )sext =
∑

n≥ B(s)
n (x) tn

n! , or equivalently,

B(s)
n (x) ∼

((

et – 
t

)s

, t
)

. (.)

Theorem . For all n ≥ ,

C(k)
n,q(λ, x) =

n
∑

j=

( n–j
∑

�=

n–j–�
∑

m=

(

n – 
�

)(

n – �

j

)

S(n – � – j, m)λn–�–j–mqn–j–m B(n)
�

(m + )k

)

xj,

̂C(k)
n,q(λ, x) =

n
∑

j=

( n–j
∑

�=

n–j–�
∑

m=

(–)m–j
(

n – 
�

)(

n – �

j

)

S(n – � – j, m)

× λn–�–j–mqn–j–m B(n)
�

(m + )k

)

xj.

Proof By (.) and the fact that xn ∼ (, t), one obtains


Lifk( eqλt–

qλ
)
C(k)

n,q(λ, x) = x
(

qt
eqt – 

)n

x–xn = x
(

qt
eqt – 

)n

xn–.

By (.), one gets


Lifk( eqλt–

qλ
)
C(k)

n,q(λ, x) = x
n–
∑

�=

B(n)
�

q�

�!
t�xn– =

n–
∑

�=

(

n – 
�

)

B(n)
� q�xn–�.

Thus, by (.) and (.), one has

C(k)
n,q(λ, x) =

n–
∑

�=

(

n – 
�

)

B(n)
� q� Lifk

(

eqλt – 
qλ

)

xn–�

=
n–
∑

�=

n–�
∑

m=

n–�
∑

j=m

(

n – 
�

)(

n – �

j

)

S(j, m)B(n)
� q� (qλ)j

(m + )k(qλ)m xn–�–j
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=
n

∑

�=

n–�
∑

m=

n–�–m
∑

j=

(

n – 
�

)(

n – �

j

)

S(n – � – j, m)B(n)
� q� (qλ)n–�–j

(m + )k(qλ)m xj

=
n

∑

j=

( n–j
∑

�=

n–j–�
∑

m=

(

n – 
�

)(

n – �

j

)

S(n – � – j, m)

× λn–�–j–mqn–j–m B(n)
�

(m + )k

)

xj, (.)

which completes the proof of the first formula.
By using similar arguments to the above proof, using (.) instead (.), one derives the

second formula. �

Theorem . For all n ≥ ,

C(k)
n,q(λ, x) =

n
∑

j=

( n–j
∑

�=

n–j–�
∑

m=

(

n – 
�

)(

n – �

j

)

S(n – � – j, m)qn–m–jB(n)
� C(k)

m,q(λ, )

)

xj,

̂C(k)
n,q(λ, x) =

n
∑

j=

( n–j
∑

�=

n–j–�
∑

m=

(–)j
(

n – 
�

)(

n – �

j

)

S(n – � – j, m)qn–m–jB(n)
�

̂C(k)
m,q(λ, )

)

xj.

Proof By using similar arguments to the proof of Theorem . together with (.) (or with
the analog of (.) in the case of ̂C(k)

n,q(λ, x)), one obtains

C(k)
n,q(λ, x) =

n
∑

�=

n–�
∑

m=

n–�–m
∑

j=

(

n – 
�

)(

n – �

j

)

B(n)
� S(n – � – j, m)qn–m–jC(k)

m,q(λ, )xj

=
n

∑

j=

( n–j
∑

�=

n–j–�
∑

m=

(

n – 
�

)(

n – �

j

)

S(n – � – j, m)qn–m–jB(n)
� C(k)

m,q(λ, )

)

xj

and

̂C(k)
n,q(λ, x) =

n
∑

�=

n–�
∑

m=

n–�–m
∑

j=

(–)j
(

n – 
�

)(

n – �

j

)

B(n)
� S(n – � – j, m)qn–m–j

̂C(k)
m,q(λ, )xj

=
n

∑

j=

( n–j
∑

�=

n–j–�
∑

m=

(–)j
(

n – 
�

)(

n – �

j

)

S(n – � – j, m)qn–m–jB(n)
�

̂C(k)
m,q(λ, )

)

xj,

which completes the proof. �

Before proceeding recall here that the Bernoulli polynomials bn(x) (see []) of the sec-
ond kind are defined by

t
log( + t)

( + t)x =
∑

n≥

C()
n (x)

xn

n!
=

∑

n≥

bn(x)
xn

n!
.
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When x = , bn = bn() are called Bernoulli numbers of the second kind. With a q param-
eter, one has

q(( + qt)

q – )

log( + qt)
( + t)x =

∑

n≥

C()
n,q(x)

tn

n!
=

∑

n≥

Cn,q(x)
tn

n!
.

When x = , we write Cn,q = Cn,q(). Also, it is well known (see []) that, for k ≥ ,

Lifk

(

log( + qt)
q

)

=
q

log( + qt)

∫ t



q
( + qt) log( + qt)

· · ·
∫ t



q
( + qt) log( + qt)

︸ ︷︷ ︸

(k–) times

(

( + qt)

q – 

)

dt · · · dt.

By induction on k, one has

Lifk

(

log( + qt)
q

)

=
∑

j,...,jk≥

tj+···+jk
bjk qjk

jk !
Cj,q(–q)
j!(j + )

k–
∏

i=

bji (–)qji

ji!(j + · · · + ji + )
,

for all k ≥ , and

Lif

(

log( + qt)
q

)

=
∑

j≥

Cj,q
tj

j!
.

Thus, by changing variables, one obtains

Lifk

(

( + qt)λ – 
qλ

)

=
∑

j,...,jk≥

(

e
(+qt)λ–

λ – 
q

)j+···+jk bjk qjk

jk !
Cj,q(–q)
j!(j + )

k–
∏

i=

bji (–)qji

ji!(j + · · · + ji + )
, (.)

for all k ≥ , and

Lif

(

( + qt)λ – 
qλ

)

=
∑

j≥

Cj,q
(e

(+qt)λ–
λ – )j

j!qj
. (.)

Theorem . Let n ≥ . Then

C(k)
n,q(λ, x) =

∑

j+···+jk≤n

n
∑

�=j+···+jk

�
∑

m=

(–)�–m

(

�

m
)

�!λ�

(j + · · · + jk)!
qj+···+jk

cj,q(–q)
j!(j + )

bjk qjk

jk !

× S(�, j + · · · + jk)(x + λqm|q)n

k–
∏

i=

bji (–)qji

ji!(j + · · · + ji + )
,

for all k ≥ , and

C()
n,q(λ, x) =

n
∑

j=

n
∑

�=j

�
∑

m=

(–)�–m

(

�

m
)

�!λ�

Cj,q

qj
S(�, j)(x + λqm|q)n.
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Proof By (.), one has C(k)
n,q(λ, y) = 〈Lifk( (+qt)λ–

qλ
)( + qt)

y
q |xn〉. Thus by (.), one gets

C(k)
n,q(λ, y) =

∑

j+···+jk≤n

cj,q(–q)
qj+···+jk j!(j + )

bjk qjk

jk !

×
k–
∏

i=

bji (–)qji

ji!(j + · · · + ji + )
〈(

e
(+qt)λ–

λ – 
)j+···+jk ( + qt)

y
q |xn〉,

which, by (.), implies

C(k)
n,q(λ, y)

=
∑

j+···+jk≤n

cj,q(–q)
qj+···+jk j!(j + )

bjk qjk

jk !

k–
∏

i=

bji (–)qji

ji!(j + · · · + ji + )

× (j + · · · + jk)!
n

∑

�=j+···+jk

S(�, j + · · · + jk)
�!λ�

〈(

( + qt)λ – 
)�( + qt)

y
q |xn〉

=
∑

j+···+jk≤n

cj,q(–q)
qj+···+jk j!(j + )

bjk qjk

jk !

k–
∏

i=

bji (–)qji

ji!(j + · · · + ji + )

× (j + · · · + jk)!
n

∑

�=j+···+jk

�
∑

m=

(

�

m

)

(–)�–m S(�, j + · · · + jk)
�!λ�

〈

( + qt)
y
q +λm|xn〉.

By using the fact that 〈( + qt)
y
q +λm|xn〉 = (y + λqm|q)n, the proof is completed for the case

k ≥ .
For k = , by (.), one obtains

C()
n,q(λ, y) =

〈

Lif

(

( + qt)λ – 
qλ

)

( + qt)
y
q
∣

∣

∣xn
〉

=
n

∑

j=

Cj,q

j!qj

〈(

e
(+qt)λ–

λ – 
)j ( + qt)

y
q |xn〉,

which, by (.), implies

C()
n,q(λ, x) =

n
∑

j=

m
∑

�=j

Cj,qS(�, j)
qjλ��!

〈(

( + qt)λ – 
)�( + qt)

y
q |xn〉

=
n

∑

j=

m
∑

�=j

�
∑

m=

(

�

m

)

(–)�–m Cj,qS(�, j)
qjλ��!

〈

( + qt)
y
q +λm|xn〉.

By using the fact that 〈( + qt)
y
q +λm|xn〉 = (y + λqm|q)n, the proof is completed for the case

k = . �

By similar arguments to the proof of Theorem . for the degenerate poly-Cauchy poly-
nomials with a q parameter of the first kind, one has the following result.
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Theorem . Let n ≥ . Then

̂C(k)
n,q(λ, x) =

∑

j+···+jk≤n

n
∑

�=j+···+jk

�
∑

m=

(–)�–m

(

�

m
)

�!(–λ)�
(j + · · · + jk)!

qj+···+jk

cj,q(–q)
j!(j + )

bjk qjk

jk !

× S(�, j + · · · + jk)(λqm – x|q)n

k–
∏

i=

bji (–)qji

ji!(j + · · · + ji + )
,

for all k ≥ , and

̂C()
n,q(λ, x) =

n
∑

j=

n
∑

�=j

�
∑

m=

(–)�–m

(

�

m
)

�!(–λ)�
Cj,q

qj
S(�, j)(λqm – x|q)n.

3 Recurrences
Note that the sequences of polynomials C(k)

n,q(λ, x) and ̂C(k)
n,q(λ, x) are Sheffer sequences.

Thus they satisfy the Sheffer identity

C(k)
n,q(λ, x + y) =

n
∑

j=

(

n
j

)

C(k)
j,q (λ, x)(y|q)n–j,

̂C(k)
n,q(λ, x + y) =

n
∑

j=

(

n
j

)

̂C(k)
j,q (λ, x)(–y|q)n–j.

Next, one shows several recurrences for the sequence of poly-Cauchy polynomials with a
q parameter of the first kind and of the second kind.

Theorem . For all n ≥ ,

C(k)
n,q(λ, x + q) = C(k)

n,q(λ, x) + nqC(k)
n–,q(λ, x), ̂C(k)

n,q(λ, x – q) = ̂C(k)
n,q(λ, x) + nq̂C(k)

n–,q(λ, x).

Proof Note that f (t)Sn(x) = nSn–(x) for any Sn(x) ∼ (g(t), f (t)) (see [, ]). Hence, by
(.), one has

eqt – 
q

C(k)
n,q(λ, x) = nC(k)

n–,q(λ, x),
e–qt – 

q
̂C(k)

n,q(λ, x) = n̂C(k)
n–,q(λ, x),

which implies

C(k)
n,q(λ, x + q) = C(k)

n,q(λ, x) + nqC(k)
n–,q(λ, x), ̂C(k)

n,q(λ, x – q) = ̂C(k)
n,q(λ, x) + nq̂C(k)

n–,q(λ, x),

as required. �

Theorem . For n ≥ ,

C(k)
n+;q(λ, x) = xC(k)

n,q(λ, x – q) –
n

∑

m=

m+
∑

�=

m+–�
∑

j=

(m+
j

)

m + 
λjqn–�+S(n, m)

× S(m +  – j,�)d(k)
�,q(λ)Bj

(

x + (λ – )q
qλ

)

,
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̂C(k)
n+;q(λ, x) = –x̂C(k)

n,q(λ, x + q) –
n

∑

m=

m+
∑

�=

m+–�
∑

j=

(m+
j

)

m + 
λjqn–�+S(n, m)

× S(m +  – j,�)̂d(k)
�,q(λ)Bj

(

–x + (λ – )q
qλ

)

,

where d(k)
�,q(λ) = C(k)

�,q(λ, ) – C(k–)
�,q (λ, ) and ̂d(k)

�,q(λ) = ̂C(k)
�,q(λ, ) – ̂C(k–)

�,q (λ, ).

Proof Recall that

(

Lifk(x)
)′ =

Lifk–(x) – Lifk(x)
x

, (.)

and Sn+(x) = (x – g′(t)
g(t) ) 

f ′(t) Sn(x) for any Sn(x) ∼ (g(t), f (t)) (see [, ]). Thus, in the case
of (.), one obtains

C(k)
n+;q(λ, x) = xC(k)

n,q(λ, x – q) – e–qt g ′(t)
g(t)

C(k)
n,q(λ, x),

where g(t) = 
Lifk ( eqλt –

qλ
)
. Note that g′(t)

g(t) = (log(g(t)))′ = –(log Lifk( eqλt–
qλ

))′, which leads to

g ′(t)
g(t)

=
–

Lifk( eqλt–
qλ

)

(

Lifk–

(

eqλt – 
qλ

)

– Lifk

(

eqλt – 
qλ

))

λqeλqt

eλqt – 
.

Thus,

e–qt g ′(t)
g(t)

C(k)
n;q(λ, x) =


t

(Ak – Ak–)


Lifk( eqλt–
qλ

)
C(k)

n,q(λ, x),

where Ak – Ak– = λqte(λ–)qt

eλqt– Lifk( eqλt–
qλ

) – λqte(λ–)qt

eλqt– Lifk–( eqλt–
qλ

) has order at least one (the
order of a non-zero power series f (t) is the smallest integer k for which the coeffi-
cient of tk in f (t) does not vanish). So, by the fact that 

Lifk ( eqλt –
qλ

)
C(k)

n,q(λ, x) = (x|q)n =
∑n

m= S(n, m)qn–mxn (see (.)), one has

e–qt g ′(t)
g(t)

C(k)
n;q(λ, x) =

n
∑

m=

S(n, m)qn–m 
t

(Ak – Ak–)xm

=
n

∑

m=

S(n, m)
m + 

qn–m(Ak – Ak–)xm+.

On the other hand, by (.), one gets

Akxm+ =
λqte(λ–)qt

eλqt – 
Lifk

(

( + qs)λ – 
qλ

)∣

∣

∣

∣

s= eqt –
q

xm+

=
λqte(λ–)qt

eλqt – 

m+
∑

�=

C(k)
�,q(λ, )

(eqt – )�

�!q�
xm+
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=
λqte(λ–)qt

eλqt – 

m+
∑

�=

m+
∑

j=�

C(k)
�,q(λ, )S(j,�)q–� (qt)j

j!
xm+

=
m+
∑

�=

m+
∑

j=�

C(k)
�,q(λ, )S(j,�)qj–�

(

m + 
j

)

λqte(λ–)qt

eλqt – 
xm+–j

=
m+
∑

�=

m+
∑

j=�

C(k)
�,q(λ, )S(j,�)qj–�

(

m + 
j

)

(λq)m+–jBm+–j

(

x + (λ – )q
qλ

)

=
m+
∑

�=

m+–�
∑

j=

(

m + 
j

)

λjqm–�+C(k)
�,q(λ, )S(m +  – j,�)Bj

(

x + (λ – )q
qλ

)

.

Hence,

C(k)
n+;q(λ, x) = xC(k)

n,q(λ, x – q) –
n

∑

m=

m+
∑

�=

m+–�
∑

j=

(m+
j

)

m + 
λjqn–�+S(n, m)

× S(m +  – j,�)d(k)
�,q(λ)Bj

(

x + (λ – )q
qλ

)

,

where d(k)
�,q(λ) = C(k)

�,q(λ, ) – C(k–)
�,q (λ, ), which completes the proof of the first recurrence.

By applying the above proof to the case of poly-Cauchy polynomials with a q parameter
of the second kind together with using (.) for ̂C(k)

n,q(λ, x) instead of C(k)
n,q(λ, x), one can

obtain the second recurrence. �

In the next result one finds the expressions for d
dx C(k)

n,q(λ, x) and d
dx

̂C(k)
n,q(λ, x).

Theorem . For all n ≥ ,

d
dx

C(k)
n,q(λ, x) = n!

n–
∑

�=

(–q)n––�

(n – �)�!
C(k)

�,q(λ, x),
d

dx
̂C(k)

n,q(λ, x) = –n!
n–
∑

�=

(–q)n––�

(n – �)�!
̂C(k)

�,q(λ, x).

Proof It is well known that d
dx Sn(x) =

∑n–
�=

(n
�

)〈f̄ (t)|xn–�〉S�(x), where Sn(x) ∼ (g(t), f (t))
and f̄ (t) is the compositional inverse of f (t) (see [, ]). In the present cases, see (.),
one has either f̄ (t) = 

q log( + qt) or f̄ (t) = – 
q log( + qt). Note that 〈 

q log( + qt)|xn–�〉 =

(–q)n––�(n –  – �)!. Thus, d
dx C(k)

n,q(λ, x) = n!
∑n–

�=
(–q)n––�

(n–�)�! C(k)
�,q(λ, x) and d

dx
̂C(k)

n,q(λ, x) =

–n!
∑n–

�=
(–q)n––�

(n–�)�!
̂C(k)

�,q(λ, x), as required. �

In the next theorem one uses the Korobov numbers. Recall that the Korobov numbers
Kn(λ) of the first kind are given by

∑

n≥ Kn(λ) tn

n! = λt
(+t)λ– (see [, ]).

Theorem . For all n ≥ ,

C(k)
n,q(λ, x) = xC(k)

n–,q(λ, x – q)

+

n

n
∑

m=

qn–m
(

n
m

)

Kn–m(λ)
(

C(k–)
m,q

(

λ, x + (λ – )q
)

– C(k)
m,q

(

λ, x + (λ – )q
))

,
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̂C(k)
n,q(λ, x) = –x̂C(k)

n–,q(λ, x + q)

+

n

n
∑

m=

qn–m
(

n
m

)

Kn–m(λ)
(

̂C(k–)
m,q

(

λ, x – (λ – )q
)

– C(k)
m,q

(

λ, x – (λ – )q
))

.

Proof Here only the proof of the first recurrence will be provided. Let Lk = Lifk( (+qt)λ–
qλ

).

By (.), we have C(k)
n,q(λ, y) = 〈Lk( + qt)

y
q |xn〉 = A + B, where A = 〈Lk

d
dt ( + qt)

y
q |xn–〉 and

B = 〈 d
dt Lk( + qt)

y
q |xn–〉. The term A is given by A = y〈Lk( + qt)

y–q
q |xn–〉 = yC(k)

n–,q(λ, y – q).
By (.), the term B is given by

B =
〈

λqt
( + qt)λ – 

( + qt)
y+(λ–)q

q
Lk– – Lk

t

∣

∣

∣xn–
〉

=

n

〈

λqt
( + qt)λ – 

( + qt)
y+(λ–)q

q (Lk– – Lk)
∣

∣

∣xn
〉

.

Note that the order of Lk– – Lk is at least one. Thus,

B =

n

〈

λqt
( + qt)λ – 

( + qt)
y+(λ–)q

q Lk–

∣

∣

∣xn
〉

–

n

〈

λqt
( + qt)λ – 

( + qt)
y+(λ–)q

q Lk

∣

∣

∣xn
〉

=

n

〈

λqt
( + qt)λ – 

n
∑

m=

(

C(k–)
m,q

(

λ, y + (λ – )q
)

– C(k)
m,q

(

λ, y + (λ – )q
)) tm

m!

∣

∣

∣xn

〉

=

n

n
∑

m=

(

n
m

)

(

C(k–)
m,q

(

λ, y + (λ – )q
)

– C(k)
m,q

(

λ, y + (λ – )q
))

〈

λqt
( + qt)λ – 

∣

∣

∣xn–m
〉

.

Thus, by expressing the Korobov numbers of the first kind, one obtains

B =

n

n
∑

m=

(

n
m

)

(

C(k–)
m,q

(

λ, y + (λ – )q
)

– C(k)
m,q

(

λ, y + (λ – )q
))

Kn–m(λ)qn–m.

Hence,

C(k)
n,q(λ, y) = yC(k)

n–,q(λ, y – q)

+

n

n
∑

m=

qn–m
(

n
m

)

Kn–m(λ)
(

C(k–)
m,q

(

λ, y + (λ – )q
)

– C(k)
m,q

(

λ, y + (λ – )q
))

,

as required. �

4 Connections with families of polynomials
Now, a few examples are presented on the connections with known families of polyno-
mials. To do that, one uses the following fact from [, ]: For sn(x) ∼ (g(t), f (t)) and
rn(x) ∼ (h(t),�(t)), let sn(x) =

∑n
k= cn,krk(x). Then we have

cn,k =

k!

〈

h(f̄ (t))
g(f̄ (t))

(

�
(

f̄ (t)
))k

∣

∣

∣xn
〉

. (.)
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Let us start with the connection to Bernoulli polynomials B(s)
n (x) of order s. In the next

result, one expresses the degenerate poly-Cauchy polynomials with a q parameter in terms
of Bernoulli polynomials of order s.

As analogs of (.) and (.), one defines the numbers C
(s)
n,q and ̂C

(s)
n,q as ( q((+qt)


q –)

log(+qt) )s =
∑

m≥ C
(s)
n,q

tn

n! and ( q(–(+qt)– 
q )

log(+qt) )s =
∑

m≥
̂C

(s)
n,q

tn

n! .

Theorem . For all n ≥ ,

C(k)
n,q(λ, x) =

n
∑

m=

( n
∑

�=m

n–�
∑

j=

(

n
�

)(

n – �

j

)

q�–mS(�, m)C(k)
j,q (λ, )C(s)

n–�–j,q

)

B(s)
m (x),

̂C(k)
n,q(λ, x) =

n
∑

m=

(

(–)m
n

∑

�=m

n–�
∑

j=

(

n
�

)(

n – �

j

)

q�–mS(�, m)̂C(k)
j,q (λ, )̂C(s)

n–�–j,q

)

B(s)
m (x).

Proof Due to the similarity between the degenerate poly-Cauchy polynomials with a q
parameter of the first kind and of the second kind, only the proof details of the first identity
will be provided, where the proof details of the second one are omitted. Let C(k)

n,q(λ, x) =
∑n

m= cn,mB(s)
m (x). Then by (.), (.) and (.), one obtains

cn,m =


m!

〈(

q(( + qt)

q – )

log( + qt)

)s

Lifk

(

( + qt)λ – 
qλ

)

∣

∣

∣

(


q

log( + qt)
)m

xn
〉

,

which, by (.) and (.), implies

cn,m =


qm

n
∑

�=m

(

n
�

)

q�S(�, m)
〈(

q(( + qt)

q – )

log( + qt)

)s∣
∣

∣Lifk

(

( + qt)λ – 
qλ

)

xn–�

〉

=


qm

n
∑

�=m

(

n
�

)

q�S(�, m)

〈

(

q(( + qt)

q – )

log( + qt)

)s∣
∣

∣

n–�
∑

j=

C(k)
j,q (λ, )

tj

j!
xn–�

〉

=


qm

n
∑

�=m

n–�
∑

j=

(

n
�

)(

n – �

j

)

q�S(�, m)C(k)
j,q (λ, )

〈(

q(( + qt)

q – )

log( + qt)

)s∣
∣

∣xn–�–j
〉

,

which implies cn,m =
∑n

�=m
∑n–�

j=
(n
�

)(n–�

j
)

q�–mS(�, m)C(k)
j,q (λ, )C(s)

n–�–j,q, as required. �

Using similar techniques to the proof of the previous theorem, one can express the de-
generate poly-Cauchy polynomials in terms of other families, for instance, Frobenius-
Euler polynomials (the proof is left to the interested reader). Note that the Frobenius-
Euler polynomials H (s)

n (x|μ) of order s are defined by the generating function ( –μ

et–μ
)sext =

∑

n≥ H (s)
n (x|μ) tn

n! (μ �= ), or equivalently, H (s)
n (x|μ) ∼ (( et–μ

–μ
)s, t) (see [, , , ]).

Theorem . For all n ≥ ,

C(k)
n,q(λ, x) =

n
∑

m=

(

μs

( – μ)s

n
∑

�=m

n–�
∑

j=

s
∑

i=

(n
�

)(n–�

j
)(s

i
)

q�–m

(–μ)i S(�, m)(i|q)n–�–jC(k)
j,q (λ, )

)

× H (s)
m (x|μ),
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̂C(k)
n,q(λ, x) =

n
∑

m=

(

μs

(μ – )s

n
∑

�=m

n–�
∑

j=

s
∑

i=

(–)m(n
�

)(n–�

j
)(s

i
)

q�–m

(–μ)i

× S(�, m)(–i|q)n–�–ĵC(k)
j,q (λ, )

)

H (s)
m (x|μ).

As another example, one can express our degenerate poly-Cauchy polynomials in terms
of the rising factorials (x|q)(m) = x(x + q) · · · (x + (m – )q), as follows. Using the fact that
(x|q)(n) ∼ (, –e–qt

q ) with (.), (.), and (.), one obtains the following result.

Theorem . For all n ≥ ,

C(k)
n,q(λ, x) =

n
∑

m=

(

n
m

)

C(k)
n–m,q(λ, –qm)(x|q)(m),

̂C(k)
n,q(λ, x) =

n
∑

m=

(–)m
(

n
m

)

̂C(k)
n–m,q(λ, )(x|q)(m).
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