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Abstract
In this paper, the modular-type operator norm of the general geometric mean
operator over spherical cones is investigated. We give two applications of a new limit
process, introduced by the present authors, to the establishment of Pólya-Knopp-type
inequalities. We not only partially generalize the sufficient parts of Persson-Stepanov’s
and Wedestig’s results, but we also provide new proofs to these results.
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1 Introduction
Let E be a spherical cone in R

n. By this, we mean that E =
⋃

s> sA for some Borel measur-
able subset A of the unit sphere �n–. Let ‖K‖DK∩Lp

�(v dx) �→Lq
�(u dx) (in brief, ‖K‖∗) denote

the smallest constant C in (.):

{∫

E

(
� ◦Kf (x)

)qu(x) dx
}/q

≤ C
{∫

E

(
� ◦ f (x)

)pv(x) dx
}/p

(.)

for all f ∈ DK ∩ Lp
�(v dx), where p, q > , u(x) ≥ , v(x) > , � ∈ CV +(I), � ◦ f (x) = �(f (x)),

and Kf (x) is of the form

Kf (x) :=
∫

S̃x

k(x, t)f (t) dt (x ∈ E). (.)

Here CV +(I) denotes the set of all nonnegative convex functions defined on an open in-
terval I in R, DK is the space of those f such that Kf (x) is well defined for almost all x ∈ E,
and Lp

�(v dx) is the set of all real-valued Borel measurable f with

‖f ‖�,p,v :=
{∫

E

(
� ◦ f (x)

)pv(x) dx
}/p

< ∞.

Moreover, S̃x =
⋃

<s≤‖x‖ sA, Sx = S̃x \ ‖x‖A, and k(x, t) ≥  is locally integrable over E×E.
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We write Lp(v dx) and ‖f ‖p,v instead of Lp
�(v dx) and ‖f ‖�,p,v, respectively, for the case

�(s) = |s|. We also write Lp(E, v dx) for Lp(v dx), whenever the integral region E is empha-
sized.

Clearly,

‖K‖∗ = sup
f

‖� ◦Kf ‖q,u

‖� ◦ f ‖p,v
,

where the supremum is taken over all f ∈ DK ∩ Lp
�(v dx) with ‖� ◦ f ‖p,v �= . This number

reduces to the operator norm of K for the case �(s) = |s|. The investigation of the value
‖K‖∗ has a long history in the literature. In [], the present authors introduced a gener-
alized Muckenhoupt constant AM(p, q) and established the following Muckenhoupt-type
estimate for ‖K‖∗:

‖K‖∗ ≤
(

q
p∗ +

q
η

)/q(

 +
p∗

η

)η∗/(p∗q∗)

AM(p, q), (.)

where  ≤ p, q ≤ ∞, η = max(p, q), and (·)∗ is the conjugate exponent of (·) in the sense
that /(·) + /(·)∗ = . For the particular case that

�(s) = |s|, k(x, t) = , (.)

there are two other types of estimates. They are

‖K‖∗ ≤ p∗APS(p, q) (.)

and

‖K‖∗ ≤ AW (p, q) := inf
<s<p

AW (s, p, q)
(

p – 
p – s

)/p∗

. (.a)

These two inequalities were proved in [] and [], Theorem . and Lemma ., for the
case  < p ≤ q < ∞ (see also [], Theorem .). We refer the readers to Section  for details.

In this paper, we focus on the evaluation of ‖K‖∗ for the following case of (.):

�(s) = es, k(x, t) = g(t)/G(x), f (t) −→ log f (t),

where f (t) > , g(t) > , and

G(x) =
∫

S̃x

g(t) dt (x ∈ E). (.)

The corresponding inequality to (.) takes the form

(∫

E

{

exp

(


G(x)

∫

S̃x

g(t) log f (t) dt
)}q

u(x) dx
)/q

≤ C
{∫

E

(
f (x)

)pv(x) dx
}/p

, (.)

which is known as the Pólya-Knopp-type inequality.
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In [], Theorem ., [, ], and [], Theorem ., the particular case g(t) =  of (.) was
considered. They obtained the following estimates by means of the formula (GKf )(x) =
limε→+ [K(f ε)]/ε(x):

‖K‖∗ ≤ e/pD∗
PS and ‖K‖∗ ≤ inf

s>
e(s–)/pD∗

OG(s), (.)

where  < p ≤ q < ∞. The definitions of D∗
PS and D∗

OG(s) are given in Section .
The purpose of this paper is two-fold. We not only extend the aforementioned sufficient

parts of [, , ], and [] from u(x) >  and g(t) =  to u(x) ≥  and

min

(

sup
x∈E

∣
∣g(x)

∣
∣, sup

x∈E

∣
∣
∣
∣
g(x)
v(x)

∣
∣
∣
∣

)

< ∞, (.)

but we also provide a new proof of (.) from the viewpoint of (.):

‖K‖∗ ≤ inf
ε∈F+

�

(Ap/ε,q/ε)/ε ≤ lim inf
ε→+

{
(Ap/ε,q/ε)/ε}, (.)

where  < p, q < ∞, F+
� = {ε >  : �ε ∈ CV +(I)}, and Ap,q are absolute constants subject to

the condition

(∫

E

∣
∣Kf (x)

∣
∣qu(x) dx

)/q

≤ Ap,q

(∫

E

∣
∣f (x)

∣
∣pv(x) dx

)/p

(f ≥ ). (.)

It is clear that (.) is applicable to the case �(s) = es. In this case, F+
� = {ε > } and the

second inequality in (.) holds. We remark that it may not be an equality (cf. []). On the
other hand, we have p/ε → ∞ and q/ε → ∞ as ε → +. This indicates that the infimum
in (.) can be estimated by evaluating those Ap,q with p, q large enough.

The limit process (.) differs from the scheme by means of the formula (GKf )(x) =
limε→+ [K(f ε)]/ε(x). It was introduced in [] to get different types of Pólya-Knopp in-
equalities, including the n-dimensional extensions of the Levin-Cochran-Lee-type in-
equalities and Carleson’s result. We showed that the infimum in (.) can easily be eval-
uated by applying the following choice of Ap,q for  < p, q < ∞:

Ap,q ≤
(

q
p∗ +

q
η

)/q(

 +
p∗

η

)η∗/(p∗q∗)

AM(p, q).

This choice is due to (.). We also pointed out that for some cases, the values of ‖K‖∗
obtained from (.) are better than the known constants in the literature. In this paper,
we consider two other choices of Ap,q with  < p ≤ q < ∞, that is, Ap,q ≤ p∗ÃPS(p, q) and
Ap,q ≤ ÃW (p, q), which are general forms of (.) and (.a). We shall derive them from (.)
and (.a) and relax the conditions on u(x) and g(t) from u(x) >  and g(t) =  to u(x) ≥ 
and g(t) >  (cf. Section ). Based on such choices, we prove that (.) follows from (.).
Moreover, (.) can be extended from u(x) >  and g(t) =  to u(x) ≥  and g(t) of the form
(.). This extension gives Persson-Stepanov-type and Opic-Gurka-tpye estimates of the
modular-type operator norm of the general geometric mean operator corresponding to
g(t). We remark that the particular case g(t) = |S̃t|s– can lead us to the Levin-Cochran-
Lee-type inequality (see Section  for details).
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2 General forms of (1.5) and (1.5a)
Let  < p ≤ q < ∞, g(t) > , u(x) ≥ , and v(x) > . Consider the inequality:

(∫

E

{


G(x)

∫

S̃x

g(t)f (t) dt
}q

u(x) dx
)/q

≤ C
(∫

E

(
f (x)

)pv(x) dx
)/p

(f ≥ ), (.)

where G(x) is defined by (.). This corresponds to the case �(s) = |s| and k(x, t) = g(t)/G(x)
of (.). Inequality (.) reduces to the form (.) for the case g(t) = :

(∫

E

{∫

S̃x

f (t) dt
}q

ũ(x) dx
)/q

≤ C
(∫

E

(
f (x)

)pv(x) dx
)/p

(f ≥ ), (.)

where ũ(x) = u(x)/G(x)q. In [], Theorem ., [] and [], Lemma .(a), it was proved that
under the conditions u(x) >  and APS(p, q) < ∞, (.) holds, in other words, (.) with ũ(x)
replaced by u(x) is true for C = p∗APS(p, q), where

APS(p, q) := sup
x∈E

(∫

S̃x

v(t)–p∗ dt
)–/p(∫

S̃x

{∫

S̃t

v(y)–p∗ dy
}q

u(t) dt
)/q

.

This result will be extended below from g(t) =  and u(x) >  to g(t) >  and u(x) ≥ . We
shall see its application in the proof of Theorem ..

Theorem . Let  < p ≤ q < ∞, u(x) ≥ , v(x) > , g(t) > , and  < G(x) < ∞, where G(x)
is defined by (.). If ÃPS(p, q) < ∞, then (.) holds for C ≤ p∗ÃPS(p, q), where

ÃPS(p, q) = sup
x∈E

(∫

S̃x

(
g(t)
v(t)

)p∗
v(t) dt

) –
p
(∫

S̃x

{


G(t)

∫

S̃t

(
g(y)
v(y)

)p∗
v(y) dy

}q

u(t) dt
) 

q
.

Proof The case u(x) >  follows from [], Theorem ., or [], Lemma .(a), under the
following substitutions:

f (t) −→ g(t)f (t), u(x) −→ u(x)
(G(x))q , v(x) −→ v(x)

(g(x))p . (.)

As for u(x) ≥ , let uτ (x) = u(x) + ρτ (x), where  < τ <  and ρτ (x) >  is subject to the
condition

∫

S̃x

{


G(t)

∫

S̃t

(
g(y)
v(y)

)p∗

v(y) dy
}q

ρτ (t) dt ≤ τ

{∫

S̃x

(
g(t)
v(t)

)p∗

v(t) dt
}q/p

. (.)

Such ρτ (x) exists. We have uτ (x) >  on E. Moreover, the condition /q <  implies that
(a + b)/q ≤ a/q + b/q for all a, b ≥ . Putting this together with (.) yields

(∫

S̃x

{


G(t)

∫

S̃t

(
g(y)
v(y)

)p∗

v(y) dy
}q

uτ (t) dt
)/q

≤
(∫

S̃x

{


G(t)

∫

S̃t

(
g(y)
v(y)

)p∗

v(y) dy
}q

u(t) dt
) 

q
+ τ


q

{∫

S̃x

(
g(t)
v(t)

)p∗

v(t) dt
} 

p
.
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This leads us to

ÃPS(p, q, τ ) ≤ ÃPS(p, q) + τ /q < ∞, (.)

where ÃPS(p, q, τ ) is the number obtained from ÃPS(p, q) by replacing u(t) by ur(t). We
have uτ (x) > u(x) on E. By the result of the case u(x) > , the following inequality holds for
f ≥ :

(∫

E

{


G(x)

∫

S̃x

g(t)f (t) dt
}q

u(x) dx
) 

q

≤
(∫

E

{


G(x)

∫

S̃x

g(t)f (t) dt
}q

uτ (x) dx
) 

q

≤ p∗ÃPS(p, q, τ )
(∫

E

(
f (x)

)pv(x) dx
) 

p
. (.)

It follows from (.) that lim infτ→+ ÃPS(p, q, τ ) ≤ ÃPS(p, q). Putting this together with
(.) yields the desired inequality. The proof is complete. �

Next, consider (.a). The number AW (s, p, q) in (.a) is defined by the formula:

AW (s, p, q) = sup
x∈E

(∫

S̃x

v(t)–p∗ dt
) s–

p
(∫

E\Sx

{∫

S̃t

v(y)–p∗ dy
} q(p–s)

p
u(t) dt

) 
q

.

In [], Lemma .(b), AW (s, p, q) is replaced by another notation A∗
W (s). Like (.), (.a)

can be generalized in the following way, in which g(t) =  and u(x) >  are relaxed to g(t) > 
and u(x) ≥ . We shall see its application in the proof of Theorem ..

Theorem . Let  < p ≤ q < ∞, u(x) ≥ , v(x) > , g(t) > , and  < G(x) < ∞, where G(x)
is defined by (.). If ÃW (s, p, q) < ∞ for some  < s < p, then (.) holds for C ≤ ÃW (p, q),
where

ÃW (p, q) := inf
<s<p

ÃW (s, p, q)
(

p – 
p – s

)/p∗

(.)

and

ÃW (s, p, q) = sup
x∈E

(∫

S̃x

(
g(t)
v(t)

)p∗

v(t) dt
) s–

p

×
(∫

E\Sx

{∫

S̃t

(
g(y)
v(y)

)p∗

v(y) dy
} q(p–s)

p u(t) dt
(G(t))q

) 
q

. (.)

Proof The case u(x) >  follows from [], Lemma .(b), under the substitutions (.). For
the case u(x) ≥ , we modify the proof of Theorem . in the following way. Let  < s < p
and  < τ < . Set uτ (x, s) = u(x) + ρτ (x, s), where ρτ (x, s) >  and satisfies the condition

∫

E\Sx

{∫

S̃t

(
g(y)
v(y)

)p∗

v(y) dy
} q(p–s)

p ρτ (t, s)
(G(t))q dt ≤ τ

(
p – 
p – s

) –q
p∗ {∫

S̃x

(
g(t)
v(t)

)p∗

v(t) dt
} q(–s)

p
.
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Such ρτ (x, s) exists. We have uτ (x, s) >  on x ∈ E. Moreover,

Ãτ
W (s, p, q) ≤ ÃW (s, p, q) + τ /q

(
p – 
p – s

)–/p∗

, (.)

where Ãτ
W (s, p, q) is obtained from ÃW (s, p, q) by making the change in (.): u(t) −→

uτ (t, s). Obviously, uτ (x, s) > u(x). Applying the preceding result of the case u(x) >  to
uτ (x, s), we get

(∫

E

{


G(x)

∫

S̃x

g(t)f (t) dt
}q

u(x) dx
)/q

≤
(∫

E

{


G(x)

∫

S̃x

g(t)f (t) dt
}q

uτ (x, s) dx
)/q

≤
{

inf
<s′<p

Ãτ
W

(
s′, p, q

)
(

p – 
p – s′

)/p∗}(∫

E

(
f (x)

)pv(x) dx
)/p

≤ Ãτ
W (s, p, q)

(
p – 
p – s

)/p∗(∫

E

(
f (x)

)pv(x) dx
)/p

. (.)

Taking ‘inf<s<p’ for both sides of (.), we get

(∫

E

{


G(x)

∫

S̃x

g(t)f (t) dt
}q

u(x) dx
)/q

≤ Ãτ
W (p, q)

(∫

E

(
f (x)

)pv(x) dx
)/p

. (.)

Here

Ãτ
W (p, q) = inf

<s<p
Ãτ

W (s, p, q)
(

p – 
p – s

)/p∗

.

From (.), we obtain Ãτ
W (p, q) ≤ ÃW (p, q) + τ /q. Taking τ → + for both sides of (.),

we get the desired inequality. This completes the proof. �

3 Extensions and new proofs of (1.8)
To derive the extensions of (.), we need the following lemma.

Lemma . Let  < p < ∞, v(x) > , g(t) > , and  < G(x) < ∞, where G(x) is defined by
(.). If supx∈E{g(x)/v(x)} < ∞, then, for all t ∈ E,

lim
ε→+

(


G(t)

∫

S̃t

(
g(y)
v(y)

) ε
p–ε

g(y) dy
) 

ε

=
{

exp

(


G(t)

∫

S̃t

g(y)
(

log
g(y)
v(y)

)

dy
)} 

p
. (.)

Proof Let α ≥ supx∈E{g(x)/v(x)}. Without loss of generality, we may assume α > . We first
consider the case that

∫
S̃t

g(y)| log( g(y)
v(y) )|dy < ∞. Let

h(ε) =


G(t)

∫

S̃t

(
g(y)
v(y)

)ε/(p–ε)

g(y) dy ( ≤ ε < p/).
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We have

∫

S̃t

(
g(y)
v(y)

)ε/(p–ε)

g(y) dy ≤ αε/(p–ε)G(t) < ∞,

so h(ε) is well defined and has a finite value. For ε ∈ [, p/) and  < τ < min(p/ – ε, ε), it
follows from the mean value theorem that

h(ε + τ ) – h(ε)
τ

=


G(t)

∫

S̃t


τ

{(
g(y)
v(y)

) ε+τ
p–ε–τ

–
(

g(y)
v(y)

) ε
p–ε

}

g(y) dy

=
p

G(t)

∫

S̃t


(p – ε)

(
g(y)
v(y)

)ε/(p–ε)

g(y)
(

log
g(y)
v(y)

)

dy, (.)

where ε := ε(y) lies between ε and ε + τ . We know that

χS̃t (y)
(p – ε)

(
g(y)
v(y)

)ε/(p–ε)

g(y)
∣
∣
∣
∣log

(
g(y)
v(y)

)∣
∣
∣
∣ ≤ αχS̃t (y)g(y)

(p – ε)

∣
∣
∣
∣log

(
g(y)
v(y)

)∣
∣
∣
∣ ∈ L(E, dy).

By (.) and the Lebesgue dominated convergence theorem, h is differentiable on [, p/).
In addition,

h′(ε) = lim
τ→+

h(ε + τ ) – h(ε)
τ

=
p

(p – ε)G(t)

∫

S̃t

(
g(y)
v(y)

)ε/(p–ε)

g(y)
(

log
g(y)
v(y)

)

dy.

Thus,

lim
ε→+

log

(


G(t)

∫

S̃t

(
g(y)
v(y)

)ε/(p–ε)

g(y) dy
)/ε

= lim
ε→+

log h(ε) – log h()
ε

=
d

dε

(
log h(ε)

)∣∣
∣
ε=

=
h′()
h()

=


pG(t)

∫

S̃t

g(y)
(

log
g(y)
v(y)

)

dy.

We get the desired result for the case
∫

S̃t
g(y)| log( g(y)

v(y) )|dy < ∞. Next, consider the case
∫

S̃t
g(y)| log( g(y)

v(y) )|dy = ∞. This implies

∞ =
∫




g(y)
∣
∣
∣
∣log

(
g(y)
v(y)

)∣
∣
∣
∣dy +

∫




g(y)
∣
∣
∣
∣log

(
g(y)
v(y)

)∣
∣
∣
∣dy, (.)

where 
 = {y ∈ S̃t : g(y)/v(y) ≤ } and 
 = {y ∈ S̃t : g(y)/v(y) > }. We have

∫




g(y)
∣
∣
∣
∣log

(
g(y)
v(y)

)∣
∣
∣
∣dy ≤ (logα)G(t) < ∞.

Combining this with (.), we find that
∫



g(y)| log( g(y)
v(y) )|dy = ∞. This leads us to

∫

S̃t

g(y)
(

log
g(y)
v(y)

)

dy = –
∫




g(y)
∣
∣
∣
∣log

(
g(y)
v(y)

)∣
∣
∣
∣dy +

∫




g(y)
∣
∣
∣
∣log

(
g(y)
v(y)

)∣
∣
∣
∣dy = –∞.
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We shall show

lim
ε→+

(


G(t)

∫

S̃t

(
g(y)
v(y)

)ε/(p–ε)

g(y) dy
)/ε

= .

If so, the desired equality follows. Let  < ε < p/ and y ∈ S̃t . By the mean value theorem,
we get

(
g(y)
v(y)

)ε/(p–ε)

–  =
εp

(p – ε)

(
g(y)
v(y)

)ε/(p–ε)(

log
g(y)
v(y)

)

for some ε ∈ (, ε). This implies


G(t)

∫

S̃t

(
g(y)
v(y)

)ε/(p–ε)

g(y) dy

=  +
(

εp
G(t)

∫

S̃t


(p – ε)

(
g(y)
v(y)

)ε/(p–ε)

g(y)
(

log
g(y)
v(y)

)

dy
)

. (.)

By Fatou’s lemma, we get

lim inf
ε→+

p
G(t)

∫

S̃t


(p – ε)

(
g(y)
v(y)

)ε/(p–ε)

g(y)
∣
∣
∣
∣log

(
g(y)
v(y)

)∣
∣
∣
∣dy

≥ 
pG(t)

∫

S̃t

{

lim inf
ε→+

(
g(y)
v(y)

)ε/(p–ε)}

g(y)
∣
∣
∣
∣log

(
g(y)
v(y)

)∣
∣
∣
∣dy

=


pG(t)

∫

S̃t

g(y)
∣
∣
∣
∣log

(
g(y)
v(y)

)∣
∣
∣
∣dy = ∞.

Like (.), decompose the integral
∫

S̃t
(· · · ) as the sum

∫



(· · · ) +
∫



(· · · ). For the 
 term,
we have

p
G(t)

∫





(p – ε)

(
g(y)
v(y)

)ε/(p–ε)

g(y)
∣
∣
∣
∣log

(
g(y)
v(y)

)∣
∣
∣
∣dy

≤ α logα

pG(t)

∫




g(y) dy ≤ α logα

p
< ∞,

which implies

lim
ε→+

p
G(t)

∫

S̃t


(p – ε)

(
g(y)
v(y)

)ε/(p–ε)

g(y)
(

log
g(y)
v(y)

)

dy = –∞.

From (.) and the fact that limε→( + εθ )/ε = eθ for any θ ∈ R, we get

lim sup
ε→+

(


G(t)

∫

S̃t

(
g(y)
v(y)

)ε/(p–ε)

g(y) dy
)/ε

≤ lim sup
ε→+

( + εθ )/ε = eθ

for any θ < . Letting θ → –∞, we get the desired result. �
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Lemma . may be false for the case that supx∈E g(x)/v(x) = ∞. A counterexample
is given as follows. Consider n = , t = , g(t) = , and v(x) =

∑∞
m= e–mχ( 

m – 
m , 

m ](x) +
χ
R\⋃m≥( 

m – 
m , 

m ](x). We have

∫ 



(
g(y)
v(y)

)ε/(p–ε)

g(y) dy =
∫ 


v(y)ε/(ε–p) dy ≥

∞∑

m=


m e

mε
p–ε = ∞ ( < ε < p/)

and

∫ 


g(y)

(

log
g(y)
v(y)

)

dy =
∫ 


log


v(y)

dy =
∞∑

m=


m < ∞.

From these, we know that (.) is false for this example.
Now, we go back to the investigation of the first part of (.). Set

D̃PS := sup
x∈E



G(x)

p

(∫

S̃x

{

exp

(


G(t)

∫

S̃t

g(y)
(

log
g(y)
v(y)

)

dy
)} q

p
u(t) dt

) 
q

,

where G(x) is defined by (.). The case g(t) =  of D̃PS reduces to D∗
PS mentioned in (.).

We shall establish the following result, which extends the first inequality in (.) from
u(x) >  and g(t) =  to u(x) ≥  and those g(t) subject to the condition (.). This extension
gives the Persson-Stepanov-type estimate of the modular-type operator norm of the gen-
eral geometric mean operator corresponding to g(t). In particular, g(t) can be of the form
g(t) = |S̃t|s–. An elementary calculation of this case will lead us to the Levin-Cochran-Lee-
type inequality. We leave such a calculation to the readers. Our result partially generalizes
the sufficient parts of [], Theorem ., [], and [], Theorem .(a).

Theorem . Let  < p ≤ q < ∞, u(x) ≥ , v(x) > , g(t) > , and  < G(x) < ∞, where G(x)
is defined by (.). If (.) is true and D̃PS < ∞, then (.) holds for C ≤ e/pD̃PS .

Proof Let �(s) = es, k(x, t) = g(t)/G(x), and f (t) −→ log f (t). The proof is the same as to
prove that ‖K‖∗ ≤ e/pD̃PS . We first assume that supx∈E{g(x)/v(x)} < ∞. Consider the case
that u is bounded on 
̃r and u(x) =  on E\
̃r , where r ≥  and 
̃r = {x ∈ E : /r ≤ ‖x‖ ≤ r}.
By (.)-(.) and Theorem ., we know that

‖K‖∗ ≤ lim inf
ε→+

(
(p/ε)∗ÃPS(p/ε, q/ε)

)/ε , (.)

provided that the term (· · · )/ε in (.) is finite for all sufficiently small ε > . By an elemen-
tary calculation, we obtain limε→+ ((p/ε)∗)/ε = limε→+ ( p

p–ε
)/ε = e/p. On the other hand,

let  < ε < p. Then p/ε >  and q/ε > . Moreover, we have (p/ε)∗ = p/(p – ε), so

(
g(t)
v(t)

)(p/ε)∗

v(t) =
(

g(t)
v(t)

)p/(p–ε)

v(t) =
(

g(t)
v(t)

)ε/(p–ε)

g(t).
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It follows from the definition of ÃPS(p/ε, q/ε) that

(
ÃPS(p/ε, q/ε)

)/ε = sup
x∈E

(∫

S̃x

(
g(t)
v(t)

)ε/(p–ε)

g(t) dt
)–/p

×
(∫

S̃x

{


G(t)

∫

S̃t

(
g(y)
v(y)

)ε/(p–ε)

g(y) dy
}q/ε

u(t) dt
)/q

. (.)

We have assumed that u(x) =  on E \ 
̃r . Moreover, for t ∈ S̃x, we have


G(t)

∫

S̃t

(
g(y)
v(y)

)ε/(p–ε)

g(y) dy ≤
{

sup
y∈S̃x

(
g(y)
v(y)

)}ε/(p–ε){ 
G(t)

∫

S̃t

g(y) dy
}

=
{

sup
y∈S̃x

(
g(y)
v(y)

)}ε/(p–ε)

.

These imply

(
ÃPS(p/ε, q/ε)

)/ε ≤
(∫

B̃/r

(
g(t)
v(t)

)ε/(p–ε)

g(t) dt
)–/p

×
{

sup
y∈E

(
g(y)
v(y)

)}/(p–ε)(∫


̃r

u(t) dt
)/q

< ∞, (.)

where B̃ρ = {x ∈ E : ‖x‖ ≤ ρ}. The above argument guarantees the validity of (.). Now,
we try to estimate the limit infimum given in (.). It suffices to show that

lim inf
ε→+

(
ÃPS(p/ε, q/ε)

)/ε ≤ D̃PS. (.)

Clearly, the term (
∫

S̃x
(· · · ))–/p in (.) becomes bigger whenever x with ‖x‖ > r is replaced

by rx/‖x‖. Moreover, the term (
∫

S̃x
{· · · }q/εu(t) dt)/q in (.) is zero for ‖x‖ < /r and it

keeps the same value for the change: x with ‖x‖ > r −→ rx/‖x‖. Hence, the term ‘supx∈E ’ in
(.) can be replaced by ‘supx∈
̃r ’. By the Heine-Borel theorem, we can choose  < εm < p/,
αm > , and x, xm ∈ 
̃r , such that εm → , αm → , xm → x, and the following inequality
holds for all m:

(
ÃPS(p/εm, q/εm)

)/εm

≤
(∫

S̃xm

(
g(t)
v(t)

)εm/(p–εm)

g(t) dt
)–/p

×
(∫

S̃xm

{


G(t)

∫

S̃t

(
g(y)
v(y)

)εm/(p–εm)

g(y) dy
}q/εm

u(t) dt
)/q

+ αm. (.)

We have

∣
∣
∣
∣χS̃xm

(t)
(

g(t)
v(t)

)εm/(p–εm)

g(t)
∣
∣
∣
∣ ≤ χB̃r (t)

{

sup
y∈E

(
g(y)
v(y)

)

+ 
}

g(t) ∈ L(E, dt) (m = , , . . .).
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By the Lebesgue dominated convergence theorem, we infer that

lim
m→∞

(∫

S̃xm

(
g(t)
v(t)

)εm/(p–εm)

g(t) dt
)–/p

=
(∫

S̃x

lim
m→∞

{(
g(t)
v(t)

)εm/(p–εm)}

g(t) dt
)–/p

=
(
G(x)

)–/p. (.)

Similarly, the hypotheses on u(t) and g(t)/v(t) imply

∣
∣
∣
∣χS̃xm

(t)
{


G(t)

∫

S̃t

(
g(y)
v(y)

)εm/(p–εm)

g(y) dy
}q/εm

u(t)
∣
∣
∣
∣

≤ χB̃r (t)
{

sup
y∈E

(
g(y)
v(y)

)}q/(p–εm){ 
G(t)

∫

S̃t

g(y) dy
}q/εm

u(t)

≤ χB̃r (t)
{

sup
y∈E

(
g(y)
v(y)

)

+ 
}q/p

u(t) ∈ L(E, dt).

Applying the Lebesgue dominated convergence theorem again, it follows from Lemma .
that

lim
m→∞

(∫

S̃xm

{


G(t)

∫

S̃t

(
g(y)
v(y)

)εm/(p–εm)

g(y) dy
}q/εm

u(t) dt
)/q

=
(∫

S̃x

lim
m→∞

{


G(t)

∫

S̃t

(
g(y)
v(y)

)εm/(p–εm)

g(y) dy
}q/εm

u(t) dt
)/q

=
(∫

S̃x

{

exp

(


G(t)

∫

S̃t

g(y)
(

log
g(y)
v(y)

)

dy
)}q/p

u(t) dt
)/q

. (.)

Putting (.)-(.) together yields (.). This finishes the proof for those u and v with
the restrictions stated above. Now, we come back to the proof of the case u ≥  and
supx∈E{g(x)/v(x)} < ∞. Let ur(x) = min{u(x), r}χ
̃r (x), where r = , , . . . . By the preceding
result,

(∫

E

{

exp

(


G(x)

∫

S̃x

g(t) log f (t) dt
)}q

ur(x) dx
)/q

≤ e/pD̃PS(r)
(∫

E

(
f (x)

)pv(x) dx
)/p

(f > ), (.)

where

D̃PS(r) = sup
x∈E

(
G(x)

)– 
p

(∫

S̃x

{

exp

(


G(t)

∫

S̃t

g(y)
(

log
g(y)
v(y)

)

dy
)} q

p
ur(t) dt

) 
q

.

We have ur(t) ≤ u(t), so D̃PS(r) ≤ D̃PS . Replacing D̃PS(r) in (.) by D̃PS first and then
applying the monotone convergence theorem to (.), we get the desired inequality for
this case.
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Next, we deal with the case supx∈E g(x) < ∞. Let v�(x) = v(x) + /�, where � = , , . . . .
Then supx∈E{g(x)/v�(x)} < ∞ for each �. By the preceding result,

(∫

E

{

exp

(


G(x)

∫

S̃x

g(t) log f (t) dt
)}q

u(x) dx
)/q

≤ e/pD̃�
PS

(∫

E

(
f (x)

)pv�(x) dx
)/p

(f > ), (.)

where

D̃�
PS = sup

x∈E



(G(x))

p

(∫

S̃x

{

exp

(


G(t)

∫

S̃t

g(y) log

(
g(y)
v�(y)

)

dy
)} q

p
u(t) dt

) 
q

.

We have v�(x) ≥ v(x), so D̃�
PS ≤ D̃PS . This says that (.) can be replaced by (.):

(∫

E

{

exp

(


G(x)

∫

S̃x

g(t) log f (t) dt
)}q

u(x) dx
)/q

≤ e/pD̃PS

(∫

E

(
f (x)

)pv�(x) dx
)/p

(f > ). (.)

We shall claim that v�(x) in (.) can be replaced by v(x). Without loss of generality, we
may assume

∫
E(f (x))pv(x) dx < ∞. Set

fr(x) = χB̃r (x) min
(
f (x), r

)
+ χE\B̃r (x)h(x) (r = , , . . .),

where B̃ρ is defined before and h : E �→ (,∞) is chosen so that

h(x) ≤ min
(
f (x), 

)
and

∫

E

(
h(x)

)pv(x) dx < ∞.

Replacing f in (.) by fr , we get

(∫

E

{

exp

(


G(x)

∫

S̃x

g(t) log fr(t) dt
)}q

u(x) dx
)/q

≤ e/pD̃PS

(∫

E

(
fr(x)

)pv�(x) dx
)/p

. (.)

For each r, we have

∫

E

(
fr(x)

)pv(x) dx =
∫

B̃r

(
min

(
f (x), r

))pv(x) dx +
∫

E\B̃r

(
h(x)

)pv(x) dx

≤
∫

E

(
f (x)

)pv(x) dx +
∫

B̃r

rp dx +
∫

E

(
h(x)

)pv(x) dx < ∞
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and |fr(x)|pv�(x) ≤ (fr(x))pv(x) for � = , , . . . . Applying the Lebesgue dominated conver-
gence theorem to the right hand side of (.), we get

(∫

E

{

exp

(


G(x)

∫

S̃x

g(t) log fr(t) dt
)}q

u(x) dx
)/q

≤ e/pD̃PS

(∫

E

(
fr(x)

)pv(x) dx
)/p

. (.)

By definition, fr(x) ↑ f (x) as r → ∞. Applying the monotone convergence theorem to both
sides of (.), the right hand side tends to

e/pD̃PS

(∫

E

(
f (x)

)pv(x) dx
)/p

(as r → ∞)

and the left hand side has the limit

(∫

E

{

exp

(


G(x)
lim

r→∞

∫

S̃x

g(t) log fr(t) dt
)}q

u(x) dx
)/q

. (.)

Let x ∈ E. Since
∫

S̃x
g(t) log f (t) dt is well defined, the following equality makes sense:

∫

S̃x

g(t) log f (t) dt =
∫

S̃x

g(t)
(
log f (t)

)+ dt –
∫

S̃x

g(t)
(
log f (t)

)– dt,

where ξ+ = max(ξ , ) and ξ– = min(–ξ , ). Consider r ≥ max(‖x‖, ). By the monotone con-
vergence theorem,

∫

S̃x

g(t) log fr(t) dt =
∫

S̃x

g(t) log
{
min

(
f (t), r

)}
dt

=
∫

S̃x

g(t) min
((

log f (t)
)+, log r

)
dt –

∫

S̃x

g(t)
(
log f (t)

)– dt

−→
∫

S̃x

g(t)
(
log f (t)

)+ dt –
∫

S̃x

g(t)
(
log f (t)

)– dt =
∫

S̃x

g(t) log f (t) dt.

Inserting this limit in (.) yields the desired inequality. This finishes the proof. �

Theorem . gives a new proof of [], Theorem .(a). In the following, we shall display
another example to show how (.) works well for the estimate of Opic-Gurka type. Set

D̃OG(s) := sup
x∈E

(
G(x)

) s–
p

×
(∫

E\Sx

(
G(t)

) –sq
p

{

exp

(


G(t)

∫

S̃t

g(y)
(

log
g(y)
v(y)

)

dy
)} q

p
u(t) dt

) 
q

,

where G(x) is defined by (.). The number D∗
OG(s) in (.) is just the case g(t) =  of D̃OG(s).

In the following, we shall extend the second inequality in (.) from u(x) >  and g(t) =  to
u(x) ≥  and those g(t) subject to the condition (.). This extension gives the Opic-Gurka-
type estimate of the modular-type operator norm of the general geometric mean operator
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corresponding to g(t). In particular, g(t) can be of the form g(t) = |S̃t|s–, which leads us
to the Levin-Cochran-Lee-type inequality. Our result partially generalizes the sufficient
parts of [] and [], Theorem .(b).

Theorem . Let  < p ≤ q < ∞, u(x) ≥ , v(x) > , g(t) > , and  < G(x) < ∞, where
G(x) is defined by (.). If (.) is true and D̃OG(s) < ∞ for some s > , then (.) holds for
C ≤ infs> e(s–)/pD̃OG(s).

Proof Let �(s) = es, k(x, t) = g(t)/G(x), and f (t) −→ log f (t). The proof is similar to The-
orem .. We shall show that ‖K‖∗ ≤ infs> e(s–)/pD̃OG(s). To observe the proof of Theo-
rem ., we find that it suffices to prove this inequality for the case: u is bounded on 
̃r ,
u(x) =  on E \ 
̃r , and supx∈E{g(x)/v(x)} < ∞, where 
̃r is defined in the proof of Theo-
rem .. It follows from (.)-(.) and Theorem . that

‖K‖∗ ≤ inf
<ε<p

(
ÃW (p/ε, q/ε)

)/ε

= inf
<ε<p

{

inf
<s<p/ε

(
p – ε

p – εs

)/ε–/p(
ÃW (s, p/ε, q/ε)

)/ε
}

≤ inf
s>

{

lim inf
ε→+

(
p – ε

p – εs

)/ε–/p(
ÃW (s, p/ε, q/ε)

)/ε
}

. (.)

For s > , we have limε→+ ( p–ε

p–εs )/ε–/p = e(s–)/p. We shall prove

lim inf
ε→+

(
ÃW (s, p/ε, q/ε)

)/ε ≤ D̃OG(s).

If so, the desired inequality follows from (.). Let  < ε < p/s. We have

(
ÃW (s, p/ε, q/ε)

)/ε = sup
x∈E

(∫

S̃x

(
g(t)
v(t)

) ε
p–ε

g(t) dt
) s–

p

×
(∫

E\Sx

{∫

S̃t

(
g(y)
v(y)

) ε
p–ε

g(y) dy
} q(p–εs)

εp u(t) dt
(G(t))q/ε

)/q

. (.)

The term ‘(
∫

S̃x
(· · · ))

s–
p ’ in (.) increases in ‖x‖. On the other hand, the term

‘(
∫

E\Sx
{· · · }q(p–εs)/(εp) u(t) dt

(G(t))q/ε )/q ’ in (.) is zero for ‖x‖ > r and it keeps the same value
for the change: x with ‖x‖ < /r −→ (/r)x/‖x‖. These imply that the term ‘supx∈E ’ in (.)
can be replaced by ‘supx∈
̃r ’. By the Heine-Borel theorem, we can choose  < εm < p/s,
αm > , and x, xm ∈ 
̃r such that εm → , αm → , xm → x, and the following inequality
holds for all m:

(
ÃW (s, p/εm, q/εm)

)/εm

≤
(∫

S̃xm

(
g(t)
v(t)

) εm
p–εm

g(t) dt
) s–

p

×
(∫

E\Sxm

{∫

S̃t

(
g(y)
v(y)

) εm
p–εm

g(y) dy
} q(p–εms)

εmp u(t) dt
(G(t))q/εm

)/q

+ αm. (.)



Chen and Lan Journal of Inequalities and Applications  (2015) 2015:347 Page 15 of 16

For the first integral in (.), we have

lim
m→∞

(∫

S̃xm

(
g(t)
v(t)

) εm
p–εm

g(t) dt
) s–

p

=
(∫

S̃x

lim
m→∞

{(
g(t)
v(t)

) εm
p–εm

}

g(t) dt
) s–

p
=

(
G(x)

) s–
p . (.)

As for the second integral, it follows from Lemma . that

(∫

S̃t

(
g(y)
v(y)

) εm
p–εm

g(y) dy
) q(p–εms)

εmp 
(G(t))q/εm

=
(∫

S̃t

(
g(y)
v(y)

) εm
p–εm

g(y) dy
)–qs/p( 

G(t)

∫

S̃t

(
g(y)
v(y)

) εm
p–εm

g(y) dy
)q/εm

−→ (
G(t)

) –qs
p

{

exp

(


G(t)

∫

S̃t

g(y)
(

log
g(y)
v(y)

)

dy
)} q

p
as m → ∞. (.)

Moreover, for m large enough,

∣
∣
∣
∣χE\Sxm (t)

(∫

S̃t

(
g(y)
v(y)

) εm
p–εm

g(y) dy
) q(p–εms)

εmp u(t)
(G(t))q/εm

∣
∣
∣
∣

≤
{

sup
x∈E

(
g(y)
v(y)

)

+ 
}q/p

χ
̃r (t)G(t)–qs/pu(t) ∈ L(E, dt).

Integrating the left hand side of (.) with respect to u(t) dt first and then applying the
Lebesgue dominated convergence theorem, we obtain

lim
m→∞

(∫

E\Sxm

(∫

S̃t

(
g(y)
v(y)

) εm
p–εm

g(y) dy
) q(p–εms)

εmp u(t) dt
(G(t))q/εm

)/q

=
(∫

E\Sx

lim
m→∞

{


(G(t))q/εm

(∫

S̃t

(
g(y)
v(y)

) εm
p–εm

g(y) dy
) q(p–εms)

εmp
}

u(t) dt
)/q

=
(∫

E\Sx


(G(t))qs/p

{

exp

(


G(t)

∫

S̃t

g(y)
(

log
g(y)
v(y)

)

dy
)} q

p
u(t) dt

) 
q

. (.)

Putting (.), (.), and (.) together yields the desired inequality. This finishes the
proof. �

For other estimates of Hardy-type inequalities, we may use a similar limit process to
Theorems . and . to get the corresponding Pólya-Knopp inequalities.
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