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Abstract
In this paper a Jessen’s type inequality for normalized positive C0-semigroups is
obtained. An adjoint of Jessen’s type inequality has also been derived for the
corresponding adjoint semigroup, which does not give the analogous results but the
behavior is still interesting. Moreover, it is followed by some results regarding positive
definiteness and exponential convexity of complex structures involving operators
from a semigroup.
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1 Introduction and preliminaries
A significant theory regarding inequalities and exponential convexity for real-valued func-
tions has been developed [, ]. The intention to generalize such concepts for the C-
semigroup of operators is motivated from [].

In the present article, we shall derive a Jessen type inequality and the corresponding
adjoint inequality, for some C-semigroup and the adjoint semigroup, respectively.

The notion of Banach lattice was introduced to get a common abstract setting, within
which one could talk about the ordering of elements. Therefore, the phenomena related to
positivity can be generalized. It had mostly been studied in various types of spaces of real-
valued functions, e.g. the space C(K) of continuous functions over a compact topological
space K , the Lebesque space L(μ) or even more generally the space Lp(μ) constructed
over measure space (X,�,μ) for  ≤ p ≤ ∞. We shall use without further explanation the
terms: order relation (ordering), ordered set, supremum, infimum.

First, we shall go through the definition of a vector lattice.

Definition  [] Any (real) vector space V with an ordering satisfying:

O: f ≤ g implies f + h ≤ g + h for all f , g, h ∈ V ,
O: f ≥  implies λf ≥  for all f ∈ V and λ ≥ ,

is called an ordered vector space.

The axiom O, expresses the translation invariance and therefore implies that the or-
dering of an ordered vector space V is completely determined by the positive part
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V+ = {f ∈ V : f ≥ } of V . In other words, f ≤ g if and only if g – f ∈ V+. Moreover, the
other property, O, reveals that the positive part of V is a convex set and a cone with
vertex  (mostly called the positive cone of V ).

- An ordered vector space V is called a vector lattice, if any two elements f , g ∈ V have a
supremum, which is denoted by sup(f , g) and an infimum denoted by inf(f , g).

It is trivially understood that the existence of supremum of any two elements in an
ordered vector space implies the existence of supremum of finite number of elements
in V . Furthermore, f ≥ g implies –f ≤ –g , so the existence of finite infima is therefore
implied.

- Some important quantities are defined as follows:

sup(f , –f ) = |f | (absolute value of f ),

sup(f , ) = f + (positive part of f ),

sup(–f , ) = f – (negative part of f ).

- Some compatibility axiom is required between norm and order. This is given in the
following short way:

|f | ≤ |g| implies ‖f ‖ ≤ ‖g‖. ()

The norm defined on a vector lattice is called a lattice norm.
Now, we are in a position to define a Banach lattice in a formal way.

Definition  A Banach lattice is a Banach space V endowed with an ordering ≤, such
that (V ,≤) is a vector lattice with a lattice norm defined on it.

A Banach lattice transforms to Banach lattice algebra, provided u, v ∈ V+ implies
uv ∈ V+.

A linear mapping ψ from an ordered Banach space V into itself is positive (denoted
ψ ≥ ) if ψ f ∈ V+, for all f ∈ V+. The set of all positive linear mappings forms a convex cone
in the space L(V ) of all linear mappings from V into itself, defining the natural ordering
of L(V ). The absolute value of ψ , if it exists, is given by

|ψ |(f ) = sup
{
ψh : |h| ≤ f

}
(f ∈ V+).

Thus ψ : V → V is positive if and only if |ψ f | ≤ ψ |f | holds for any f ∈ V .

Lemma  ([], p.) A bounded linear operator ψ on a Banach lattice V is a positive
contraction if and only if ‖(ψ f )+‖ ≤ ‖f +‖ for all f ∈ V .

An operator A on V satisfies the positive minimum principle if for all f ∈ D(A)+ = D(A)∩
V+, φ ∈ V ′

+

〈f ,φ〉 =  implies 〈Af ,φ〉 ≥ . ()

Definition  A (one parameter) C-semigroup (or strongly continuous semigroup) of op-
erators on a Banach space V is a family {Z(t)}t≥ ⊂ B(V ) such that:
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(i) Z(s)Z(t) = Z(s + t) for all s, t ∈R
+.

(ii) Z() = I , the identity operator on V .
(iii) For each fixed f ∈ V , Z(t)f → f (with respect to the norm on V ) as t → +.

Here B(V ) denotes the space of all bounded linear operators defined on a Banach
space V .

Definition  The (infinitesimal) generator of {Z(t)}t≥ is the densely defined closed linear
operator A : V ⊇ D(A) → R(A) ⊆ V such that

D(A) =
{

f : f ∈ V , lim
t→+

Atf exists in V
}

,

Af = lim
t→+

Atf
(
f ∈ D(A)

)
,

where, for t > ,

Atf =
[Z(t) – I]f

t
(f ∈ V ).

Let {Z(t)}t≥ be the strongly continuous positive semigroup, defined on a Banach lat-
tice V . The positivity of the semigroup is equivalent to

∣∣Z(t)f
∣∣ ≤ Z(t)|f |, t ≥ , f ∈ V .

Here, for positive contraction semigroups {Z(t)}t≥, defined on a Banach lattice V , we have

∥∥(
Z(t)f

)+∥∥ ≤ ∥∥f +∥∥, for all f ∈ V .

Reference [] guarantees the existence of the strongly continuous positive semigroups and
positive contraction semigroups on a Banach lattice V , with some conditions imposed on
the generator. A very important among them is that it must always satisfy ().

A Banach algebra X, with the multiplicative identity element e, is called the unital Ba-
nach algebra. We shall call the strongly continuous semigroup {Z(t)}t≥ defined on X a
normalized semigroup whenever it satisfies

Z(t)(e) = e, for all t > . ()

The notion of normalized semigroup is inspired by normalized functionals []. The theory
presented in the next section is defined on such semigroups of positive linear operators
defined on a Banach lattice V .

2 Jessen’s type inequality
In , Jessen [] gave the generalization of the Jensen’s inequality for a convex function
and positive linear functionals. See [], p.. We shall prove this inequality for a normal-
ized positive C-semigroup and a convex operator defined on a Banach lattice.

Throughout the present section, V will always denote a unital Banach lattice algebra,
endowed with an ordering ≤.
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Definition  Let U be a nonempty open convex subset of V . An operator F : U → V is
convex if it satisfies

F
(
tu + ( – t)v

) ≤ tF(u) + ( – t)F(v), ()

whenever u, v ∈ U and  ≤ t ≤ .

Let Dc(V ) denotes the set of all differentiable convex functions φ : V → V .

Theorem  (Jessen’s type inequality) Let {Z(t)}t≥ be the positive C-semigroup on V such
that it satisfies (). For an operator φ ∈Dc(V ) and t ≥ ,

φ
(
Z(t)f

) ≤ Z(t)(φf ), f ∈ V . ()

Proof Since φ : V → V is convex and differentiable, by considering an operator analog of
(Theorem A, p., []), we see, for any f ∈ V , that there is a fixed vector m = m(f) = φ′(f)
such that

φ(f ) ≥ φ(f) + m(f – f), f ∈ V .

Using the property () along with the linearity and positivity of operators in a semigroup,
we obtain

Z(t)
(
φ(f )

) ≥ φ(f) + m
(
Z(t)f – f

)
, f ∈ V , t ≥ .

In this inequality, set f = Z(t)f and the assertion () follows. �

The existence of an identity element and condition (), imposed in the hypothesis of the
above theorem, is necessary. We shall elaborate all this by the following examples.

Example  Let X := C(R), {Z(t)}t≥ be the left shift semigroup defined on X and φ taking
the mirroring along y-axis. The identity function does not contain a compact support and
therefore is not in X. We now take a bell-shaped curve like f (x) := e–x , x ∈ R. Then f is
positive, φf = f , and Z(t)(φf ) has maximum at x = –t, and it is between  and  elsewhere.
On the other hand, φ(Z(t)f ) has a maximum at s = t and it is immediate that we cannot
compare the two functions in the usual ordering. See Figure (a).

Example  Let � := {z ∈ C : |z| = }, and X = C(�). The rotation semigroup {Z(t)}t≥ is
defined as T(t)f (z) = f (eit · z), f ∈ X. The identity element E ∈ X, s.t. for all z ∈ �, E(z) = z.
Then Z(t)E(z) = E(eit · z) = eit · z. Or we can say that any complex number z = eix is mapped
to ei(x+t). Z(t) satisfies (), only when t is a multiple of π . Let f (z) = R(z) +  > , then
(Z(t)f )(eiz) = f (ei(t+z)) = cos(t + z) + , hence φ(Z(t)f )(eiz) = cos(t – z) + . On the other
hand, φ(f ) = f , and Z(t)(φf )(eiz) = (Z(t)f )(eiz) = cos(t + z) + . Hence, equality holds in ()
when t is a multiple of π , but the two sides are not comparable in general. It can easily be
verified that Z′ = {Z(π t)}∞t= is a subgroup of Z = {Z(t)}∞t=, as Z(π t)Z(πs) = Z(π (t +s)).
Therefore Z′ is a normalized semigroup. See Figure (b).
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(a) (b)

Figure 1 Visualization of the behavior of Jessen’s inequality for examples 1 & 2.

3 Adjoint Jessen’s type inequality
In the previous section, a Jessen type inequality has been derived for a normalized posi-
tive C-semigroup {Z(t)}t≥. This gives us the motivation toward finding the behavior of
its corresponding adjoint semigroup {Z∗(t)}t≥ on V ∗. As the theory for dual spaces gets
more complicated, we do not expect to have the analogous results. One may ask for a de-
tailed introduction toward a part of the dual space V ∗, for which an adjoint of Jessen’s type
inequality makes sense.

Definition  Given two Banach spaces X and Y and a bounded linear operator L : X → Y ,
recall that the adjoint L∗ : Y ∗ → X∗ is defined by

(
L∗y∗)x := y∗(Lx), y∗ ∈ Y ∗, x ∈ X. ()

For a strongly continuous positive semigroup {Z(t)}t≥ on a Banach space X, by defining
Z∗(t) = (Z(t))∗ for every t, we get a corresponding adjoint semigroup {Z∗(t)}t≥ on the dual
space X∗. In [], the result is obtained that the adjoint semigroup {Z∗(t)}t≥ fails in general
to be strongly continuous. The investigation [], shows that {Z∗(t)}t≥ acts in a strongly
continuous way on

X
⊙

:=
{

x∗ ∈ X∗ : lim
t→

∥∥Z∗(t)x∗ – x∗∥∥ = 
}

.

This is the maximal such subspace on X∗. The space X
⊙

was introduced by Philips in 
and later has been studied extensively by various authors. At the present moment, we do
not necessarily require the strong continuity of the adjoint semigroup {Z∗(t)}t≥ on X∗.

If X is an ordered vector space, we say that a functional x∗ on X is positive if x∗(x) ≥ ,
for each x ∈ X. By the linearity of x∗, this is equivalent to x∗ being order preserving; i.e.
x ≤ y implies x∗(x) ≤ x∗(y). The set P of all positive linear functionals on X is a cone in X∗.

We are mainly interested in the study of the space V ∗, where in our case V is a Banach
lattice algebra. Let us consider the regular ordering among the elements of V ∗, i.e. v∗

 ≥ v∗
,

whenever v∗
 (v) ≥ v∗

(v), for each v ∈ V .
Consider the convex operator (). In the case of equality, F is simply a linear operator

and the adjoint F can be defined as above. But how can it be defined in the other case?
This question has already been answered.
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In [], some kind of adjoint has been associated to a nonlinear operator F . In fact, this is
possible for Lipschitz continuous operators only. Consider the Banach space Lip(X, Y ) of
all Lipschitz continuous operators F : X → Y satisfying F(θ ) = θ , equipped with the norm

[F]Lip = sup
x �=x

‖F(x) – F(x)‖
‖x – x‖ , x, x ∈ X.

Here θ ∈ X is the identity. It is easy to see that the space L(X, Y ) of all bounded linear
operators from X to Y is a closed subspace of Lip(X, Y ). In particular, we set

Lip(X,K) := X	

and call X	 the pseudo-dual space of X; this space contains the usual dual space X∗ as a
closed subspace.

Definition  For F ∈ Lip(X, Y ), the pseudo-adjoint F	 : Y 	 → X	 of F is defined by

F	
(
y	

)
(x) := y	

(
F(x)

)
, y	 ∈ Y 	, x ∈ X. ()

This is, of course, a straightforward generalization of (); in fact, for linear operators L
we have L	|Y∗ = L∗; i.e. the restriction of the pseudo-adjoint to the dual space is the classical
adjoint.

For the sake of convenience, we shall denote the adjoint of the operator F by F∗ through-
out the present section. Either it is a classical adjoint or the pseudo-adjoint (depending
upon the operator F).

Similarly, the considered dual space of the vector lattice algebra V will be denoted by
V ∗, which can be the intersection of the pseudo-dual and classical dual spaces in the case
of a nonlinear convex operator.

Lemma  Let F be the convex operator on a Banach space X, then the adjoint operator F∗

on the dual space X∗ is also convex.

Proof For x ∈ X and  ≤ λ ≤ 

(
F∗(λx∗

 + ( – λ)x∗

)
, x

)
=

(
λx∗

 + ( – λ)x∗
, F(x)

)
,

= λ
(
x∗

 , F(x)
)

+ ( – λ)
(
x∗

, F(x)
)
,

where x∗
 , x∗

 ∈ X∗. By putting x = μx + ( – μ)x, for  ≤ μ ≤  and using the convexity of
the operator F we finally get

F∗(λx∗
 + ( – λ)x∗


) ≤ λF∗(x∗


)

+ ( – λ)F∗(x∗

)
.

Hence, F∗ is convex on X∗. �

Theorem  (Adjoint Jessen’s inequality) Let {Z∗(t)}t≥ be the adjoint semigroup on V ∗

such that the original semigroup {Z(t)}t≥, the operator φ and the space V are same as in
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Theorem . For a convex operator φ∗ : V ∗ → V ∗ and t ≥ 

φ∗(Z∗(t)f ∗) ≥ Z∗(t)
(
φ∗f ∗), f ∗ ∈ V ∗. ()

Proof For f ∈ V and t ≥ , consider

(
φ∗[Z∗(t)f ∗], f

)
=

(
Z∗(t)f ∗,φ(f )

)

=
(
f ∗, Z(t)(φf )

)

≥ (
f ∗,φ

(
Z(t)f

))

=
(
φ∗(f ∗), Z(t)f

)

=
(
Z∗(t)

[
φ∗f ∗], f

)
.

Therefore, the assertion () is satisfied. �

4 Exponential convexity
In this section we shall define the exponential convexity of an operator. Moreover, some
complex structures, involving the operators from a semigroup, will be proved to be expo-
nentially convex.

Definition  Let V be a Banach lattice endowed with ordering ≤. An operator H : I → V
is exponentially convex if it is continuous and for all n ∈N

n∑

i,j=

ξiξjH(xi + xj)f ≥ , f ∈ V , ()

where ξi ∈R such that xi + xj ∈ I ⊆R,  ≤ i, j ≤ n.

Proposition  Let V be a Banach lattice endowed with ordering ≤. For an operator H :
I → V , the following propositions are equivalent:

(i) H is exponentially convex.
(ii) H is continuous and for all n ∈ N

n∑

i,j=

ξiξjH
(

xi + xj



)
f ≥ , f ∈ V , ()

where ξi ∈R and xi ∈ I ⊆R,  ≤ i ≤ n.

Proof (i) ⇒ (ii). Take any ξi ∈ R and xi ∈ I ,  ≤ i ≤ n. Since the interval I ⊆ R is convex,
the midpoints xi+xj

 ∈ I . Now set yi = xi
 , for  ≤ i ≤ n. Then we have yi + yj = xi+xj

 ∈ I , for
all  ≤ i, j ≤ n. Therefore, for all n ∈N, we can apply (i) to get

n∑

i,j=

ξiξjH(yi + yj)f =
n∑

i,j=

ξiξjH
(

xi + xj



)
f ≥ , f ∈ V .
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(ii) ⇒ (i). Let ξi, xi ∈ R, such that xi + xj ∈ I , for  ≤ i, j ≤ n. Define yi = xi, so that
xi + xj = yi+yj

 ∈ I . Therefore, for all n ∈ N, we can apply (ii) to get

n∑

i,j=

ξiξjH
(

yi + yj



)
f =

n∑

i,j=

ξiξjH(xi + xj)f ≥ , f ∈ V .
�

Remark  Let H be an exponentially convex operator. Writing down the fact for n = , in
(), we get H(x)f ≥ , for x ∈ I and f ∈ V . For n = , we have

ξ 
 H(x)f + ξξH

(
x + x



)
f + ξ 

 H(x)f ≥ .

Hence, for ξ = – and ξ = , we have

H
(

x + x



)
f ≤ H(x)f + H(x)f


,

i.e. H : I → V does indeed satisfy the condition of convexity.

For U ⊆ V , let us assume that F : U → V is continuously differentiable on U , i.e. the
mapping F ′ : U → L(V ), is continuous. Moreover, F ′′(f ), will be a continuous linear trans-
formation from V to L(V ). A bilinear transformation B defined on V × V is symmetric if
B(f , g) = B(g, f ) for all f , g ∈ V . Such a transformation is positive definite (nonnegative defi-
nite), if for every nonzero f ∈ V , B(f , f ) >  (B(f , f ) ≥ ). Then F ′′(f ) is symmetric wherever
it exists. See [], p..

Theorem  ([], p.) Let F be continuously differentiable and suppose that the second
derivative exists throughout an open convex set U ⊆ V . Then F is convex on U if and only
if F ′′(f ) is nonnegative definite for each f ∈ U . If F ′′(f ) is positive definite on U , then F is
strictly convex.

Definition  [] Let V be a Banach algebra with unit e. For f ∈ V , we define a function
log(f ) from V to V ,

log(f ) = –
∞∑

n=

(e – f )n

n
= –(e – f ) –

(e – f )


–

(e – f )


– · · ·

for ‖(e – x)‖ ≤ .

Lemma  Let V be a unital Banach algebra. For f ∈ V , a family of operators Ft is defined
as

Ft(f ) =

⎧
⎪⎪⎨

⎪⎪⎩

f t

t(t–) , t �= , ;

– log f , t = ;

f log f , t = .

()

Then DFt(f ) := f t–. Whenever f ∈ V+, DFt(f ) ∈ V+, therefore by Theorem , the mapping
f → Ft(f ) is convex.
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Theorem  Let {Z(t)}t≥ be the positive C-semigroup, defined on a unital Banach lattice
algebra V , such that it satisfies (). Let f ∈ V , such that f r ∈ V , for r ∈R ⊇ I{, }, log f ∈ V ,
if r =  and f log f ∈ V , if r = . Let us define

�t := Z(t)
(
Ft(f )

)
– Ft

(
Z(t)f

)
. ()

Then:
(i) For every n ∈N and for every pk ∈ I , k = , , . . . , n,

[� pi+pj


]n
i,j= ≥ . ()

(ii) If the mapping f → �t is continuous on I , then it is exponentially convex on I .

Proof Consider the operator

G(f ) =
n∑

i,j=

uiujFpij (f )

for f > , ui ∈R and pij ∈ I where pij = pi+pj
 . Then

DG(f ) :=
n∑

i,j=

uiujf pij– =

( ∑

i=

uif
pi
 –

)

≥ , f > .

So, G(f ) is a convex operator. Therefore by applying () we get

n∑

i,j=

uiuj�pij ≥ ,

and the assertion () follows. Assuming the continuity and using Proposition  we have
also exponential convexity of the operator f → �t . �

Lemma  Let V be a unital Banach algebra, for f ∈ V , let us define the following family of
operators:

Ht(f ) =

⎧
⎨

⎩

etf

t , t �= ;
f 

 , t = .

Then DHt(f ) = etf . By Theorem , the mapping f → Ht(f ) is convex on V .

Theorem  For �t := Z(t)(Ht(f )) – Ht(Z(t)f ), (i) and (ii) from Theorem  hold.

Proof Similar to the proof of Theorem . �
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