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Abstract
The dynamics and invariant manifolds for a nonlocal stochastic Swift-Hohenberg
equation with multiplicative noise are investigated. Using a stochastic transformation
process, a nonlocal stochastic Swift-Hohenberg equation is studied with either a
positive kernel or a non-negative kernel. Then the dynamics, existence, and
uniqueness of a global random attractor for the nonlocal stochastic Swift-Hohenberg
equation is shown. Moreover, the existence of a local random invariant manifold of
the corresponding random dynamical system for the nonlocal stochastic
Swift-Hohenberg equation with multiplicative noise is obtained using the technique
of a cut-off function and the Lyapunov-Perron method.
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1 Introduction
It is well known that fluid convection due to density gradients arises in geophysical fluid
flows in the atmosphere, oceans, and the earth’s mantle. Rayleigh-Bénard convection is
a prototypical model for fluid convection in predicting spatio-temporal convection pat-
terns. It is very important that the mathematical model for the Rayleigh-Bénard convec-
tion is closely contacted with nonlinear Navier-Stokes equations coupled with the tem-
perature equation. When the Rayleigh number is near the onset of the convection, the
Rayleigh-Bénard convection model may be approximately reduced to an amplitude or
order parameter equation []. We know that a localized one-dimensional version of the
model is the local one-dimensional Swift-Hohenberg equation

ut = –( + ∂xx)u + μu – u, (.)

which was originally derived by Swift and Hohenberg [] as a model for the convective
instability in the Rayleigh-Bénard convection. In addition, the Swift-Hohenberg equation
was not only derived for one-dimensional models, furthermore, it is also well studied in
high-dimensional models. We know there has been some research recently as regards the
local Swift-Hohenberg equation [–].
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However, when the distance from the change of stability is sufficiently small, or the
Rayleigh number is near thermal equilibrium, the influence of small noise or molecular
noise is detected in various convection experiments [–]. It is difficult to stabilize the
control parameters (e.g. the temperature in Rayleigh-Bénard convection) to the precision
of the noise strength, which is extremely small in the case of thermal fluctuations. When
the effects of thermal fluctuations (i.e. additive noise) on the onset of convective motion
are considered in the Bénard system, a local stochastic Swift-Hohenberg equation with
additive noise [] is proposed:

ut = –( + ∂xx)u + μu – u + σξ . (.)

Furthermore, it is also allowed to consider the effects of small possible noise from μ. So a
local stochastic Swift-Hohenberg equation with multiplicative noise[] arises,

ut = –( + ∂xx)u + μu – u + σu ◦ ξ . (.)

Here σ >  and ξ = dW
dt is the generalized derivative of a real valued one-dimensional

Brownian motion W (t). We know that the cubic term u is used as an approximation
of a nonlocal integral term [, ]. In the classical paper [] by Swift and Hohenberg the
analysis already hints toward a nonlocal nonlinearity. It is only for simplicity that they just
assumed the standard cubic. Recently, Roberts [, ] reexamined the rationale for us-
ing the Swift-Hohenberg model as the reliable model of the spatial pattern evolution in a
specific physical system. He notes that, although the localization approximation used in
(.) makes some sense in the one-dimensional case, this approximation is deficient in the
two-dimensional convection problem [, , ] and one should use the nonlocal Swift-
Hohenberg model

ut = –( + �)u + μu – uG ∗ u, (.)

where

G ∗ u =
∫

D
G

(√
(x – ξ ) + (y – η)

)
u(ξ ,η, t) dξ dη, (.)

and u(x) is the unknown amplitude function, μ measures the difference of the Rayleigh
number from its critical onset value, � = ∂xx + ∂yy is the Laplace operator with respect to
the variable x ∈ R

, G(r) (r =
√

x + y) is a given radially symmetric function, and ∗ de-
notes the convolution. The equation is defined for t >  and x ∈ D, where D is a bounded
planar domain with smooth boundary ∂D. When one considers the smallness of the fluc-
tuation effects as for the local Swift-Hohenberg equation, the two-dimensional version of
nonlocal stochastic Swift-Hohenberg equation [] can be written as

ut = –( + �)u + μu – uG ∗ u + σu ◦ ξ . (.)

By a similar consideration, the two-dimensional version of the local stochastic Swift-
Hohenberg equation for u(x, y, t) can be written as

ut = –( + �)u + μu – u + σu ◦ ξ .
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But the nonlocal stochastic Swift-Hohenberg equation (.) has had little investigation
so far []. Since the nonlocal equations are more significant to explain the nonlinear phys-
ical phenomenon, it is important to investigate the dynamics behaviors for them. There-
fore, against the stronger background of the nonlocal stochastic Swift-Hohenberg equa-
tion, there is new work to consider it in present paper. The purpose of this paper is mainly
to consider the nonlocal stochastic Swift-Hohenberg equation with positive kernel and
non-negative kernel. The global random attractor and existence of invariant manifolds
are investigated for the two-dimensional nonlocal stochastic Swift-Hohenberg equation
with multiplicative noise defined on a bounded planar domain D in R

d (d = ). Further-
more, for the three-dimensional case, the parallel results have been obtained by a similar
procedure. Therefore, in this paper, we mainly investigate it in the two-dimensional case.
The problem has been written as follows:

du = –( + �)u dt + μu dt – uG ∗ u dt + σu ◦ dW (t), (.)

with initial condition

u(x, y, ) = u(x, y), (x, y) ∈ D, (.)

and the boundary conditions

u|∂D =
∂u
∂n

∣∣∣∣
∂D

= , (x, y) ∈ ∂D. (.)

Specifically, using a stochastic transformation and the technique of a cut-off function, the
nonlocal stochastic Swift-Hohenberg equation is studied with either a positive kernel or a
non-negative kernel. Then the existence and uniqueness of a global random attractor for
the nonlocal stochastic Swift-Hohenberg equation is shown. Moreover, the existence of a
local random invariant manifold of the corresponding random dynamical system for the
nonlocal stochastic Swift-Hohenberg equation with multiplicative noise is obtained using
the Lyapunov-Perron method.

The paper is organized as follows. In Section , we recall some definitions and already
known results concerning global random attractors. In Section , we give uniform a priori
estimates of the solution for the nonlocal stochastic Swift-Hohenberg equation with pos-
itive kernel, and then a global random attractor for the corresponding random dynamical
system is obtained. In Section , using the technique of a cut-off function, a global ran-
dom attractor for nonlocal stochastic Swift-Hohenberg with special non-negative kernel
is deduced. In Section , we will give the existence of a local random invariant manifold
of the corresponding random dynamical system for nonlocal stochastic Swift-Hohenberg
equation with multiplicative noise using the Lyapunov-Perron’s method.

2 Preliminaries
We give some basic concepts related to random attractors and random invariant mani-
folds. The considered problem for a nonlocal stochastic Swift-Hohenberg equation with
multiplicative noise [] is rewritten as

ut = Au + F(u) + σu ◦ Ẇ , (.)
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which is subject to initial conditions and boundary conditions as (.) and (.) on the
bounded domain D ∈R

, where A = –( + ∂xx) + μ is a closed self-adjoint linear operator
with dense domain D(A) in H = L(D), F(u) = –uG ∗ u, and σ ,μ >  are positive parame-
ters, W (t) is a standard real valued one-dimensional Brownian motion. Assume H = L(D)
with norm ‖ · ‖ and scalar product 〈·, ·〉, a real separable Hilbert space.

The eigenvalues of A are defined as λn (n = , , . . .) and the corresponding eigenvectors
are en (n = , , . . .). Let Hc = span{e, . . . , em}, and Hs = H \Hc, where m ∈N is finite. Denote
the orthogonal projection from H to Hc by Pc and Ac = PcA. In addition, denote Ps = I – Pc

and As = PsA. In the following, the subscript ‘c’ or ‘s’ will represent the projection onto Hc

or the projection onto Hs, respectively. We know Pc is a continuous projection and can be
commuted with A and is not self-adjoint.

Now we give the interpolation spaces Hα with α ∈ [, ), which are defined as the domain
of Aα endowed with scalar product 〈u, v〉α = 〈Aαu, Aαv〉 and the norm ‖ · ‖α . In addition,
we define H–α as the dual of Hα with respect to the inner product in H . For the nonlinear
function F(u), which is defined by a cubic function, F : Hα ×Hα ×Hα → H . We can obtain
the local Lipschitz condition by a cut-off function. In addition, we know H = Hc ⊕ Hs and
Hα = Hc ⊕ Hα

s , where Hα
s = Hα ∩ Hs with α ∈ [, ). The following properties will be used.

From [–], there exists M >  such that

∥∥eAtPc
∥∥

L(Hα ,Hα ) ≤ Meλct , t ≤ , (.)
∥∥eAtPc

∥∥
L(Hα ,H) ≤ Meλct , t ≤ , (.)

∥∥eAtPs
∥∥

L(Hα ,Hα ) ≤ Meλst , t ≥ , (.)

∥∥eAtPs
∥∥

L(Hα ,H) ≤ M
tα

eλst , t ≥ , (.)

where λc = min{e, . . . , em} and λs = max{em+, . . .}.
Some concepts of a global random attractor for continuous random dynamical system

can be found in [–]. Let (X,‖ · ‖X) be a separable Hilbert space with Borel σ -algebra
B(X), and (	,F ,P, (θt)t∈R) be an ergodic metric dynamical system. Here, the global ran-
dom attractor should be considered on a tempered random set.

Definition . A random set {D(ω)} is called tempered if for all β >  and P-a.e. ω ∈ 	,

lim
t→+∞ e–βt d

(
D(θ–tω)

)
= ,

where d(D(θ–tω)) = sup{‖b‖X : b ∈ D}.

In order to obtain the main result as regards a global random attractor, only if the condi-
tions of the following theorem obtain, the result of a global random attractor will be given
easily and directly.

Theorem . (See [, ]) Let ϕ be a continuous random dynamical system on X over
(	,F ,P, (θt)t∈R). If there is a closed random tempered absorbing set {B(ω)} of ϕ and ϕ is
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asymptotically compact in X , then {A(ω)} is a random attractor of ϕ, where

A(ω) =
⋂
t>

⋃
τ≥t

ϕ
(
τ , θ–τω, B(θ–τω)

)
, ω ∈ 	.

Moreover, {A(ω)} is a unique random attractor of ϕ.

Furthermore, the random invariant manifolds of the corresponding random dynamical
system will also investigated. The Sobolev spaces Hm(D) or Hα(D) are the usual Sobolev
spaces or fractional Sobolev spaces, for all m ≥  or  ≤ α < , respectively. The main
step is to use the transformation process for our goal, which is given in the following. We
consider the scalar Langevin equation

dz + z dt = σ dW . (.)

It is well known that this equation has a unique stationary solution z(θtω), which is
called the stationary Ornstein-Uhlenbeck process. The main properties of the station-
ary Ornstein-Uhlenbeck process z(t) are in particular recalled. Here, set z(t) = z(θtω) and
z() = z(ω).

Lemma . (See [, , –]) There exists a subset 	∗ of 	 which is of full measure and
is θt-invariant for all t ∈R, i.e.,

P
(
	∗) = , θt

(
	∗) = 	∗, ∀t ∈R; (.)

and the following properties hold on 	∗.
(i) For each ω ∈ 	∗, t �→ Wt(ω) is γ -Hölder for any γ ∈ (, 

 ).
(ii) t �→ ω(t) has sublinear growth

lim
t→±∞

Wt(ω)
t

= , ∀ω ∈ 	∗. (.)

(iii) For each ω ∈ 	∗, t �→ z(θtω) is γ -Hölder for any γ ∈ (, 
 ), and can be written as

z(θtω) = –σ

∫ 

–∞
eτ Wτ (θtω) dτ

= –σ

∫ 

–∞
eτ Wτ+t(ω) dτ + σWt(ω), t ∈R,ω ∈ 	∗. (.)

(iv) The following growth control relations are satisfied:

lim
t→±∞

z(θtω)
t

= , lim
t→±∞

∫ t
 z(θτω) dτ

t
= , ∀ω ∈ 	∗. (.)

3 Nonlocal stochastic Swift-Hohenberg equation with positive kernel
In this section, we mainly show the global random attractor, for the nonlocal stochas-
tic Swift-Hohenberg equation with positive kernel. Note that equation (.) can be inter-
preted as a system of the integral equation

u(t) = u –
∫ t



(
αu + �u + �u + uG ∗ u)ds + σ

∫ t


u(s) ◦ dW (s),
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where α =  – μ. For the μ ≤  case, it is easy to investigate. So in this paper we assume
that μ > , i.e., α < .

Now, we mainly investigate the global random attractor for the stochastic Swift-
Hohenberg equation (.) with positive kernel. Assume that, for every t ≥  and (x, y) ∈ D,
there are

 < b ≤ G
(√

x + y
) ≤ a and G,∇G,�G ∈ L∞, (.)

where a, b >  are some positive constants. That is to say, G >  is a positive kernel and
∇ = (∂x, ∂y) is the gradient operator. We denote K = ‖∇G‖∞ and K = ‖�G‖∞. These
conditions hold throughout.

Set v = e–z(θtω)u(t). Then from (.)-(.) we can obtain the following system:

dv
dt

+
(
α – z(θtω)

)
v + �v + �v + ez(θtω)vG ∗ v = , (.)

v(x, y, ) = e–z(ω)u, (x, y) ∈ D, (.)

v|∂D =
∂v
∂n

∣∣∣∣
∂D

= . (.)

We can use the standard Galerkin method [, ] to show that the system (.)-(.)
has a unique solution v(t,ω, v) which is continuous with respect to v in H

(D) for all
t >  []. Then the system (.)-(.) generates a continuous random dynamical system
{ϕ(t)}t≥ over (	,F ,P, (θt)t∈R), where

ϕ(t,ω, v) = v(t,ω, v),

for all v ∈ L(D), t ≥ , and ω ∈ 	. On defining a mapping

φ(t,ω, v) = u(t,ω, v) = ez(θtω)v(t,ω, v) = ez(θtω)ϕ(t,ω, v),

we deduce that φ is a continuous random dynamical system associated with the system
(.)-(.) on H

(D). Therefore, it is easy to deduce that φ has a global random attractor
only if ϕ possesses a global random attractor. Then we consider the random dynamical
system ϕ as follows on the basis of the following uniform a priori estimates of the solution
for the system (.)-(.).

3.1 Uniform a priori estimates of solution
In the following, we set D for the collection of all tempered random subsets in L(D). First
of all, we give some uniform estimates of the solution for the system (.)-(.) on D when
t → ∞. These estimates are important to obtain the random absorbing set when time is
sufficiently large. Now we give some lemmas to show that the random dynamical system
ϕ has a random absorbing set in D .

Lemma . Assume that any v ∈ B(ω) ⊂ D . Then there exist a tB(ω) >  and a random
variable ρ(ω) >  such that, for all P-a.e. ω ∈ 	 and t > tB(ω), we have

∥∥v
(
t, θ–tω, v(θ–tω)

)∥∥ ≤ ρ(ω). (.)
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Proof Taking the inner product with v(t) on the both sides of (.) in D, then we have




d
dt

‖v‖ +
(
α – z(θtω)

)∥∥v(t)
∥∥ + 〈�v, v〉 + ‖�v‖ +

〈
ez(θtω)vG ∗ v, v

〉
= . (.)

Notice

∣∣〈�v, v〉∣∣ ≤ 

‖�v‖ + ‖v‖. (.)

In addition, we have

〈
ez(θtω)vG ∗ v, v

〉
= ez(θtω)

∫
D

vG ∗ v dx ≥ bez(θtω)‖v‖. (.)

Then substituting (.) and (.) into (.), we can obtain




d
dt

‖v‖ +
(
α – z(θtω)

)∥∥v(t)
∥∥ –



‖�v‖ – ‖v‖ + ‖�v‖ + bez(θtω)‖v‖ ≤ . (.)

That is,

d
dt

‖v‖ + 
(
ε – z(θtω)

)∥∥v(t)
∥∥ + ‖�v‖

+ (α –  – ε)
∥∥v(t)

∥∥ + bez(θtω)‖v‖ ≤ . (.)

Since α –  < , α –  – ε < , and

bez(θtω)‖v‖ + (α –  – ε)
∥∥v(t)

∥∥

= bez(θtω)
[
‖v‖ +

α –  – ε

b
e–z(θtω)

]

–
(α –  – ε)

b
e–z(θtω),

from (.), we obtain

d
dt

‖v‖ + 
(
ε – z(θtω)

)∥∥v(t)
∥∥ + ‖�v‖ ≤ (α –  – ε)

b
e–z(θtω). (.)

Now we consider the inequality (.). Multiplying eεt–
∫ t

 z(θτ ω) dτ on both sides of (.),
we have

d
dt

[
eεt–

∫ t
 z(θτ ω) dτ‖v‖] ≤ (α –  – ε)

b
e–z(θtω)+εt–

∫ t
 z(θτ ω) dτ . (.)

Taking the integral from  to t with respect to t for (.), we can obtain

∥∥v
(
t,ω, v(ω)

)∥∥

≤ e–εt+
∫ t

 z(θτ ω) dτ
∥∥v(ω)

∥∥ +
(α –  – ε)

b

∫ t


e–z(θsω)–ε(t–s)+

∫ t
s z(θτ ω) dτ ds. (.)

In the above inequality (.), replacing ω by θ–tω, we obtain
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∥∥v
(
t, θ–tω, v(θ–tω)

)∥∥

≤ e–εt+
∫ t

 z(θτ–tω) dτ
∥∥v(θ–tω)

∥∥ +
(α –  – ε)

b

∫ t


e–z(θs–tω)–ε(t–s)+

∫ t
s z(θτ–tω) dτ ds

= e–t(ε–
∫ 
–t z(θτ ω) dτ

t )∥∥v(θ–tω)
∥∥ +

(α –  – ε)

b

∫ 

–t
es(ε– z(θsω)

s +
∫ 
s z(θτ ω) dτ

–s ) ds

≤ e–t(ε–
∫ 
–t z(θτ ω) dτ

t )∥∥v(θ–tω)
∥∥ +

(α –  – ε)

b

∫ 

–∞
es(ε– z(θsω)

s +
∫ 
s z(θτ ω) dτ

–s ) ds. (.)

According to the properties of z(θtω) and the tempered random set D , there exist a tB(ω) >
 and a random variable ρ(ω) such that, for all P-a.e. ω ∈ 	 and t > tB(ω), there is

∥∥v
(
t, θ–tω, v(θ–tω)

)∥∥ ≤ ρ(ω).

Then the lemma is completed. �

Lemma . Assume that any v ∈ B(ω) ⊂ D . Then there exist a tB(ω) >  and a random
variable ρ(ω) >  such that, for all P-a.e. ω ∈ 	 and t > tB(ω), we have

∫ t+

t

∥∥�v
(
s, θ–t–ω, v(θ–t–ω)

)∥∥ ds ≤ ρ(ω). (.)

Proof Considering inequality (.) again, we have

d
dt

[
eεt–

∫ t
 z(θτ ω) dτ‖v‖] + eεt–

∫ t
 z(θτ ω) dτ‖�v‖ ≤ (α –  – ε)

b
e–z(θtω)+εt–

∫ t
 z(θτ ω) dτ .

Taking the integral from T̂ to t with respect to t for the above inequality, where T̂ ≤ t, we
obtain

∫ t

T̂
e–ε(t–s)+

∫ t
s z(θτ ω) dτ‖�v‖ ds

≤ e–ε(t–T̂)+
∫ t

T̂ z(θτ ω) dτ
∥∥v

(
T̂ ,ω, v(ω)

)∥∥

+
(α –  – ε)

b

∫ t

T̂
e–z(θsω)–ε(t–s)+

∫ t
s z(θτ ω) dτ ds. (.)

Replacing t by T̂ in (.), and substituting into the above inequality (.), we obtain

∫ t

T̂
e–ε(t–s)+

∫ t
s z(θτ ω) dτ

∥∥�v
(
s,ω, v(ω)

)∥∥ ds

≤ e–εt+
∫ t

 z(θτ ω) dτ
∥∥v(ω)

∥∥ +
(α –  – ε)

b

∫ t


e–z(θsω)–ε(t–s)+

∫ t
s z(θτ ω) dτ ds. (.)

In the above inequality (.), replacing ω by θ–tω, we obtain

∫ t

T̂
e–ε(t–s)+

∫ t
s z(θτ–tω) dτ

∥∥�v
(
s, θ–tω, v(θ–tω)

)∥∥ ds

≤ e–εt+
∫ t

 z(θτ–tω) dτ
∥∥v(θ–tω)

∥∥ +
(α –  – ε)

b

∫ t


e–z(θs–tω)–ε(t–s)+

∫ t
s z(θτ–tω) dτ ds.
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Furthermore, we replace T̂ by t and t by t +  in the above inequality. Therefore we obtain

∫ t+

t
e–ε(t+–s)+

∫ t+
s z(θτ–t–ω) dτ

∥∥�v
(
s, θ–t–ω, v(θ–t–ω)

)∥∥ ds

≤ e–ε(t+)+
∫ t+

 z(θτ–t–ω) dτ
∥∥v(θ–t–ω)

∥∥

+
(α –  – ε)

b

∫ t+


e–z(θs–t–ω)–ε(t+–s)+

∫ t+
s z(θτ–t–ω) dτ ds.

That is,

∫ t+

t
e–ε(t+–s)+

∫ 
s–t– z(θτ ω) dτ

∥∥�v
(
s, θ–t–ω, v(θ–t–ω)

)∥∥ ds

≤ e–(t+)(ε–
∫ 
–t– z(θτ ω) dτ

t+ )∥∥v(θ–t–ω)
∥∥ +

(α –  – ε)

b

∫ 

–t–
e–z(θsω)+εs+

∫ 
s z(θτ ω) dτ ds

≤ e–(t+)(ε–
∫ 
–t– z(θτ ω) dτ

t+ )∥∥v(θ–t–ω)
∥∥

+
(α –  – ε)

b

∫ 

∞
e–z(θsω)+εs+

∫ 
s z(θτ ω) dτ ds. (.)

According to the properties of z(θtω) and – ≤ s – t –  ≤ , we have

∫ t+

t
e–ε(t+–s)+

∫ 
s–t– z(θτ ω) dτ

∥∥�v
(
s, θ–t–ω, v(θ–t–ω)

)∥∥ ds

≥ e–ε– max–≤τ≤ |z(θτ ω)|
∫ t+

t

∥∥�v
(
s, θ–t–ω, v(θ–t–ω)

)∥∥ ds. (.)

Then from (.) and (.), we deduce that there exists a random variable ρ(ω) for all
P-a.e. ω ∈ 	 such that

∫ t+

t

∥∥�v
(
s, θ–t–ω, v(θ–t–ω)

)∥∥ ds ≤ ρ(ω), as t → +∞. (.)

So the lemma is obtained. �

Lemma . Assume that any v ∈ B(ω) ⊂ D . Then there exist a tB(ω) >  and a random
variable ρ(ω) >  such that, for all P-a.e. ω ∈ 	 and t > tB(ω), we have

∥∥�v
(
t, θ–tω, v(θ–tω)

)∥∥ ds ≤ ρ(ω). (.)

Proof Taking the inner product with �v on both sides of (.) in D, we have




d
dt

‖�v‖ +
(
α – z(θtω)

)∥∥�v(t)
∥∥ +

〈
�v,�v

〉
+

∥∥�v
∥∥

+
〈
ez(θtω)vG ∗ v,�v

〉
= . (.)

Notice

∣∣〈�v,�v
〉∣∣ ≤ 


∥∥�v

∥∥ + ‖�v‖.
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In addition, we have

〈
ez(θtω)vG ∗ v,�v

〉

= ez(θtω)
∫

D

[
�vG ∗ v + ∇v∇G ∗ v + v�G ∗ v]�v dx

≤ aez(θ tω)‖v‖‖�v‖
+ λ

– 


 ‖∇G‖L∞ez(θtω)‖v‖‖�v‖

+ λ–
 ‖�G‖L∞ez(θtω)‖v‖‖�v‖

≤ aez(θ tω)‖v‖‖�v‖
+ λ

– 


 Kez(θtω)‖v‖‖�v‖ + λ–
 Kez(θtω)‖v‖‖�v‖. (.)

Then from (.), we obtain

d
dt

‖�v‖ + 
(
ε – z(θtω)

)∥∥�v(t)
∥∥

≤ 
(
a + Kλ

– 


 + Kλ
–


)
ez(θtω)‖v‖‖�v‖ + ( – α + ε)‖�v‖

.= Kez(θtω)‖v‖‖�v‖ + ( – α + ε)‖�v‖. (.)

Using Gronwall’s inequality, we have

∥∥�v
(
t + ,ω, v(ω)

)∥∥

≤ e–ε(t+–s)+
∫ t+

s z(θτ ω) dτ
∥∥�v

(
s,ω, v(ω)

)∥∥

+ 
∫ t+

s

[
Kez(θτ ω)∥∥v

(
τ ,ω, v(ω)

)∥∥ + ( – α + ε)
]

· e–ε(t+–τ )+
∫ t+
τ z(θrω) dr∥∥�v

(
τ ,ω, v(ω)

)∥∥ dτ , (.)

where t ≤ s ≤ t + . In the above inequality (.), taking the integral from t to t +  with
respect to s, we obtain

∥∥�v
(
t + ,ω, v(ω)

)∥∥

≤
∫ t+

t
e–ε(t+–s)+

∫ t+
s z(θτ ω) dτ

∥∥�v
(
s,ω, v(ω)

)∥∥ ds

+ 
∫ t+

t

∫ t+

s

[
Kez(θτ ω)∥∥v

(
τ ,ω, v(ω)

)∥∥ + ( – α + ε)
]

· e–ε(t+–τ )+
∫ t+
τ z(θrω) dr∥∥�v

(
τ ,ω, v(ω)

)∥∥ dτ ds. (.)

In (.), replacing t by τ and substituting it into the above inequality (.), we obtain

∥∥�v
(
t + ,ω, v(ω)

)∥∥

≤
∫ t+

t
e–ε(t+–s)+

∫ t+
s z(θτ ω) dτ

∥∥�v
(
s,ω, v(ω)

)∥∥ ds

+ K
∥∥v(ω)

∥∥
∫ t+

t

∫ t+

s
ez(θτ ω)–ε(t+)+

∫ t+
 z(θrω) dr∥∥�v

(
τ ,ω, v(ω)

)∥∥ dτ ds
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+
K(α –  – ε)

b

∫ t+

t

∫ t+

s

∫ τ


ez(θτ ω)–z(θrω)–ε(t+–r)+

∫ t+
r z(θξ ω) dξ

· ∥∥�v
(
τ ,ω, v(ω)

)∥∥ dr dτ ds

+
∫ t+

t

∫ t+

s
( – α + ε)e–ε(t+–τ )+

∫ t+
τ z(θrω) dr∥∥�v

(
τ ,ω, v(ω)

)∥∥ dτ ds. (.)

It is easy to obtain from the above inequality (.) that

∥∥�v
(
t + ,ω, v(ω)

)∥∥

≤ ( – α + ε)
∫ t+

t
e–ε(t+–s)+

∫ t+
s z(θτ ω) dτ

∥∥�v
(
s,ω, v(ω)

)∥∥ ds

+ K
∥∥v(ω)

∥∥
∫ t+

t

∫ t+

s
ez(θτ ω)–ε(t+)+

∫ t+
 z(θrω) dr∥∥�v

(
τ ,ω, v(ω)

)∥∥ dτ ds

+
K(α –  – ε)

b

∫ t+

t

∫ t+

s

∫ τ


ez(θτ ω)–z(θrω)–ε(t+–r)+

∫ t+
r z(θξ ω) dξ

· ∥∥�v
(
τ ,ω, v(ω)

)∥∥ dr dτ ds. (.)

In the above inequality (.), replacing ω by θ–t–ω, we obtain

∥∥�v
(
t + , θ–t–ω, v(θ–t–ω)

)∥∥

≤ ( – α + ε)
∫ t+

t
e–ε(t+–s)+

∫ t+
s z(θτ–t–ω) dτ

∥∥�v
(
s, θ–t–ω, v(θ–t–ω)

)∥∥ ds

+ K
∥∥v(θ–t–ω)

∥∥
∫ t+

t

∫ t+

s
ez(θτ–t–ω)–ε(t+)+

∫ t+
 z(θr–t–ω) dr

· ∥∥�v
(
τ , θ–t–ω, v(θ–t–ω)

)∥∥ dτ ds

+
K(α –  – ε)

b

∫ t+

t

∫ t+

s

∫ τ


ez(θτ–t–ω)–z(θr–t–ω)–ε(t+–r)+

∫ t+
r z(θξ–t–(ω)) dξ

· ∥∥�v
(
τ , θ–t–ω, v(θ–t–ω)

)∥∥ dr dτ ds. (.)

Now, we estimate each term on the right side of the above inequality. For the first term,
we have

( – α + ε)
∫ t+

t
e–ε(t+–s)+

∫ t+
s z(θτ–t–ω) dτ

∥∥�v
(
s, θ–t–ω, v(θ–t–ω)

)∥∥ ds

≤ ( – α + ε)e max–≤τ≤ |z(θτ ω)
∫ t+

t

∥∥�v
(
s, θ–t–ω, v(θ–t–ω)

)∥∥ ds. (.)

For the second term, we estimate it as follows:

K
∥∥v(θ–t–ω)

∥∥
∫ t+

t

∫ t+

s
ez(θτ–t–ω)–ε(t+)+

∫ t+
 z(θr–t–ω) dr

· ∥∥�v
(
τ , θ–t–ω, v(θ–t–ω)

)∥∥ dτ ds

= K
∥∥v(θ–t–ω)

∥∥e–(t+)(ε–
∫ 
–t– z(θτ ω) dτ

t+ )
∫ t+

t

∫ t+

s
ez(θτ–t–ω)
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· ∥∥�v
(
τ , θ–t–ω, v(θ–t–ω)

)∥∥ dτ ds

≤ K
∥∥v(θ–t–ω)

∥∥e–(t+)(ε–
∫ 
–t– z(θτ ω) dτ

t+ )e max–≤τ≤ |z(θτ ω)|

·
∫ t+

t

∥∥�v
(
s, θ–t–ω, v(θ–t–ω)

)∥∥ ds. (.)

Then, for the third term, we have the estimate

K(α –  – ε)

b

∫ t+

t

∫ t+

s

∫ τ


ez(θτ–t–ω)–z(θr–t–ω)–ε(t+–r)+

∫ t+
r z(θξ–t–ω) dξ

· ∥∥�v
(
τ , θ–t–ω, v(θ–t–ω)

)∥∥ dr dτ ds

≤ K(α –  – ε)

b
e max–≤τ≤ |z(θτ ω)|

∫ t+

t

∫ τ–t–

–t–
e–z(θrω)+εr+

∫ 
r z(θξ ω) dξ

· ∥∥�v
(
τ , θ–t–ω, v(θ–t–ω)

)∥∥ dr dτ

≤ K(α –  – ε)

b
e max–≤τ≤ |z(θτ ω)|

∫ t+

t

∫ 

–t–
er(ε– z(θrω)

r –
∫ 
r z(θξ ω) dξ

–r ) dr

· ∥∥�v
(
τ , θ–t–ω, v(θ–t–ω)

)∥∥ dτ

≤ KK(α –  – ε)

b
e max–≤τ≤ |z(θτ ω)|

∫ t+

t

∥∥�v
(
τ , θ–t–ω, v(θ–t–ω)

)∥∥ dτ . (.)

From the above estimates (.), (.), and (.), we deduce that

∥∥�v
(
t + , θ–t–ω, v(θ–t–ω)

)∥∥ ≤ ρ(ω), as t → +∞. (.)

Then the lemma is easy to obtain. The proof is complete. �

3.2 Global random attractor
According to the former uniform a priori estimates and the lemmas, it is easy to see that
there exists a random absorbing set for the random dynamical system generated by (.)-
(.) with positive kernel in H

(D) as the following theorem.

Theorem . Assume that any v ∈ B(ω) ⊂ D . Then there exists a random absorbing set
B(ω) in H

(D) for the random dynamical system generated by (.)-(.) with positive
kernel in H

(D).

Proof According to the above three lemmas, we can take T = max{TB, TB, TB, } and
ρ(ω) = max{ρ(ω),ρ(ω),ρ(ω)}. Then, for all t ≥ T andP-a.e. ω ∈ 	, there exists a random
absorbing set B(ω) for the random dynamical system generated by the system (.)-(.)
with positive kernel in H

(D). �

Then according to Theorem ., we know the conditions of Theorem . have been sat-
isfied. So we easily find the following main result.

Theorem . Assume that any v ∈ B(ω) ⊂ D . Then there is a global random attractor in
H

(D) for the random dynamical system generated by the system (.)-(.) with positive
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kernel. That is to say, the global random attractor is the ω-limit set of the random absorbing
set B(ω) in H

(D).

4 Global random attractor for a nonlocal stochastic Swift-Hohenberg equation
with non-negative kernel

The analysis for positive kernels in Section  does not work for non-negative kernels. But
we can also obtain some estimates for a special non-negative kernel G ≥  on the nonlocal
stochastic Swift-Hohenberg model. We consider the problem via a mollifier.

Define

J(r) =

{
c exp(– 

–r ), r < ,
, r ≥ ,

(.)

where

c =
(∫

D

exp

(
–


 – r

)
dx

)–

, (.)

r =
√

x
 + x

, and D = {(x, x) ∈R
; r < } ⊂ D. We also define, for some δ > ,

Jδ(r) = δ–J
(

r
δ

)
.

Let C(D̄) be the space of continuous functions with compact support in D. Then, for any
f ∈ C(D̄), we define the mollifier of f (y, y) as in [] by the convolution

Jδ ∗ f =
∫

D
Jδ

(√
(x – y) + (x – y)

)
f (y, y) dy dy. (.)

It is well known that

‖Jδ ∗ f – f ‖C(D̄) →  as δ → . (.)

Therefore, for any given ε > , there is a δ = δ(ε) >  such that

Jδ ∗ f ≥ f – ε. (.)

We consider the special kernel G(r) = Jδ (r) with the same family of δ = δ(ε) as in the
above inequality for the stochastic nonlocal Swift-Hohenberg equation. Then G satisfies

 ≤ G ≤ c
δ


, ∇G,�G ∈ L∞(D). (.)

Notice that the lower bound of G is b = . Then the investigations are different from
before. According to the properties above, we can still obtain similar uniform a priori es-
timates for the nonlocal stochastic Swift-Hohenberg equation. The existence and unique-
ness of the solution in H

(D) for the nonlocal stochastic Swift-Hohenberg equation with
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special kernel G(r) = Jδ (r) can be obtained as in []. Due to the standard regularity argu-
ment in [, ] with the Sobolev embedding theorem, we also have

v(t) ∈ C(D̄), ∀b ≥ t > .

Thus implies that

G(r) ∗ v ≥ v – ε.

Then we have the following uniform a priori estimates for the nonlocal stochastic Swift-
Hohenberg equation with the special non-negative kernel G ≥  in H

(D).

Lemma . Assume that any v ∈ B(ω) ⊂ D . Then there exist a tB(ω) >  and a random
variable ρ(ω) >  such that, for all P-a.e. ω ∈ 	 and t > tB(ω), there are

∥∥v
(
t, θ–tω, v(θ–tω)

)∥∥ ≤ ρ(ω), (.)
∫ t+

t

∥∥�v
(
s, θ–t–ω, v(θ–t–ω)

)∥∥ ds ≤ ρ(ω). (.)

∥∥�v
(
t, θ–tω, v(θ–tω)

)∥∥ ≤ ρ(ω). (.)

Proof Taking the inner product with v(t) on both sides of (.) in D, we have




d
dt

‖v‖ +
(
α – z(θtω)

)∥∥v(t)
∥∥ + 〈�v, v〉 + ‖�v‖ +

〈
ez(θtω)vG ∗ v, v

〉
= . (.)

Notice

∣∣〈�v, v〉∣∣ ≤ 

‖�v‖ + ‖v‖. (.)

In addition, we have

〈
ez(θtω)vG ∗ v, v

〉
= ez(θtω)

∫
D

vG ∗ v dx ≥ ez(θtω)
∫

D
v dx dy – εez(θtω)‖v‖. (.)

Then substituting (.) and (.) into (.), we obtain

d
dt

‖v‖ + 
(
ε – z(θtω)

)∥∥v(t)
∥∥ + ‖�v‖

≤ |D|


(
( – α + ε)ε + ( – α + ε)e–z(θtω) + ε

 ez(θtω)). (.)

When ε is taken as a sufficiently small positive constant, then we have  –α + ε > . There-
fore, we use similar techniques of estimates to the former, and we obtain the corresponding
uniform a priori estimates. So the results of this lemma can be obtained. Here we omit the
process. �

According to the above lemma, we can obtain the existence of the global random at-
tractor for the nonlocal stochastic Swift-Hohenberg equation with a special non-negative
kernel G.
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Theorem . Assume that any v ∈ B(ω) ⊂ D . Then there is a global random attractor in
H

(D) for the random dynamical system generated by the system (.)-(.) with a special
non-negative kernel G.

From the above investigations and deduction, we can obtain results similar to above
for the three-dimensional nonlocal stochastic Swift-Hohenberg equation with the cor-
responding random dynamical system. Here we do not give the repeated proof and the
results. Interested readers can verify all this through similar methods and techniques.

5 Existence of random invariant manifolds
5.1 Transformation and preparations
Similarly, let v = e–z(θtω)u(t) = e–z(t)u(t). Then under the transformation of the Ornstein-
Uhlenbeck process, the original system (.) becomes a random system as follows:

dv
dt

= Av + zv + e–z(θtω)F
(
vez(θtω)), (.)

v(x, y, ) = e–z(ω)u(x, y), (x, y) ∈ D, (.)

v|∂D =
∂v
∂n

∣∣∣∣
∂D

= . (.)

In order to consider the random invariant manifolds of the above system in a neighbor-
hood of the fixed point v = , we need to use the cut-off technique such that the nonlinear
term satisfies the local Lipschitz condition. Now we give a cut-off function,

χ (v) =

{
 if ‖v‖α ≤ ,
 if ‖v‖α > .

Then, for any positive parameter R, we can define χR(v) = χ ( v
R ) for all v ∈ Hα . Therefore,

we obtain

χR(v) = χ

(
v
R

)
=

{
 if ‖v‖α ≤ R,
 if ‖v‖α > R.

In addition, set F (R)(v) = χR(v)F(v). Then, for every positive constant LR >  and for every
ω ∈ 	, there exists a positive random variable R >  such that

∥∥F (R)(v) – F (R)(ṽ)
∥∥ ≤ LR‖v – ṽ‖α . (.)

Thus we know the nonlinear term F(v) satisfies the local Lipschitz condition (.). Then
the truncated system by the cut-off technique

ut = –Au + μu + F (R)(u) + σu ◦ Ẇ , u(, x) = u(x) (.)

will be considered. So by the Ornstein-Uhlenbeck transformation, we will mainly consider
the truncated system as follows:

dv
dt

= Av + zv + e–z(θtω)F (R)(vez(θtω)), (.)
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v(x, y, ) = e–z(ω)u(x, y), (x, y) ∈ D, (.)

v|∂D =
∂v
∂n

∣∣∣∣
∂D

= . (.)

5.2 Existence of random invariant manifold
In the following, we mainly show the random invariant manifolds for the system (.)-
(.). First of all, we construct the local random invariant manifold of it for sufficiently
small R >  and prove its exponentially attracting properties of the corresponding random
dynamical system by using the method in []. In order to obtain our goals, we should
consider the following two systems:

∂tvc = (A + z)vc + e–zPcF (R)(vez), vc() = ξ = Pcue–z(), (.)

∂tvs = (A + z)vs + e–zPsF (R)(vez), vs() = Psue–z(). (.)

Since μ > , for any value of μ, there exists a real number η such that λs < η < λc, where
λc and λs are the last eigenvalue and the first eigenvalue for the projectors Pc and Ps, re-
spectively. The Lyapunov-Perron method will be used as in [] on the random space with
random norm depending on ω, which is defined as follows.

Definition . For λs < η < λc, define the Banach space

C–
η =

{
v ∈ C

(
(–∞, ]; Hα

)
: sup

t≤

{
e–ηt–

∫ t
 z(r) dr‖v‖α

}
< ∞

}
(.)

with norm

‖v‖C–
η

= sup
t≤

{
e–ηt–

∫ t
 z(r) dr‖v‖α

}
. (.)

Notice that, for fixed t, as r → –∞, we can obtain the following result:

∥∥eA(t–r)+
∫ t

r z(τ ) dτ vs(r)
∥∥

α
≤ Meλs(t–r)+

∫ t
r z(τ ) dτ

∥∥vs(r)
∥∥

α

≤ M‖vs‖C–
η

e–(λs–η)reλst+
∫ t

 z(τ ) dτ → . (.)

Now we give a mapping definition according to (.)-(.) as follows. One can investigate
it by the uniform contraction mapping principle as in [].

Definition . Define the nonlinear operator J on C–
η for given ξ ∈ Hα

c and ω ∈ 	 as

J (v, ξ )(t) = eAt+
∫ t

 z(τ ) dτ ξ +
∫ t


eA(t–s)+

∫ t
s z(τ ) dτ e–z(s)PcF (R)(v(s)ez(s))ds

+
∫ t

–∞
eA(t–s)+

∫ t
s z(τ ) dτ e–z(s)PsF (R)(ez(s)v(s)

)
ds. (.)

According to the Lipschitz property of F (R)(u), it is easy to directly see that, for any ξ ∈
Hα

c and ω ∈ 	, there is a mapping J (·, ξ )(t) : C–
η → C–

η ; refer to []. Furthermore, we
can show it is a Lipschitz continuous map according to some estimates as follows.
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Theorem . Suppose λs < η < λc and we have condition (.). Then the operator J has
a unique fixed point v∗ = v∗(ω, ξ ) ∈ C–

η .

Proof For any v, v̄ ∈ C–
η , one considers the estimate

∥∥J (v, ξ ) – J (v̄, ξ )
∥∥

C–
η

≤ MLR‖v – ṽ‖C–
η

sup
t≤

∫ t


e(λc–η)(t–s) ds + MLR‖v – v̄‖C–

η
sup
t≤

∫ t

–∞
e(λs–η)(t–s)

(t – s)α
ds

≤ MLR

[


λc – η
+

�( – α)
η – λs

]
‖v – v̄‖C–

η

.= Lip(J )‖v – v̄‖C–
η

, (.)

where Lip(J ) = MLR[ 
λc–η

+ �(–α)
η–λs

] is actually independent of ξ and ω. Therefore, if for
sufficient small R >  we have

Lip(J ) = MLR

[


λc – η
+

�( – α)
η – λs

]
< , (.)

the mappingJ (·, ξ )(t) : C–
η → C–

η is a contraction. So according to the uniform contraction
mapping principle, we can obtain the result of the theorem. �

Furthermore, we can use a similar method to obtain the estimate

∥∥J (v, ξ ) – J (v, ξ̄ )
∥∥

C–
η

≤ M
 – MLR[ 

λc–η
+ �(–α)

η–λs
]
‖ξ – ξ̄‖. (.)

Only if the condition

M
 – MLR[ 

λc–η
+ �(–α)

η–λs
]

<  (.)

is satisfied, then the Lipschitz continuous about ξ for J (v, ξ ) can hold. So, for the fixed
point v∗ = v∗(ω; ξ ) ∈ C–

η , define h(ω, ξ ) = Psv∗(,ω; ξ ). Thus, we have

h(ω, ξ ) =
∫ 

–∞
e–As+

∫ 
s z(τ ) dτ e–z(s)PsF (R)(v∗(s, ξ )ez(s))ds. (.)

Then by a similar discussion to [], we have a local random Lipschitz invariant manifold
for the random dynamical system ϕR(t,ω) of the system (.) as follows:

MR
cut(ω) =

{(
ξ , ez(ω)h

(
ω, e–z(ω)ξ

))
: ξ ∈ Hα

c
}

, (.)

which is the graph of ez(ω)h(ξ , e–z(ω)ξ ). In addition, define a mapping

ψ(ω, ·) : Hc ∩ BR() → Hα
s , ξ → ψ(ω, ξ ) = ez(ω)h

(
ξ , e–z(ω)ξ

)
. (.)

So, it is easy to obtain

MR(ω) = graph
(
ψ(ω, ·)) = MR

cut(ω) ∩ BR(), (.)
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a local Lipschitz random invariant manifold of the random dynamical system ϕ(t,ω) for
the system (.).

Theorem . Suppose we have λs < η < λc and conditions (.) and (.). Then the ran-
dom dynamical system ϕ(t,ω) for the system (.) has a local Lipschitz random invariant
manifold MR(ω) for sufficiently small R > , which is defined as the graph of a random
Lipschitz map h(ω, ·) : Hc → Hα

s

MR
cut(ω) =

{(
ξ , ez(ω)h

(
ω, e–z(ω)ξ

))
: ξ ∈ Hc

}
, (.)

where h(ω, ξ ) is represented by (.).
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