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1 Introduction
1.1 Background
The split feasibility problem (SFP) is formulated as finding u‡ such that

u‡ ∈ C and Au‡ ∈Q
(
or u‡ ∈ C ∩A–Q when A– exists

)
, (.)

where C ( �= ∅) and Q ( �= ∅) are closed convex subsets of real Hilbert spaces H and H,
respectively, and A is a bounded linear operator from H to H. The mathematical model
of the SFP was refined from phase retrievals and the medical image reconstruction by
Censor and Elfving [] in . One effective approach to solve the SFP is algorithmic
iteration. There are several effective iterations which are listed as follows.

Existing iterations for the SFP . Simultaneous multiprojections (Censor and Elfving
[]):

xk+ = A– projQ
(
projA(C)(Axk)

)
, k ∈N, (.)

where C ⊂R
n and Q⊂R

n are closed convex sets, and A is an n × n matrix.
. Gradient projections (CQ iteration) [–]:

xk+ = projC

(
xk –

�

‖A‖ A
T (I – projQ)Axk

)
, k ∈N, (.)

where � is a constant and AT denotes the transposition of A.
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. Averaged CQ iteration [, ]:

xk+ = ( – αk)xk + αk projC

(
xk –

�

‖A‖ A
∗(I – projQ)Axk

)
, k ∈N, (.)

where αk ∈ ], [, � is a constant and A∗ is the adjoint of A.
. Relaxed CQ iteration [, , ]: Let f : H →R and g : H →R be two convex functions.

Define two level sets and the related subdifferentials

C :=
{

x ∈H|f (x) ≤ 
}

and Q :=
{

y ∈H|g(y) ≤ 
}

,

∂f (x) =
{

z ∈H|f (u) ≥ f (x) + 〈u – x, z〉, u ∈H
}

, ∀x ∈ C

and

∂g(x) =
{

w ∈H|g(v) ≥ g(y) + 〈v – y, w〉, v ∈H
}

, ∀y ∈Q.

Define the relaxed CQ iteration as follows:

xk+ = projCk

(
xk –

�

‖A‖ A
T (I – projQk

)Axk

)
, k ∈N, (.)

where

Ck =
{

x ∈H|f (xk) + 〈ξk , x – xk〉 ≤ 
}

,

where ξk ∈ ∂f (xk), and

Qk =
{

y ∈H|g(Axk) + 〈ηk , y – Axk〉 ≤ 
}

,

where ηk ∈ ∂g(Axk).
. Regularized iteration [, ]:

xk+ = projC
(
( – αk�k)xk – �kA∗(I – projQ)Axk

)
, k ∈N, (.)

where {αk} ⊂ ], [ and {�k} ∈ ], αk
‖A‖+αk

[.
. Self-adaptive iteration [–]:

xk+ = projC
(
xk – �kA∗(I – projQ)Axk

)
, k ∈N, (.)

where the step-size �k = τk‖(I–projQ)Axk‖

‖A∗(I–projQ)Axk‖ in which τk ∈ ], [.
. Halpern-type iteration []:

xk+ = αku + ( – αk) projC
(
xk – �kA∗(I – projQ)Axk

)
, k ∈N, (.)

where u ∈ C is a fixed point, {αk} ⊂ ], [ and �k = τk‖(I–projQ)Axk‖

‖A∗(I–projQ)Axk‖ in which τk ∈ ], [.
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The (two-set) split common fixed point problem (SCFP) can be formulated as finding
u† such that

u† ∈ Fix(T ) and Au† ∈ Fix(S), (.)

where Fix(T ) and Fix(S) stand for the fixed point sets of the operators T : H → H and
S : H →H.

The SCFP is a natural extension of the SFP and of the convex feasibility problem. The
SCFP was firstly considered by Censor and Segal in [] where S and T are directed op-
erators which include the orthogonal projections and the sub-gradient projectors.

Existing iterations for the SCFP . Censor and Segal’s iteration []:

xk+ = T
(

xk –
�

‖A‖ A
∗(I – S)Axk

)
, k ∈N. (.)

. Averaged iteration [, ]:
⎧
⎨

⎩
yk = xk – �

‖A‖ A∗(I – S)Axk ,

xk+ = ( – αk)yk + αkT yk , k ∈N.
(.)

. Halpern-type iteration []:

xk+ = αku + ( – αk)T
(

xk –
�

‖A‖ A
∗(I – S)Axk

)
, k ∈N. (.)

. Self-adaptive iteration []:
⎧
⎨

⎩
yk = xk – �kA∗(I – S)Axk ,

xk+ = ( – λ)yk + λkT yk , k ∈N,
(.)

where the step-size �k = (–τ )‖(I–S)Axk‖

‖A∗(I–S)Axk‖ .
. Composite iteration []:

⎧
⎪⎪⎨

⎪⎪⎩

vk = xk + δ

‖A‖ A∗[( – ζk)I + ζkS(( – ηk)I + ηkS) – I]Axk ,

uk = αnh(xk) + (I – αkB)vk ,

xk+ = ( – βk)uk + βkT (( – γk)un + γkT uk), k ∈ N,

(.)

where {αk}k∈N, {βk}k∈N, {γk}k∈N, {ζk}k∈N and {ηk}k∈N are five real number sequences in
], [, δ ∈ ], [ is a constant, h : H → H is a contraction and B : H → H is a strong
positive linear bounded operator.

1.2 Problem statement
The purpose of this paper is to study the following split feasibility problem and fixed point
problem:

Find u† ∈ C ∩ Fix(T ) such that Au† ∈Q∩ Fix(S). (.)

It is obvious that (.) includes SFP (.) and SCFP (.) as special cases.
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Motivated by iterations (.), (.) and (.), we will construct a new iteration to ap-
proach the solution of (.). Strong convergence results are given in the third section.

2 Several notions and lemmas
Assume that H is a real Hilbert space. 〈·, ·〉 and ‖ · ‖ stand for its inner product and norm,
respectively. Let (∅ �=) C ⊂H be a closed convex set.

Definition . An operator P : C → C is said to be L-Lipschitzian if

∥∥Pu – Pu†
∥∥ ≤L

∥∥u – u†
∥∥, ∀u, u† ∈ C

for some constant L > .

If L ∈ [, [, then P is called L-contraction. If L = , then P is called nonexpansive.

Definition . An operator P : C → C is said to be firmly nonexpansive if

∥∥Pu – Pu†
∥∥ ≤ ∥∥u – u†

∥∥ –
∥∥(I – P)u – (I – P)u†

∥∥ (.)

for all u, u† ∈ C .

Definition . An operator P : C → C is said to be pseudo-contractive if

〈
Pu – Pu†, u – u†

〉 ≤ ∥∥u – u†
∥∥

for all u, u† ∈ C .

Definition . An operator P : C → C is said to be quasi-pseudo-contractive if

∥∥Pu – u†
∥∥ ≤ ∥∥u – u†

∥∥ + ‖Pu – u‖ (.)

for all u ∈ C and u† ∈ Fix(P).

Definition . An operator P is said to be demiclosed if ∀un → u‡ weakly and P(xn) → u
strongly imply that P(u‡) = u.

Lemma . ([]) Let {
n} ⊂ [, +∞[, {ϑn} ⊂ ], [ and {ηn} be three real number se-
quences. Suppose that {
n}, {ϑn} and {ηn} satisfy the following three conditions:

(i) 
n+ ≤ ( – ϑn)
n + ηnϑn,
(ii)

∑∞
n= ϑn = ∞,

(iii) lim supn→∞ ηn ≤  or
∑∞

n= |ηnϑn| < ∞.
Then limn→∞ 
n = .

Lemma . ([]) Let {ρn} be a sequence of real numbers. Assume that there exists a sub-
sequence {ρnk } of {ρn} such that ρnk ≤ ρnk + for all k ≥ . For every n ≥ N, define an integer
sequence {τ (n)} as

τ (n) = max{i ≤ n : ρni < ρni+}.
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Then τ (n) → ∞ as n → ∞ and, for all n ≥ N,

max{ρτ (n),ρn} ≤ ρτ (n)+.

3 Algorithms and convergence
In this section, we first construct an iterative algorithm for solving problem (.) and
subsequently to prove its convergence. Now we give the assumptions on the underlying
spaces, involved operators and additional parameters, throughout.

I. Conditions on the underlying spaces:
(UC): H and H are two real Hilbert spaces,
(UC): C ⊂H and Q⊂H are two nonempty closed convex sets.

II. Conditions on the involved operators:
(IO): A : H →H is a bounded linear operator with its adjoint A∗,
(IO): B is a strongly positive bounded linear operator on H with coefficient

σ (> ),
(IO): f : C →H is a ρ-contraction,
(IO): S : Q→Q is an L-Lipschitzian quasi-pseudo-contractive operator with

L (> ) and T : C → C is an L-Lipschitzian quasi-pseudo-contractive
operator with L (> ).

III. Conditions on the parameters:
(AP): δ and γ are two positive constants,
(AP): {αn}n∈N, {βn}n∈N, {γn}n∈N, {ζn}n∈N and {ηn}n∈N are real number sequences in

], [.
We use � to denote the set of solutions of problem (.), that is,

� =
{

z†|z† ∈ C ∩ Fix(T ),Az† ∈Q∩ Fix(S)
}

.

In the sequel, we assume � �= ∅.
Next, we construct the following iterative algorithm to solve problem (.).

Algorithm . For given x ∈H arbitrarily, define a sequence {xn} iteratively by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn = projQAxn,

vn = ( – ζn)zn + ζnS(( – ηn)zn + ηnSzn),

yn = αnγ f (xn) + (I – αnB)(xn – δA∗(Axn – vn)),

un = projC yn,

xn+ = ( – βn)un + βnT (( – γn)un + γnT un)

(.)

for all n ∈N.

Theorem . Suppose that T –I and S –I are demiclosed at . Assume that the following
conditions are satisfied:

(C): limn→∞ αn =  and
∑∞

n= αn = ∞,
(C):  < a < ζn < b < ηn < c < √

+L
 +

,

(C):  < a < βn < b < γn < c < √
+L

+
,

(C):  < δ < 
‖A‖ and σ > γρ .
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Then the sequence {xn} generated by algorithm (.) converges strongly to the unique fixed
point of the contractive mapping proj�(γ f + I – B).

Remark . In the sequel, we denote the unique fixed point of the mapping proj�(γ f +
I –B) by z†, i.e., z† = proj�(γ f +I –B)z†. It is clear that z† solves the variational inequality
〈(γ f – B)z†, z – z†〉 ≤ , ∀z ∈ �.

In order to prove Theorem ., we need several helpful propositions.

Proposition . ([]) Let H be a real Hilbert space. Let U : H →H be an L-Lipschitzian
operator with L > . Then

Fix
((

( – ζ )I + ζU
)
U

)
= Fix

(
U

(
( – ζ )I + ζU

))
= Fix(U )

for all ζ ∈ (, 
L ).

Proposition . ([]) Let H be a real Hilbert space. Let U : H →H be an L-Lipschitzian
quasi-pseudo-contractive operator. Then we have

∥
∥U

(
( – η)x + ηUx

)
– u†

∥
∥ ≤ ∥

∥x – u†
∥
∥ + ( – η)

∥
∥x – U

(
( – η)x + ηUx

)∥∥,

and the operator ( – ξ )I + ξU (( – η)I + ηU ) is quasi-nonexpansive when  < ξ < η <
√

+L+
, that is,

∥∥( – ξ )x + ξU
(
( – η)x + ηUx

)
– u†

∥∥ ≤ ∥∥x – u†
∥∥

for all x ∈H and u† ∈ Fix(U ).

Proposition . In any real Hilbert space H, the following two equalities hold:

∥
∥ζu + ( – ζ )u†

∥
∥ = ζ‖u‖ + ( – ζ )

∥
∥u†

∥
∥ – ζ ( – ζ )

∥
∥u – u†

∥
∥, ζ ∈ [, ] (.)

and

∥
∥u + u†

∥
∥ = ‖u‖ + 

〈
u, u†

〉
+

∥
∥u†

∥
∥ (.)

for all u, u† ∈H.

Proposition . ([]) Let H be a real Hilbert space. Let U : H →H be an L-Lipschitzian
operator with L > . If I –U is demiclosed at , then I –U (( – ζ )I + ζU ) is also demiclosed
at  when ζ ∈ (, 

L ).

Next, we prove Theorem ..

Proof Let z† = proj�(γ f + I – B)z†. Subsequently, we obtain z† ∈ C ∩ Fix(T ) and Az† ∈
Q∩ Fix(S). Note that projQ is firmly nonexpansive. From (.), we deduce

∥∥zn – Az†
∥∥ =

∥∥projQAxn – projQAz†
∥∥ ≤ ∥∥Axn – Az†

∥∥ – ‖Axn – zn‖. (.)
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Applying Proposition . and noting conditions (C) and (C), we have

Fix
(
S

(
( – ηn)I + ηnS

))
= Fix(S)

and

Fix
(
T

(
( – γn)I + γnT

))
= Fix(T )

for all n ∈N.
By condition (C) and Proposition ., we derive

∥∥vn – Az†
∥∥ =

∥∥[
( – ζn)I + ζnS

(
( – ηn)I + ηnS

)]
zn – Az†

∥∥

=
∥∥[

( – ζn)I + ζnS
(
( – ηn)I + ηnS

)]
zn

–
[
( – ζn)I + ζnS

(
( – ηn)I + ηnS

)]
Az†

∥
∥

≤ ∥
∥zn – Az†

∥
∥.

This together with (.) implies that

∥∥vn – Az†
∥∥ ≤ ∥∥Axn – Az†

∥∥ – ‖Axn – zn‖. (.)

By condition (C) and Proposition ., we derive

∥
∥xn+ – z†

∥
∥ =

∥
∥[

( – βn)I + βnT
(
( – γn)I + γnT

)]
un – z†

∥
∥

=
∥
∥[

( – βn)I + βnT
(
( – γn)I + γnT

)]
un

–
[
( – βn)I + βnT

(
( – γn)I + γnT

)]
z†

∥
∥

≤ ∥∥un – z†
∥∥. (.)

Noting that projC is nonexpansive, we obtain

∥
∥un – z†

∥
∥ =

∥
∥projC yn – projC z†

∥
∥ ≤ ∥

∥yn – z†
∥
∥. (.)

From (.), we get

∥∥yn – z†
∥∥ =

∥∥αnγ f (xn) + (I – αnB)
(
xn – δA∗(Axn – vn)

)
– z†

∥∥

=
∥∥αnγ

(
f (xn) – f

(
z†

))
+ αn

(
γ f

(
z†

)
– Bz†

)

+ (I – αnB)
(
xn – z† – δA∗(Axn – vn)

)∥∥

≤ αnγ
∥∥f (xn) – f

(
z†

)∥∥ + αn
∥∥γ f

(
z†

)
– Bz†

∥∥

+ ‖I – αnB‖∥∥xn – z† – δA∗(Axn – vn)
∥
∥

≤ αnγρ
∥
∥xn – z†

∥
∥ + αn

∥
∥γ f

(
z†

)
– Bz†

∥
∥

+ ( – αnσ )
∥∥xn – z† + δA∗(vn – Axn)

∥∥. (.)
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Observe that

〈
xn – z†,A∗(vn – Axn)

〉
=

〈
A

(
xn – z†

)
, vn – Axn

〉

=
〈
Axn – Az† + vn – Axn – (vn – Axn), vn – Axn

〉

=
〈
vn – Az†, vn – Axn

〉
– ‖vn – Axn‖. (.)

Using (.), we obtain

〈
vn – Az†, vn – Axn

〉
=



(∥∥vn – Az†

∥
∥ + ‖vn – Axn‖ –

∥
∥Axn – Az†

∥
∥). (.)

From (.), (.) and (.), we get

〈
xn – z†,A∗(vn – Axn)

〉
=



(∥∥vn – Az†

∥
∥ + ‖vn – Axn‖ –

∥
∥Axn – Az†

∥
∥)

– ‖vn – Axn‖

≤ 

(∥∥Axn – Az†

∥∥ – ‖zn – Axn‖ + ‖vn – Axn‖

–
∥
∥Axn – Az†

∥
∥) – ‖vn – Axn‖

= –


‖zn – Axn‖ –



‖vn – Axn‖. (.)

According to equality (.), we get

∥
∥xn – z† + δA∗(vn – Axn)

∥
∥ =

∥
∥xn – z†

∥
∥ + δ∥∥A∗(vn – Axn)

∥
∥

+ δ
〈
xn – z†,A∗(vn – Axn)

〉
.

Combining the above equality and (.), we deduce

∥
∥xn – z† + δA∗(vn – Axn)

∥
∥ ≤ ∥

∥xn – z†
∥
∥ + δ‖A‖‖vn – Axn‖

– δ‖zn – Axn‖ – δ‖vn – Axn‖

=
∥
∥xn – z†

∥
∥ +

(
δ‖A‖ – δ

)‖vn – Axn‖

– δ‖zn – Axn‖. (.)

In view of condition (C), we know that δ‖A‖ – δ < . From (.), we have

∥
∥xn – z† + δA∗(vn – Axn)

∥
∥ ≤ ∥

∥xn – z†
∥
∥.

Therefore,

∥
∥xn – z† + δA∗(vn – Axn)

∥
∥ ≤ ∥

∥xn – z†
∥
∥. (.)

Substituting (.) into (.) we deduce

∥∥yn – z†
∥∥ ≤ αnγρ

∥∥xn – z†
∥∥ + αn

∥∥γ f
(
z†

)
– Bz†

∥∥ + ( – αnσ )
∥∥xn – z†

∥∥

=
[
 – (σ – γρ)αn

]∥∥xn – z†
∥∥ + αn

∥∥γ f
(
z†

)
– Bz†

∥∥. (.)
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From (.), (.) and (.), we get

∥
∥xn+ – z†

∥
∥ ≤ [

 – (σ – γρ)αn
]∥∥xn – z†

∥
∥ + αn

∥
∥γ f

(
z†

)
– Bz†

∥
∥

=
[
 – (σ – γρ)αn

]∥∥xn – z†
∥∥ + (σ – γρ)αn

‖γ f (z†) – Bz†‖
σ – γρ

.

By induction, we get

∥∥xn – z†
∥∥ ≤ max

{∥∥x – z†
∥∥,

‖γ f (z†) – Bz†‖
σ – γρ

}
.

Hence, the sequence {xn} is bounded.
Using the firm nonexpansiveness of projC , we have

∥∥un – z†
∥∥ =

∥∥projC yn – z†
∥∥

≤ ∥∥yn – z†
∥∥ – ‖projC yn – yn‖

=
∥∥yn – z†

∥∥ – ‖un – yn‖. (.)

From (.), (.) and (.), we deduce

∥∥xn+ – z†
∥∥ ≤ ∥∥un – z†

∥∥

≤ ∥∥yn – z†
∥∥ – ‖un – yn‖

≤ [
 – (σ – γρ)αn

]∥∥xn – z†
∥
∥ +

αn

σ – γρ

∥
∥γ f

(
z†

)
– Bz†

∥
∥ – ‖un – yn‖.

It follows that

‖un – yn‖ ≤ ∥∥xn – z†
∥∥ –

∥∥xn+ – z†
∥∥ +

αn

σ – γρ

∥∥γ f
(
z†

)
– Bz†

∥∥. (.)

Next, we consider two possible cases: the sequence {‖xn – z†‖} is either monotone de-
creasing at infinity (Case ) or not (Case ).

Case . There exists n such that the sequence {‖xn – z†‖}n≥n is decreasing.
Case . For any n, there exists an integer m ≥ n such that ‖xm – z†‖ ≤ ‖xm+ – z†‖.
In Case , we assume that there exists some integer m >  such that {‖xn – z†‖} is de-

creasing for all n ≥ m. Then limn→∞ ‖xn – z†‖ exists. From (.), we deduce

lim
n→∞‖un – yn‖ = . (.)

From (.), we have

∥∥yn – z†
∥∥ ≤ αnγρ

∥∥xn – z†
∥∥ + αn

∥∥γ f
(
z†

)
– Bz†

∥∥

+ ( – αnσ )
∥∥xn – z† + δA∗(vn – Axn)

∥∥

= αnσ
γρ‖xn – z†‖ + ‖γ f (z†) – Bz†‖

σ

+ ( – αnσ )
∥∥xn – z† + δA∗(vn – Axn)

∥∥. (.)
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Since {xn} is bounded, there exists a constant M > such that

sup
n

{
γρ‖xn – z†‖ + ‖γ f (z†) – Bz†‖

σ

}
< M.

By (.), we deduce

∥
∥yn – z†

∥
∥ ≤ αnσM + ( – αnσ )

∥
∥xn – z† + δA∗(vn – Axn)

∥
∥. (.)

Combining (.) and (.), we obtain

∥
∥xn+ – z†

∥
∥ ≤ ∥

∥yn – z†
∥
∥

≤ ( – σαn)
∥
∥xn – z†

∥
∥ + ( – σαn)

(
δ‖A‖ – δ

)‖vn – Axn‖

– ( – σαn)δ‖zn – Axn‖ + αnσM.

Hence,

 ≤ ( – σαn)
(
δ – δ‖A‖)‖vn – Axn‖ + ( – σαn)δ‖zn – Axn‖

≤ ( – σαn)
∥∥xn – z†

∥∥ –
∥∥xn+ – z†

∥∥ + αnσM,

which implies that

lim
n→∞‖vn – Axn‖ = lim

n→∞‖zn – Axn‖ = . (.)

Therefore,

lim
n→∞‖vn – zn‖ = . (.)

Note that vn – zn = ζn[S(( – ηn)I + ηnS)zn – zn]. Thus,

lim
n→∞

∥∥zn – S
(
( – ηn)I + ηnS

)
zn

∥∥ = lim
n→∞

∥∥Axn – S
(
( – ηn)I + ηnS

)
Axn

∥∥ = . (.)

Since

‖Axn – SAxn‖ ≤ ∥∥Axn – S
(
( – ηn)I + ηnS

)
Axn

∥∥

+
∥
∥S

(
( – ηn)I + ηnS

)
Axn – SAxn

∥
∥

≤ ∥
∥Axn – S

(
( – ηn)I + ηnS

)
Axn

∥
∥ + Lηn‖Axn – SAxn‖,

it follows that

‖Axn – SAxn‖ ≤ 
 – Lηn

∥
∥Axn – S

(
( – ηn)I + ηnS

)
Axn

∥
∥.

This together with (.) implies that

lim
n→∞‖Axn – SAxn‖ = . (.)
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According to (.), we have

‖yn – xn‖ =
∥∥αnγ f (xn) – δA∗(Axn – vn) – αnB

(
xn – δA∗(Axn – vn)

)∥∥

≤ δ‖A‖‖vn – Axn‖ + αn
∥∥γ f (xn) – B

(
xn – δA∗(Axn – vn)

)∥∥.

It follows from (.) and (C) that

lim
n→∞‖xn – yn‖ = . (.)

From (.) and (.), we have

∥
∥xn+ – z†

∥
∥ =

∥
∥( – βn)

(
un – z†

)
+ βn

[
T

(
( – γn)un + γnT un

)
– z†

]∥∥

= ( – βn)
∥∥un – z†

∥∥ + βn
∥∥T

(
( – γn)un + γnT un

)
– z†

∥∥

– βn( – βn)
∥∥T

(
( – γn)un + γnT un

)
– un

∥∥. (.)

Applying Proposition ., we get

∥
∥T

(
( – γn)un + γnT un

)
– z†

∥
∥

≤ ∥
∥un – z†

∥
∥ + ( – γn)

∥
∥un – T

(
( – γn)un + γnT un

)∥∥. (.)

From (.), (.) and (.), we deduce

∥∥xn+ – z†
∥∥ ≤ ∥∥un – z†

∥∥ – βn(γn – βn)
∥∥un – T

(
( – γn)un + γnT un

)∥∥

≤ αnσM + ( – αnσ )
∥∥xn – z† + δA∗(vn – Axn)

∥∥

– βn(γn – βn)
∥∥un – T

(
( – γn)un + γnT un

)∥∥

≤ αnσM +
∥
∥xn – z†

∥
∥ – βn(γn – βn)

∥
∥un – T

(
( – γn)un + γnT un

)∥∥.

It follows that

βn(γn – βn)
∥∥un – T

(
( – γn)un + γnT un

)∥∥

≤ ∥∥xn – z†
∥∥ –

∥∥xn+ – z†
∥∥ + αnσM.

Therefore,

lim
n→∞

∥∥un – T
(
( – γn)un + γnT un

)∥∥ = . (.)

Observe that

‖un – T un‖ ≤ ∥
∥un – T

(
( – γn)un + γnT un

)∥∥ +
∥
∥T

(
( – γn)un + γnT un

)
– T un

∥
∥

≤ ∥∥un – T
(
( – γn)un + γnT un

)∥∥ + Lγn‖un – T un‖.

Thus,

‖un – T un‖ ≤ 
 – Lγn

∥∥un – T
(
( – γn)un + γnT un

)∥∥.
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This together with (.) implies that

lim
n→∞‖un – T un‖ = . (.)

Next, we show that

lim sup
n→∞

〈
γ f

(
z†

)
– Bz†, yn – z†

〉 ≤ .

Choose a subsequence {yni} of {yn} such that

lim sup
n→∞

〈
γ f

(
z†

)
– Bz†, yn – z†

〉
= lim

i→∞
〈
γ f

(
z†

)
– Bz†, yni – z†

〉
. (.)

Since the sequence {yni} is bounded, we can choose a subsequence {ynij
} of {yni} such that

ynij
⇀ z. For the sake of convenience, we assume (without loss of generality) that yni ⇀ z.

Subsequently, we derive from the above conclusions that

⎧
⎪⎪⎨

⎪⎪⎩

xni ⇀ z,

yni ⇀ z,

uni ⇀ z

(.)

and

⎧
⎪⎪⎨

⎪⎪⎩

Axni ⇀Az,

Ayni ⇀Az,

Auni ⇀Az.

(.)

Note that uni = projC yni ∈ C and zni = projQAxni ∈ Q. From (.), we deduce z ∈ C and
Az ∈ Q by (.). By the demiclosedness of T – I and S – I , we deduce z ∈ Fix(T ) (by
(.)) and Az ∈ Fix(S) (by (.)). To this end, we deduce z ∈ C ∩ Fix(T ) and Az ∈ Q ∩
Fix(S). That is to say, z ∈ �.

Therefore,

lim sup
n→∞

〈
γ f

(
z†

)
– Bz†, yn – z†

〉
= lim

i→∞
〈
γ f

(
z†

)
– Bz†, yni – z†

〉

= lim
i→∞

〈
γ f

(
z†

)
– Bz†, z – z†

〉

≤ . (.)

From (.), we have

∥
∥yn – z†

∥
∥ =

∥
∥αnγ

(
f (xn) – f

(
z†

))
+ αn

(
γ f

(
z†

)
– Bz†

)

+ (I – αnB)
(
xn – z† – δA∗(Axn – vn)

)∥∥

≤ ‖I – αnB‖∥∥xn – z† – δA∗(Axn – vn)
∥
∥

+ αnγ
〈
f (xn) – f

(
z†

)
, yn – z†

〉
+ αn

〈
γ f

(
z†

)
– Bz†, yn – z†

〉
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≤ ( – αnσ )∥∥xn – z†
∥∥ + αnγ

∥∥f (xn) – f
(
z†

)∥∥∥∥yn – z†
∥∥

+ αn
〈
γ f

(
z†

)
– Bz†, yn – z†

〉

≤ ( – αnσ )∥∥xn – z†
∥
∥ + αnγρ

∥
∥xn – z†

∥
∥ + αnγρ

∥
∥yn – z†

∥
∥

+ αn
〈
γ f

(
z†

)
– Bz†, yn – z†

〉
.

It follows that

∥∥yn – z†
∥∥ ≤

[
 –

(σ – γρ)αn

 – γραn

]∥∥xn – z†
∥∥ +

σ α
n

 – γραn

∥∥xn – z†
∥∥

+
αn

 – γραn

〈
γ f

(
z†

)
– Bz†, yn – z†

〉
.

Therefore,

∥
∥xn+ – z†

∥
∥ ≤ ∥

∥yn – z†
∥
∥

≤
[

 –
(σ – γρ)αn

 – γραn

]∥∥xn – z†
∥∥ +

σ α
n

 – γραn

∥∥xn – z†
∥∥

+
αn

 – γραn

〈
γ f

(
z†

)
– Bz†, yn – z†

〉
. (.)

Applying Lemma . and (.) to (.), we deduce xn → z†.
Case . Assume that there exists an integer n such that

∥∥xn – z†
∥∥ ≤ ∥∥xn+ – z†

∥∥.

Set ωn = {‖xn – z†‖}. Then we have

ωn ≤ ωn+.

Define an integer sequence {τn} for all n ≥ n as follows:

τ (n) = max{l ∈N|n ≤ l ≤ n,ωl ≤ ωl+}.

It is clear that τ (n) is a nondecreasing sequence satisfying

lim
n→∞ τ (n) = ∞

and

ωτ (n) ≤ ωτ (n)+

for all n ≥ n.
By a similar argument as that of Case , we can obtain

lim
n→∞‖uτ (n) – yτ (n)‖ = lim

n→∞‖xτ (n) – yτ (n)‖ = ,

lim
n→∞‖Sxτ (n) – Axτ (n)‖ = 
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and

lim
n→∞‖uτ (n) – T uτ (n)‖ = .

This implies that

ωw(yτ (n)) ⊂ �.

Thus, we obtain

lim sup
n→∞

〈
γ f

(
z†

)
– Bz†, yτ (n) – z†

〉 ≤ . (.)

Since ωτ (n) ≤ ωτ (n)+, we have from (.) that

ω
τ (n) ≤ ω

τ (n)+

≤
[

 –
(σ – γρ)ατ (n)

 – γρατ (n)

]
ω

τ (n) +
σ α

τ (n)

 – γρατ (n)
ω

τ (n)

+
ατ (n)

 – γρατ (n)

〈
γ f

(
z†

)
– Bz†, yτ (n) – z†

〉
. (.)

It follows that

ω
τ (n) ≤ 

(σ – γρ) – σ ατ (n)

〈
γ f

(
z†

)
– Bz†, yτ (n) – z†

〉
. (.)

Combining (.) and (.), we have

lim sup
n→∞

ωτ (n) ≤ ,

and hence

lim
n→∞ωτ (n) = . (.)

By (.), we obtain

lim sup
n→∞

ω
τ (n)+ ≤ lim sup

n→∞
ω

τ (n).

This together with (.) implies that

lim
n→∞ωτ (n)+ = .

Applying Lemma . we get

 ≤ ωn ≤ max{ωτ (n),ωτ (n)+}.

Therefore, ωn → . That is, xn → z†. This completes the proof. �
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4 Applications
The following results can be deduced directly from Algorithm . and Theorem ..

Algorithm . For given x ∈H arbitrarily, define a sequence {xn} iteratively by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn = projQAxn,

vn = ( – ζn)zn + ζnS(( – ηn)zn + ηnSzn),

yn = ( – αn)(xn – δA∗(Axn – vn)),

un = projC yn,

xn+ = ( – βn)un + βnT (( – γn)un + γnT un)

(.)

for all n ∈N.

Corollary . Suppose that T –I andS–I are demiclosed at . Assume that the following
conditions are satisfied:

(C): limn→∞ αn =  and
∑∞

n= αn = ∞,
(C):  < a < ζn < b < ηn < c < √

+L
 +

,

(C):  < a < βn < b < γn < c < √
+L

+
,

(C)′:  < δ < 
‖A‖ .

Then the sequence {xn} generated by algorithm (.) converges strongly to the minimum
norm solution u♣ ∈ �.

Algorithm . For given x ∈H arbitrarily, define a sequence {xn} iteratively by

xn+ = projC
[
αnγ f (xn) + (I – αnB)

(
xn – δA∗(Axn – projQAxn)

)]
(.)

for all n ∈N.

Corollary . Assume that the following conditions are satisfied:

(C): limn→∞ αn =  and
∑∞

n= αn = ∞,
(C):  < δ < 

‖A‖ and σ > γρ .

Then the sequence {xn} generated by algorithm (.) converges strongly to u ∈ � (the set of
the solutions of (.)) provided � �= ∅.

Algorithm . For given x ∈H arbitrarily, define a sequence {xn} iteratively by

xn+ = projC
[
( – αn)

(
xn – δA∗(Axn – projQAxn)

)]
(.)

for all n ∈N.

Corollary . Assume that the following conditions are satisfied:

(C): limn→∞ αn =  and
∑∞

n= αn = ∞,
(C)′:  < δ < 

‖A‖ .
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Then the sequence {xn} generated by algorithm (.) converges strongly to the minimum
norm solution u♣ ∈ � provided � �= ∅.

Algorithm . For given x ∈H arbitrarily, define a sequence {xn} iteratively by

⎧
⎪⎪⎨

⎪⎪⎩

vn = ( – ζn)Axn + ζnS(( – ηn)Axn + ηnSAxn),

yn = αnγ f (xn) + (I – αnB)(xn – δA∗(Axn – vn)),

xn+ = ( – βn)yn + βnT (( – γn)yn + γnT yn)

(.)

for all n ∈N.

Corollary . Suppose that T –I andS–I are demiclosed at . Assume that the following
conditions are satisfied:

(C): limn→∞ αn =  and
∑∞

n= αn = ∞,
(C):  < a < ζn < b < ηn < c < √

+L
 +

,

(C):  < a < βn < b < γn < c < √
+L

+
,

(C):  < δ < 
‖A‖ and σ > γρ .

Then the sequence {xn} generated by algorithm (.) converges strongly to u ∈ � (the set of
the solutions of (.)) provided � �= ∅.

Algorithm . For given x ∈H arbitrarily, define a sequence {xn} iteratively by

⎧
⎪⎪⎨

⎪⎪⎩

vn = ( – ζn)Axn + ζnS(( – ηn)Axn + ηnSAxn),

yn = ( – αn)(xn – δA∗(Axn – vn)),

xn+ = ( – βn)yn + βnT (( – γn)yn + γnT yn)

(.)

for all n ∈N.

Corollary . Suppose that T – I and S – I are demiclosed at . Assume that the fol-
lowing conditions are satisfied:

(C): limn→∞ αn =  and
∑∞

n= αn = ∞,
(C):  < a < ζn < b < ηn < c < √

+L
 +

,

(C):  < a < βn < b < γn < c < √
+L

+
,

(C)′:  < δ < 
‖A‖ .

Then the sequence {xn} generated by algorithm (.) converges strongly to the minimum
norm solution u♣ ∈ � provided � �= ∅.
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