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Abstract
The functional equation related to a distance measure

f (pr,qs) + f (ps,qr) = f (p,q)f (r, s)

can be generalized as follows:

n–1∑

i=0

f (P · σi(Q)) = f (P)f (Q),

where f is an information measure, P and Q are in the set of n-ary discrete complete
probability, and σi is a permutation for each i = 0, 1, . . . ,n – 1.
In this paper, we investigate the superstability of the above functional equation and

also four generalized functional equations:

n–1∑

i=1

f (P · σi(Q)) = f (P)g(Q),
n–1∑

i=0

f (P · σi(Q)) = g(P)f (Q),

n–1∑

i=0

f (P · σi(Q)) = g(P)g(Q),
n–1∑

i=0

f (P · σi(Q)) = g(P)h(Q).

MSC: 39B82; 39B52

Keywords: information measure; distance measure; superstability; multiplicative
function; stability of functional equation

1 Introduction
Baker et al. in [] introduced that if f satisfies the stability inequality |E(f )–E(f )| ≤ ε, then
either f is bounded or E(f ) = E(f ). This is now frequently referred to as superstability.
Baker [] also proved the superstability of the cosine functional equation (also called the
d’Alembert functional equation).

In this paper, let (G, ·) be a commutative group and I denote the open unit interval (, ).
Also let R denote the set of real numbers and R+ = {x ∈ R | x > } be a set of positive real
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numbers. Further, let

�
n =

{
P = (p, p, . . . , pn)

∣∣∣  < pk < ,
n∑

k=

pk = 

}

denote the set of all n-ary discrete complete probability distributions (without zero prob-
abilities), that is, �

n is the class of discrete distributions on a finite set � of cardinality
n with n ≥ . Almost all similarity, affinity or distance measures μn : �

n × �
n → R+ that

have been proposed between two discrete probability distributions can be represented in
the sum-form

μn(P, Q) =
n∑

k=

φ(pk , qk), (.)

where φ : I × I →R is a real-valued function on unit square, or a monotonic transforma-
tion of the right-hand side of (.), that is,

μn(P, Q) = ψ

( n∑

k=

φ(pk , qk)

)
, (.)

where ψ : R → R+ is an increasing function on R. The function φ is called a generating
function. It is also referred to as the kernel of μn(P, Q).

In information theory, for P and Q in �
n , the symmetric divergence of degree α is defined

as

Jn,α(P, Q) =


α– – 

[ n∑

k=

(
pα

k q–α
k + p–α

k qα
k
)

– 

]
.

For all P, Q ∈ �
n , we define the product

P · R = (pr, pr, . . . , prm, pr, . . . , prm, . . . , pnrm).

In [], Chung et al. characterized all symmetrically compositive sum-form distance mea-
sures with a measurable generating function. The following functional equation

f (pr, qs) + f (ps, qr) = f (p, q)f (r, s) (DM)

holding for all p, q, r, s ∈ I was instrumental in their characterization of symmetrically
compositive sum-form distance measures. They proved the following theorem giving the
general solution of this functional equation (DM):

Suppose f : I →R satisfies (DM) for all p, q, r, s ∈ I . Then

f (p, q) = M(p)M(q) + M(q)M(p),

where M, M : R →C are multiplicative functions. Further, either M and M are both
real or M is the complex conjugate of M. The converse is also true.



Lee and Kim Journal of Inequalities and Applications  (2015) 2015:352 Page 3 of 8

In [] and [], Kim (second author) and Sahoo obtained the superstability results of the
equation (DM), its stability and four generalizations of (DM), namely

f (pr, qs) + f (ps, qr) = f (p, q)g(r, s), (DMfg)

f (pr, qs) + f (ps, qr) = g(p, q)f (r, s), (DMgf)

f (pr, qs) + f (ps, qr) = g(p, q)g(r, s), (DMgg)

f (pr, qs) + f (ps, qr) = g(p, q)h(r, s) (DMgh)

for all p, q, r, s ∈ G.
The above equation (DM) characterized by distance measures can be considered by

characterization of a symmetrically compositive sum-form information measurable func-
tional equation.

The functional equation (DM) can be generalized as follows. Let f : �
n → R be a function

and

n–∑

i=

f
(
P · σi(Q)

)
= f (P)f (Q) (IM)

for all P = (p, p, . . . , pn), Q = (q, q, . . . , qn) ∈ �
n , where σi : In → In is a permutation de-

fined by

σi(x, x, . . . , xn) := (xi+, xi+, . . . , xn, x, x, . . . , xi)

for each i ∈ N , and define P · Q := (pq, pq, . . . , pnqn).
For other functional equations with the information measure, the interested reader

should refer to [–] and [–].
This paper aims to investigate the superstability of (IM) and also four generalized func-

tional equations of (IM) as well as that of the following type functional equations:

n–∑

i=

f
(
P · σi(Q)

)
= f (P)g(Q), (GIMfg)

n–∑

i=

f
(
P · σi(Q)

)
= g(P)f (Q), (GIMgf)

n–∑

i=

f
(
P · σi(Q)

)
= g(P)g(Q), (GIMgg)

n–∑

i=

f
(
P · σi(Q)

)
= g(P)h(Q) (GIMgh)

for all P, Q ∈ G.

2 Results
In this section, we investigate the superstability of the pexiderized equation related to (IM).
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Theorem  Let f , g, h : Gn →R and φ : Gn →R+ be functions satisfying

∣∣∣∣∣

n–∑

i=

f
(
X · σi(Y )

)
– g(X)h(Y )

∣∣∣∣∣ ≤ φ(Y ) (.)

and |f (X) – g(X)| ≤ M for all X = (x, . . . , xn), Y = (y, . . . , yn) ∈ Gn and some constant M.
Then either g is bounded or h is a solution of (IM).

Proof Let g be an unbounded solution of inequality (.). Then there exists a sequence
{(Zm) = (zm, zm, . . . , znm) | m ∈ N} in Gn such that  �= |g(Zm)| → ∞ as m → ∞.

Letting X = Zm, i.e., xi = zim in (.) for each i and dividing |g(Zm)|, we have

∣∣∣∣

∑n–
i= f (Zm · σi(Y ))

g(Zm)
– h(Y )

∣∣∣∣ ≤ φ(Y )
|g(Zm)| .

Passing to the limit as m → ∞, we obtain that

h(Y ) = lim
m→∞

∑n–
i= f (Zm · σi(Y ))

g(Zm)
. (.)

By (.), we have

∣∣∣∣

∑n–
i= f ((Zm · X) · σi(Y )) – g(Zm · X)h(Y )

g(Zm)

∣∣∣∣

≤ φ(Y )
|g(Zm)| →  (.)

as m → ∞. Also, for each j,

∣∣∣∣

∑n–
i= f (Zm · σj(X) · σi(Y )) – g(Zm · σj(X))h(Y )

g(Zm)

∣∣∣∣

≤ φ(Y )
|g(Zm)| →  (.)

as m → ∞. Note that σi(X · Y ) = σi(X) · σi(Y ), σi(σj(Y )) = σi+j(Y ), σn+j(Y ) = σj(Y ) and
∑n–

i= f (Zm · σ(X) · σi+(Y )) =
∑n–

i= f (Zm · σ(X) · σi(Y )). Thus, from (.), (.) and (.),
we obtain

∣∣∣∣∣

n–∑

i=

h
(
X · σi(Y )

)
– h(X)h(Y )

∣∣∣∣∣

= lim
m→∞

∣∣∣∣∣

n–∑

i=

∑n–
j= f (Zm · σj(X · σi(Y )))

g(Zm)
– h(X)h(Y )

∣∣∣∣∣

= lim
m→∞

∣∣∣∣

∑n–
j= f (Zm · σj(X · σ(Y ))) +

∑n–
j= f (Zm · σj(X · σ(Y )))

g(Zm)

+ · · · +
∑n–

j= f (Zm · σj(X · σn–(Y )))
g(Zm)

– h(X)h(Y )
∣∣∣∣
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= lim
m→∞

∣∣∣∣

∑n–
i= f (Zm · σ(X · σi(Y ))) +

∑n–
i= f (Zm · σ(X · σi(Y )))

g(Zm)

+ · · · +
∑n–

i= f (Zm · σn–(X · σi(Y )))
g(Zm)

– h(X)h(Y )
∣∣∣∣

= lim
m→∞

∣∣∣∣

∑n–
i= f (Zm · σ(X) · σi(Y )) +

∑n–
i= f (Zm · σ(X) · σi(Y ))

g(Zm)

+ · · · +
∑n–

i= f (Zm · σn–(X) · σi(Y ))
g(Zm)

– h(X)h(Y )
∣∣∣∣

≤ lim
m→∞

∣∣∣∣

∑n–
i= f (Zm · σ(X) · σi(Y )) – g(Zm · σ(X))h(Y )

g(Zm)

∣∣∣∣

+ lim
m→∞

∣∣∣∣

∑n–
i= f (Zm · σ(X) · σi(Y )) – g(Zm · σ(X))h(Y )

g(Zm)

∣∣∣∣

+ · · · + lim
m→∞

∣∣∣∣

∑n–
i= f (Zm · σn–(X) · σi(Y )) – g(Zm · σn–(X))h(Y )

g(Zm)

∣∣∣∣

+ lim
m→∞

∣∣∣∣

∑n–
i= f (Zm · σi(X)) · h(Y )

g(Zm)
– h(X)h(Y )

∣∣∣∣

+ lim
m→∞

∣∣∣∣

∑n–
i= (g – f )(Zm · σi(X)) · h(Y )

g(Zm)

∣∣∣∣

=
∣∣h(X)h(Y ) – h(X)h(Y )

∣∣ = . �

Theorem  Let f , g, h : Gn →R and φ : Gn →R+ be functions satisfying

∣∣∣∣∣

n–∑

i=

f
(
X · σi(Y )

)
– g(X)h(Y )

∣∣∣∣∣ ≤ φ(X) (.)

and |f (X) – h(X)| ≤ M for all X = (x, . . . , xn), Y = (y, . . . , yn) ∈ Gn and some constant M.
Then either h is bounded or g is a solution of (IM).

Proof Assume that there exists a sequence {(Zm) = (zm, zm, . . . , znm) | m ∈ N} in Gn such
that limmto∞ |h(Zm)| = ∞ with |h(Zm)| �=  for each m.

Letting Y = Zm, i.e., xi = zim in (.) for each i and dividing |h(Zm)|, we have

∣∣∣∣

∑n–
i= f (X · σi(Zm))

h(Zm)
– g(X)

∣∣∣∣ ≤ φ(X)
|h(Zm)| .

Passing to the limit as m → ∞, we obtain that

g(X) = lim
m→∞

∑n–
i= f (X · σi(Zm))

h(Zm)
. (.)

By (.), we have

∣∣∣∣

∑n–
i= f (X · σi(Y · Zm)) – g(X)h(Y · Zm)

h(Zm)

∣∣∣∣

≤ φ(X)
|h(Zm)| →  (.)
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as m → ∞. Also, for each j,

∣∣∣∣

∑n–
i= f (X · σi(Y · σj(Zm))) – g(X)h(Y · σj(Zm))

h(Zm)

∣∣∣∣

≤ φ(X)
|h(Zm)| →  (.)

as m → ∞.
By using (.), (.) and (.), let us go through the same procedure as in Theorem ,

then we arrive at the required result. �

Corollary  Let f : Gn →R and φ : Gn →R+ be functions satisfying

∣∣∣∣∣

n–∑

i=

f
(
X · σi(Y )

)
– f (X)f (Y )

∣∣∣∣∣ ≤ max
{
φ(X),φ(Y )

}
(.)

for all X = (x, . . . , xn), Y = (y, . . . , yn) ∈ Gn. Then either f is bounded or f is a solution of
(IM).

Proof By Theorems  and , it is trivial. �

Corollary  Let f : Gn →R and φ : Gn → R+ be functions satisfying

∣∣∣∣∣

n–∑

i=

f
(
X · σi(Y )

)
– f (X)g(Y )

∣∣∣∣∣ ≤ min
{
φ(X),φ(Y )

}
(.)

for all X = (x, . . . , xn), Y = (y, . . . , yn) ∈ Gn. Then either f (or g) is bounded or g satisfies
(IM). And also {f , g} satisfies (GIMfg).

Proof By Theorem , we have that either f is bounded or g satisfies (IM). Also, it follows
from (.) that

∣∣g(Y )
∣∣ ≤ φ(X) +

∑n–
i= |f (σi(Y ))|

|f (X)| .

Thus if f is bounded, then g is bounded. Hence, by Theorem , in the case g is un-
bounded, g also is a solution of (IM).

Let g be unbounded. By a similar method as the calculation in Theorem  with the un-
boundedness of g , we have

f (X) = lim
m→∞

∑n–
i= f (X · σi(Zm))

g(Zm)
(.)

for all X, Zm ∈ Gn and  �= |g(Zm)| → ∞ as m → ∞.
From a similar calculation as that in Theorem  and Theorem , we obtain the required

result. �
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Corollary  Let f , g : Gn →R and φ : Gn →R+ be functions satisfying

∣∣∣∣∣

n–∑

i=

f
(
X · σi(Y )

)
– g(X)f (Y )

∣∣∣∣∣ ≤ min
{
φ(X),φ(Y )

}
(.)

for all X = (x, . . . , xn), Y = (y, . . . , yn) ∈ Gn. Then either f (or g) is bounded or g satisfies
(IM). And also {f , g} satisfies (GIMgf).

Proof By Theorem , we have that either f is bounded or g is a solution of (IM). Suppose
that g be unbounded, then f is unbounded. Hence, by Theorem , g also is a solution of
(IM). By a similar method as the calculation in Theorem  with the unboundedness of g ,
we have

f (X) = lim
m→∞

∑n–
i= f (Zm · σi(X))

g(Zm)
(.)

for all X, Zm ∈ Gn and  �= |g(Zm)| → ∞ as m → ∞.
From a similar calculation as that in Corollary  we obtain the required result. �

Corollary  Let f , g, h : Gn →R and φ : Gn →R+ be functions satisfying

∣∣∣∣∣

n–∑

i=

f
(
X · σi(Y )

)
– g(X)h(Y )

∣∣∣∣∣ ≤ min
{
φ(X),φ(Y )

}
(.)

and max{|f (X) – g(X)|, |f (X) – h(X)|} ≤ M for all X = (x, . . . , xn), Y = (y, . . . , yn) ∈ Gn and
for some M. Then either f (or g , or h) is bounded or g and h are solutions of (IM).

Corollary  Let f , g : Gn →R and φ : Gn →R+ be functions satisfying

∣∣∣∣∣

n–∑

i=

f
(
X · σi(Y )

)
– g(X)g(Y )

∣∣∣∣∣ ≤ min
{
φ(X),φ(Y )

}
(.)

and {|f (X) – g(X)|} ≤ M for all X = (x, . . . , xn), Y = (y, . . . , yn) ∈ Gn and for some M. Then
either f (or g) is bounded or g satisfies (IM).

3 Discussion
We consider the functional equation

n–∑

i=

f
(
X · σi(Y )

)
= f (X)f (Y )

for all X, Y ∈ Gn, where f : Gn → R is the unknown function to be determined, and
σi(X) = (xi+, xi+, . . . , xn, x, x, . . . , xi). If n = , the solution of the above functional equation
is known on the semigroup S = (, ) when the semigroup operation is multiplication [].
It is not known when n ≥ , but there is a special solution of it.

For example, let X = (x, x, . . . , xn) and Y = (y, y, . . . , yn). And define f (X) = f (x, x,
. . . , xn) :=

∑n
i=


xi

. Then f is a solution of the above equation. Thus our results are not
limited. We expect to know the general solution of it.
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4 Conclusions
In the present paper we considered generalized functional equations related to distance
measures and investigated the stability of them. We extended for two-variables in (DM)
to n-variables in (IM). That is, the following functional equation satisfies the property of
superstability

n–∑

i=

f
(
P · σi(Q)

)
= f (P)f (Q),

where f is an information measure, P and Q are in the set of n-ary discrete complete
probability, and σi is a permutation for each i = , , . . . , n – .

Also the pexiderized functional equation of the above equation satisfies the property of
superstability.
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