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Abstract
In this paper, we give an upper bound for the Sugeno fuzzy integral of log-convex
functions using the classical Hadamard integral inequality. We present a geometric
interpretation and some examples in the framework of the Lebesgue measure to
illustrate the results.

MSC: Primary 26A51; 28E10; secondary 39B62

Keywords: Sugeno fuzzy integral; the Hadamard inequality; log-convex function;
seminormed Sugeno fuzzy integral

1 Introduction
Aggregation is a process of combining several numerical values into a single one which ex-
ists in many disciplines, such as image processing [], pattern recognition [] and decision
making [, ]. To obtain a consensus quantifiable judgments, some synthesizing functions
have been proposed. For example, arithmetic mean, geometric mean and median can be
regarded as a basic class, because they are often used and very classic. However, these op-
erators are not able to model an interaction between criteria. For having a representation
of interaction phenomena between criteria, fuzzy measures have been proposed [].

The properties and applications of the fuzzy measures and fuzzy integrals have been
studied by many authors. Ralescu and Adams [] studied several equivalent definitions of
fuzzy integrals. Román-Flores et al. [–] studied the level-continuity of fuzzy integrals,
H-continuity of fuzzy measures and geometric inequalities for fuzzy measures and inte-
grals, respectively. Wang and Klir [] had a general overview on fuzzy measurement and
fuzzy integration theory.

Two main classes of the fuzzy integrals are Choquet and Sugeno integrals. Choquet and
Sugeno integrals are idempotent, continuous and monotone operators. Recently, many au-
thors have studied the most well-known integral inequalities for fuzzy integral. Agahi et al.
[–] proved general Minkowski type inequalities, general extensions of Chebyshev type
inequalities and general Barnes-Godunova-Levin type inequalities for fuzzy integrals. Ca-
ballero and Sadarangani [, ] proved Chebyshev type inequalities and Cauchy type in-
equalities for fuzzy integrals. Kaluszka et al. [] gave necessary and sufficient conditions
guaranteeing the validity of Chebyshev type inequalities for generalized Sugeno fuzzy in-
tegrals in the case of functions belonging to a much wider class than the comonotone
functions. Wu et al. [] proved two inequalities for the Sugeno fuzzy integral on abstract
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spaces generalizing all previous Chebyshev’s inequalities. Mesiar et al. [] discussed the
integral inequalities known for the Lebesgue integral in the framework of the Choquet
integral.

A stronger property of convexity is log-convexity. The arithmetic mean-geometric mean
inequality easily yields that every log-convex function is also convex. The behavior of cer-
tain interference-coupled multiuser systems can be modeled by means of logarithmically
convex (log-convex) interference functions []. In this paper, the main purpose is to esti-
mate the upper bound of Sugeno fuzzy integral for log-convex functions using the classical
Hadamard integral inequality.

The paper is organized as follows. Some necessary preliminaries and summarization of
some previous known results are presented in Section . In Section , the upper bound
of the Sugeno fuzzy integral for log-convex functions is investigated. In Section , a geo-
metric interpretation is presented to illustrate the results. Convexity associated to means
is discussed in Section . Finally, a conclusion is given in Section .

2 Preliminaries
In this section, we are going to review some well-known results from the theory of non-
additive measures. Let X be a non-empty set and � be a σ -algebra of subsets of X.

Definition . (Ralescu and Adams []). Suppose that μ : � −→ [,∞) is a set function.
We say that μ is a fuzzy measure if it satisfies

. μ(∅) = .
. E, F ∈ � and E ⊂ F imply μ(E) ≤ μ(F).
. En ∈ � (n ∈N), E ⊂ E ⊂ · · · imply limn→∞ μ(En) = μ(

⋃∞
n= En) (continuity from

below).
. En ∈ � (n ∈N), E ⊃ E ⊃ · · · , μ(E) < ∞ imply limn→∞ μ(En) = μ(

⋂∞
n= En)

(continuity from above).

The triple (X,�,μ) is called a fuzzy measure space.
Let (X,�,μ) be a fuzzy measure space. By F+(X) we denote the set

F+(X) =
{

f : X −→ [,∞) : f is measurable with respect to �
}

.

For f ∈F+(X) and α > , Fα and Fα̃ we will denote the following sets:

Fα =
{

x ∈ X : f (x) ≥ α
}

and Fα̃ =
{

x ∈ X : f (x) > α
}

.

Note that if α ≤ β , then Fβ ⊂ Fα and Fβ̃ ⊂ Fα̃ .

Definition . (Pap [], Sugeno [], Wang and Klir []). Let (X,�,μ) be a fuzzy measure
space, f ∈ F+(X) and A ∈ �, then the Sugeno fuzzy integral of f on A with respect to the
fuzzy measure μ is defined by

 
A

f dμ =
∨

α≥

(
α ∧ μ(A ∩ Fα)

)
,
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where ∧ is just the prototypical t-norm minimum and
∨

the prototypical t-conorm max-
imum. When A = X, then

 
A

f dμ =
∨

α≥

(
α ∧ μ(Fα)

)
.

The following properties of the Sugeno fuzzy integral are well known and can be found
in [, ].

Theorem . Let (X,�,μ) be a fuzzy measure space, A, B ∈ � and f , g ∈F+(X) then
()

ffl
A f dμ ≤ μ(A).

()
ffl

A k dμ = k ∧ μ(A), k non-negative constant.
() If f ≤ g on A. then

ffl
A f dμ ≤ ffl

A g dμ.
() If A ⊂ B, then

ffl
A f dμ ≤ ffl

B f dμ.

A t-norm [] is a function T : [, ] × [, ] −→ [, ] satisfying the following condi-
tions:

(T) T(x, ) = T(, x) = x for any x ∈ [, ].
(T) For any x, x, y, y ∈ [, ] with x ≤ x and y ≤ y, T(x, y) ≤ T(x, y).
(T) T(x, y) = T(y, x) for any x, y ∈ [, ].
(T) T(T(x, y), z) = T(x, T(y, z)) for any x, y, z ∈ [, ].

A function S : [, ]× [, ] −→ [, ] is called a t-conorm [] if there is a t-norm T such
that S(x, y) =  – T( – x,  – y).

Example . The following functions are t-norms:
. TM(x, y) = x ∧ y,
. TP(x, y) = x · y,
. TL(x, y) = (x + y – ) ∨ .

Remark . A binary operator T on [, ] is called a t-seminorm [] if it satisfies
the above conditions (T) and (T). Notice that if T is a t-seminorm, for any x, y ∈
[, ], we have T(x, y) ≤ T(x, ) = x and T(x, y) ≤ T(, y) = y, and consequently, T(x, y) ≤
TM(x, y).

By using the concept of t-seminorm, García and Álvarez [] proposed the following
family of fuzzy integrals.

Definition . Let T be a t-seminorm. Then the seminormed Sugeno fuzzy integral of a
function f ∈F+(X) over A ∈ � with respect to T and the fuzzy measure μ is defined by

ˆ
T ,A

f dμ =
∨

α∈[,]

T
(
α,μ(A ∩ Fα)

)
.

Notice that the Sugeno fuzzy integral of f ∈F+(X) over A ∈ � is the seminormed Sugeno
fuzzy integral of f over A ∈ � with respect to the t-seminorm TM .
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Proposition . (García and Álvarez []) Let (X,�,μ) be a fuzzy measure space and T
be a t-seminorm. Then

. For any A ∈ � and f , g ∈F+(X) with f ≤ g , we have

ˆ
T ,A

f dμ ≤
ˆ

T ,A
g dμ.

. For A, B ∈ � with A ⊂ B and any f ∈F+(X),

ˆ
T ,A

f dμ ≤
ˆ

T ,B
f dμ.

A stronger property of convexity is log-convexity. A positive function f defined on a real
interval [a, b] (or, more generally, on a convex subset of some vector space) is called log-
convex if log f is a convex function of x; equivalently, if for all x, y ∈ [a, b] and λ ∈ [, ] we
have

f
(
λx + ( – λ)y

) ≤ f (x)λf (y)–λ. ()

It will be convenient to invoke the logarithmic mean L(x, y) of two positive numbers x, y,
which is given by

L(x, y) =

⎧
⎨

⎩

x–y
ln(x)–ln(y) , x = y,

x, x = y.

The following Hadamard inequality provides an upper bound for the mean value of a
log-convex function f : [a, b] −→ R (see []):


b – a

ˆ b

a
f (x) dx ≤ L

(
f (a), f (b)

)
. ()

3 The main results
Hereafter, we assume that (X,�,μ) is a general fuzzy measure space. To simplify the cal-
culation of the fuzzy integral, for a given f ∈F+(X) and A ∈ �, we write

� =
{
α | α ≥ ,μ(A ∩ Fα) > μ(A ∩ Fβ ) for any β > α

}
.

It is easy to see that

 
A

f dμ =
∨

α∈�

(
α ∧ μ(A ∩ Fα)

)
.

The following example shows that the Hadamard inequality () is not valid in the fuzzy
context.
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Example . Let X = [, ] and μ be the Lebesgue measure on R. We take the positive
and log-convex function f (x) = x–. We have

 


x– dμ =

∨

α≥

(
α ∧ μ

(
[, ] ∩ {

x– ≥ α
}))

=
∨

α≥

(

α ∧ μ

(

[, ] ∩
{

x ≥
√

ln(α)
ln()

+ 
}))

=
∨

α≥

(

α ∧
(

 –

√
ln(α)
ln()

+ 
))

.

In this expression, –
√

ln(α)
ln() +  may be negative, but it is a decreasing continuous function

of α when α ≥ . Hence, the supremum will be attained at the point which is one of the
solutions of the equation

α =  –

√
ln(α)
ln()

+ ,

that is, at α ≈ .. So, we have

 


x– dμ ≈ ..

On the other hand, L(f (), f ()) ≈ .. This proves that the Hadamard inequality () is
not satisfied in the fuzzy context.

In the sequel, we will establish an upper bound on the Sugeno fuzzy integral of log-
convex functions. Some specific examples will be given to illustrate the results.

Theorem . Let f : [, ] −→ (,∞) be a log-convex function with f () = f (). Then

 


f dμ ≤

∨

α∈�

(
α ∧ μ

(
[, ] ∩ {

f ()–xf ()x ≥ α
}))

,

where � = [f (), f ()) for f () > f () and � = [f (), f ()) for f () > f ().

Proof Using the log-convexity of f , for x ∈ [, ], we have

f (x) = f
(
( – x) ·  + x · 

) ≤ f ()–xf ()x = g(x)

and by () of Theorem ., we get

 


f dμ ≤

 


f ()–xf ()x dμ =

 


g dμ.

For calculating the integral in the right-hand part of the last inequality, we consider the
distribution function G given by

G(α) = μ
(
[, ] ∩ {g ≥ α}).
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If f () > f (), then

G(α) = μ
(
[, ] ∩ {

f ()–xf ()x ≥ α
})

= μ

(

[, ] ∩
{

x ≥ log f ()
f ()

α

f ()

})

= μ

([

log f ()
f ()

α

f ()
, 

])

.

Thus, � = [f (), f ()), and we only need to consider α ∈ [f (), f ()).
If f () < f (), then

G(α) = μ
(
[, ] ∩ {

f ()–xf ()x ≥ α
})

= μ

(

[, ] ∩
{

x ≤ log f ()
f ()

f ()
α

})

= μ

([

, log f ()
f ()

f ()
α

])

.

Thus, � = [f (), f ()) and we only need to consider α ∈ [f (), f ()).
Taking into account () of Theorem ., we get

 


g dμ =

∨

α∈�

(
α ∧ G(α)

) ≥
 


f dμ,

and the proof is completed. �

Remark . In the case f () = f () in Theorem ., we have g(x) = f (), and using () and
() of Theorem ., we get

 


f dμ ≤

 


g dμ =

 


f () dμ = f () ∧ μ

(
[, ]

)
.

Corollary . Let f : [, ] −→ (,∞) be a log-convex function with f () = f (), � be the
Borel field and μ be the Lebesgue measure on X = R. Then

 


f dμ ≤

⎧
⎪⎨

⎪⎩

∨
α∈[f (),f ())(α ∧ log f ()

f ()

f ()
α

), f () > f (),
∨

α∈[f (),f ())(α ∧ log f ()
f ()

f ()
α

), f () < f ().

Example . Let μ be the Lebesgue measure on R. Consider the function f (x) = x– 
 on

X = [, ]. This function is, obviously, log-convex and positive on [, ]. As f () =
√

/,
f () =

√
, using Corollary . we can get the following estimate:

 


x– 

 dμ ≤
∨

α∈[
√

/,
√

)

(

α ∧ log

√


α

)

.

In this expression, log

√


α
is a decreasing continuous function of α when α ∈ [

√
/,

√
).

Hence, the supremum will be attained at the point which is one of the solutions of the
equation

α = log

√


α
,
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that is, at α ≈ .. Consequently, we have

 


x– 

 dμ ≤ ..

Proposition . Let f : [, ] −→ (, ] be a log-convex function with f () = f (), � be the
Borel field and μ be the Lebesgue measure on X = R. Then

ˆ
TP ,[,]

f dμ ≤

⎧
⎪⎨

⎪⎩

f ()
e ln( f ()

f () )
, f () > f (),

f ()
e ln( f ()

f () )
, f () < f ().

Proof For a log-convex function f : [, ] −→ (, ] with f () = f (), according to () of
Proposition . and Corollary . with t-norm TP , we have

ˆ
TP ,[,]

f dμ ≤

⎧
⎪⎨

⎪⎩

∨
α∈(,](α · log f ()

f ()

f ()
α

), f () > f (),
∨

α∈(,](α · log f ()
f ()

f ()
α

), f () < f ()

=

⎧
⎪⎨

⎪⎩

f ()
e ln( f ()

f () )
, f () > f (),

f ()
e ln( f ()

f () )
, f () < f (). �

Example . Let μ be the Lebesgue measure on R. Consider the function f (x) = x– on
X = [, ]. This function is, obviously, log-convex and positive on [, ]. As f () = / and
f () = , using Proposition ., we can get the following estimate:

ˆ
TP ,[,]

x– dμ ≤ 
e ln()

≈ ..

In the next theorem, we prove the general case of Theorem ..

Theorem . Suppose that f : [a, b] −→ (,∞) is a log-convex function with f (a) = f (b).
Then

 b

a
f dμ ≤

∨

α∈�

(
α ∧ μ

(
[a, b] ∩ {

f (a)–tf (b)t ≥ α
}))

, ()

where t = x–a
b–a , � = [f (a), f (b)) for f (b) > f (a) and � = [f (b), f (a)) for f (a) > f (b).

Proof As f is log-convex, for x ∈ [a, b], we have

f (x) = f
((

 –
x – a
b – a

)

a +
x – a
b – a

b
)

≤ f (a)–tf (b)t = g(x),

where t = x–a
b–a . By () of Theorem ., we get

 b

a
f dμ ≤

 b

a
f (a)–tf (b)t dμ =

 b

a
g dμ.
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A similar argument as in the proof of Theorem . yields

 b

a
g dμ =

∨

α∈�

(
α ∧ μ

(
[a, b] ∩ {

f (a)–tf (b)t ≥ α
}))

,

where t = x–a
b–a , � = [f (a), f (b)) for f (b) > f (a) and � = [f (b), f (a)) for f (a) > f (b). This com-

pletes the proof. �

Remark . In the case f (a) = f (b) in Theorem ., we have g(x) = f (a) and using () and
() of Theorem ., we get

 b

a
f dμ ≤

 b

a
g dμ =

 b

a
f (a) dμ = f (a) ∧ μ

(
[a, b]

)
.

Corollary . Let f : [a, b] −→ (,∞) be a log-convex function with f (a) = f (b), � be the
Borel field and μ be the Lebesgue measure on X = R. Then

 b

a
f dμ ≤

⎧
⎪⎨

⎪⎩

∨
α∈[f (a),f (b))(α ∧ (b – a) log f (b)

f (a)

f (b)
α

), f (b) > f (a),
∨

α∈[f (b),f (a))(α ∧ (b – a) log f (a)
f (b)

f (a)
α

), f (b) < f (a).

Example . Let μ be the Lebesgue measure on R. Consider the function f (x) = xx–

on X = [, ]. This function is, obviously, positive and log-convex on [, ]. As f () = /,
f () = , using Corollary ., we may approximate the upper bound of the Sugeno fuzzy
integral of f on [, ] by

 


xx– dμ ≤

∨

α∈[/,)

(

α ∧ ( – ) log

α

)

.

In this expression, log

α

is a decreasing continuous function of α when α ∈ [/, ).
Hence, the supremum will be attained at the point which is one of the solutions of the
equation

α = log

α

,

that is, at α ≈ .. Therefore,

 


xx– dμ ≤ ..

It should be noted that the exact solution of
ffl 

 xx– dμ cannot be easily calculated. But
surely the exact solution is less than or equal to ..

4 Geometric interpretation
Assume that X = R, � is the Borel field, μ is the Lebesgue measure and f : A ⊆ R −→
(,∞) is a continuous function. Then the geometric significance of

ffl
A f dμ is the edge’s

length of the largest square between the curve of f (x) and the x-axis.
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Figure 1 Geometric interpretation of Example
3.5.

In Example ., for the real log-convex function f (x) = x– 
 on [, ], there exists the

real function

g(x) = (
√

/)–x(
√

)x

such that

 


x– 

 dμ ≤
 


(
√

/)–x(
√

)x dμ. ()

Geometric interpretation of () is shown in Figure . The lengths of the lines  and  are
the solutions of the integrals in left- and right-hand sides of (), respectively. We have a
similar geometric interpretation for Example ..

5 Convexity associated to means
Let us recall the following means for two positive numbers:

• The arithmetic mean

A = A(a, b) :=
a + b


, a, b > .

• The geometric mean

G = G(a, b) :=
√

ab, a, b > .

The inequality G ≤ A is well known in the literature.
The definition of convexity and log-convexity can be embedded into a more general

framework by taking two regular means M and N (on the intervals I and J respectively)
and calling a function f : I −→ J to be (M, N)-midpoint convex if it satisfies

f
(
M(x, y)

) ≤ N
(
f (x), f (y)

)



Abbaszadeh et al. Journal of Inequalities and Applications  (2015) 2015:362 Page 10 of 12

for every x, y ∈ I (see [–]). If f is continuous, this yields the (M, N)-convexity of f ; that
is,

f
(
M(x, y;  – λ,λ)

) ≤ N
(
f (x), f (y);  – λ,λ

)

for every x, y ∈ I and every λ ∈ [, ]. For example, if f is continuous, the inequality () can
be introduced as (A, G)-convexity.

The following result provides an upper bound on the right-hand side of the inequality
() (Theorem .) in the case that f is continuous.

Theorem . Let f : [a, b] −→ (,∞) be a continuous and log-convex function with f (a) =
f (b). Then

 b

a
f dμ ≤

∨

α∈�

(
α ∧ μ

(
[a, b] ∩ {

f (a)–t f (b)t ≥ α
}))

≤
∨

α∈�

(
α ∧ μ

(
[a, b] ∩ {

( – t)f (a) + tf (b) ≥ α
}))

,

where t = x–a
b–a , � = [f (a), f (b)) for f (b) > f (a) and � = [f (b), f (a)) for f (a) > f (b).

Proof By the geometric mean-arithmetic mean inequality (G ≤ A), we have

f (a)–tf (b)t ≤ ( – t)f (a) + tf (b),

where t = x–a
b–a , which yields

 b

a
f (a)–tf (b)t ≤

 b

a

(
( – t)f (a) + tf (b)

)
dμ.

Hence, the assertion of this theorem is true in view of Definition . and Theorem .. �

Corollary . Let f : [a, b] −→ (,∞) be a continuous and log-convex function with f (a) =
f (b), � be the Borel field and μ be the Lebesgue measure on X = R. Then, for f (b) > f (a),

 b

a
f dμ ≤

∨

α∈[f (a),f (b))

(

α ∧ (b – a) log f (b)
f (a)

f (b)
α

)

≤
∨

α∈[f (a),f (b))

(

α ∧ b – a
f (b) – f (a)

(
f (b) – α

)
)

.

If f (b) < f (a), then

 b

a
f dμ ≤

∨

α∈[f (b),f (a))

(

α ∧ (b – a) log f (a)
f (b)

f (a)
α

)

≤
∨

α∈[f (b),f (a))

(

α ∧ b – a
f (a) – f (b)

(
f (a) – α

)
)

.
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Example . Consider again the function f (x) = xx– on X = [, ], see Example .. In
virtue of Corollary . and Example ., we have

 


xx– dμ ≤ . ≤

∨

α∈[/,)

(

α ∧  – 
 – /

( – α)
)

≈ ..

6 Conclusion
In this paper, we have established an upper bound on the Sugeno fuzzy integral of log-
convex functions which is a useful tool to estimate unsolvable integrals of this kind.
In many applications, assumptions about the log-convexity of a probability distribu-
tion allow just enough special structure to yield a workable theory. The log-concavity
or log-convexity of probability densities and their integrals has interesting qualitative
implications in many areas of economics, in political science, in biology, and in indus-
trial engineering. As we know, fuzzy measures have been introduced by Sugeno in the
early seventies in order to extend probability measures by relaxing the additivity property.
Thus the study of the Sugeno fuzzy integral for log-convex functions is an important and
interesting topic for further research.
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10. Román-Flores, H, Flores-Franulič, A, Chalco-Cano, Y: A Jensen type inequality for fuzzy integrals. Inf. Sci. 177,

3192-3201 (2007)
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