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1 Introduction
The study of generalized Calderón-Zygmund operators and strongly singular non-
convolution operators originated in the classical Calderón-Zygmund operator. The theory
of the Calderón-Zygmund operator was one of the important achievements of classical
analysis in the last century, and it has many important applications in Fourier analysis,
complex analysis, operator theory and so on.

The introduction of the strongly singular Calderón-Zygmund operator is motivated by
a class of multiplier operators whose symbol is given by ei|ξ |a /|ξ |β away from the origin,
 < a < , β > . Fefferman and Stein [] enlarged the multiplier operators onto a class
of convolution operators. Coifman [] also considered a related class of operators for
n = . The strongly singular non-convolution operator, whose properties are similar to
those of the classical Calderón-Zygmund operator, but the kernel is more singular near
the diagonal than that of the standard one, was introduced by Alvarez and Milman in [].
Furthermore, following a suggestion of Stein, the authors in [] showed that the pseudo-
differential operator with symbol in the Hörmander class S–β

α,δ , where  < δ ≤ α <  and
n( – α)/ ≤ β < n/, is included in the strongly singular Calderón-Zygmund operator.
Thus, the strongly singular Calderón-Zygmund operator correlates closely with both the
theory of Calderón-Zygmund singular integrals in harmonic analysis and the theory of
pseudo-differential operators in partial differential equations.

Suppose that T is a strongly singular Calderón-Zygmund operator or a generalized
Calderón-Zygmund operator, whose strict definitions will be given later, and b is a lo-
cally integrable function on Rn. The commutator [b, T] generated by b and T is defined as
follows:

[b, T](f )(x) = b(x)Tf (x) – T(bf )(x).
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In , Alvarez and Milman [, ] discussed the boundedness of the strongly singular
Calderón-Zygmund operator on Lebesgue spaces. In , in [], the behavior of Toeplitz
operators related to strongly singular Calderón-Zygmund operators and Lipschitz func-
tions was discussed on Lebesgue spaces. Furthermore, in , Lin and Lu [] proved the
boundedness of the commutators of strongly singular Calderón-Zygmund operators on
Hardy type spaces. In , the authors in [] obtained two kinds of endpoint estimates for
strongly singular Calderón-Zygmund operators. And the pointwise estimate for the sharp
maximal function of commutators generated by strongly singular Calderón-Zygmund op-
erators and BMO functions was also established.

In , the authors in [] obtained the boundedness of generalized Calderón-Zygmund
operators on weighted Lebesgue spaces and weighted Hardy spaces. In , the point-
wise estimates for the sharp maximal functions of commutators generated by generalized
Calderón-Zygmund operators and BMO functions or Lipschitz functions were established
in [].

The classical Morrey spaces which were introduced by Morrey in [] came from [, ]
to study the local behavior of solutions to second order elliptic partial differential equa-
tions. For the properties and applications of classical Morrey spaces, one can refer to [,
]. In , Chiarenza and Frasca [] proved the boundedness of the Hardy-Littlewood
maximal operator, the fractional integral operator and the Calderón-Zygmund singular
integral operator on Morrey spaces. In , Fu and Lu [] established the bounded-
ness of weighted Hardy operators and their commutators on Morrey spaces. Lin [, ]
discussed the commutators of strongly singular Calderón-Zygmund operators and gener-
alized Calderón-Zygmund operators on Morrey spaces, respectively.

In , Komori and Shirai [] defined the weighted Morrey spaces and studied the
boundedness of the Hardy-Littlewood maximal operator, the fractional integral oper-
ator and the classical Calderón-Zygmund singular integral operator on these weighted
spaces. In , Wang [] researched the behavior of commutators generated by classical
Calderón-Zygmund operators and weighted Lipschitz functions or weighted BMO func-
tions on weighted Morrey spaces. In , the authors in [] proved the boundedness of
some sublinear operators and their commutators on weighted Morrey spaces. In , Lin
and Sun [] established the boundedness of commutators generated by strongly singular
Calderón-Zygmund operators and weighted BMO functions on weighted Morrey spaces.
In , the authors in [] studied the properties of commutators generated by gener-
alized Calderón-Zygmund operators and weighted BMO functions on weighted Morrey
spaces.

Inspired by the above results, in this paper we are interested in the boundedness of the
commutators generated by weighted Lipschitz functions and strongly singular Calderón-
Zygmund operators or generalized Calderón-Zygmund operators on weighted Morrey
spaces.

Before stating our main results, let us first recall some necessary definitions and nota-
tions.

Definition . Let S be the space of all Schwartz functions on Rn and S ′ be its dual space,
the class of all tempered distributions on Rn. Let T : S → S ′ be a bounded linear operator.
T is called a strongly singular Calderón-Zygmund operator if the following three condi-
tions are satisfied.
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() T can be extended into a continuous operator from L(Rn) into itself.
() There exists a function K(x, y) continuous away from the diagonal {(x, y) : x = y}

such that

∣
∣K(x, y) – K(x, z)

∣
∣ +

∣
∣K(y, x) – K(z, x)

∣
∣ ≤ C

|y – z|δ
|x – z|n+ δ

α

,

if |y – z|α ≤ |x – z| for some  < δ ≤  and  < α < . And

〈Tf , g〉 =
∫ ∫

K(x, y)f (y)g(x) dy dx

for f , g ∈ S with disjoint supports.
() For some n( – α)/ ≤ β < n/, both T and its conjugate operator T∗ can be

extended into continuous operators from Lq to L, where /q = / + β/n.

Definition . Suppose that T : S → S ′ is a linear operator with kernel K(·, ·) defined
initially by

T(f )(x) =
∫

Rn
K(x, y)f (y) dy, f ∈ C∞

c
(

Rn), x /∈ supp f .

The operator T is called a generalized Calderón-Zygmund operator provided the following
three conditions are satisfied.

() T can be extended into a continuous operator on L(Rn).
() K is smooth away from the diagonal {(x, y) : x = y} with

∫

|x–y|>|z–y|

(∣
∣K(x, y) – K(x, z)

∣
∣ +

∣
∣K(y, x) – K(z, x)

∣
∣
)

dx ≤ C,

where C >  is a constant independent of y and z.
() There is a sequence of positive constant numbers {Cj} such that for each j ∈ N,

(∫

j|z–y|≤|x–y|<j+|z–y|

∣
∣K(x, y) – K(x, z)

∣
∣
q dx

)/q

≤ Cj
(

j|z – y|)–n/q′

and
(∫

j|y–z|≤|y–x|<j+|y–z|

∣
∣K(y, x) – K(z, x)

∣
∣
q dx

)/q

≤ Cj
(

j|z – y|)–n/q′
,

where (q, q′) is a fixed pair of positive numbers with /q + /q′ =  and  < q′ < .

If we compare the generalized Calderón-Zygmund operator with the classical Calderón-
Zygmund operator, whose kernel K(x, y) enjoys the conditions

∣
∣K(x, y)

∣
∣ ≤ C|x – y|–n

and

∣
∣K(x, y) – K(x, z)

∣
∣ +

∣
∣K(y, x) – K(z, x)

∣
∣ ≤ C|x – y|–n

( |z – y|
|x – y|

)δ

,
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where |x – y| > |z – y| for some δ > , we can find out that the classical Calderón-Zygmund
operator is a generalized Calderón-Zygmund operator defined as in Definition . with
Cj = –jδ , j ∈ N, and any  < q < ∞.

Definition . ([]) A non-negative measurable function ω is said to be in the Mucken-
houpt class Ap with  < p < ∞ if for every cube Q in Rn, there exists a positive constant C
independent of Q such that

(


|Q|
∫

Q
ω(x) dx

)(


|Q|
∫

Q
ω(x)–p′

dx
)p–

≤ C,

where Q denotes a cube in Rn with the side parallel to the coordinate axes and /p+/p′ = .
When p = , a non-negative measurable function ω is said to belong to A if there exists a
constant C >  such that for any cube Q,


|Q|

∫

Q
ω(y) dy ≤ Cω(x), a.e. x ∈ Q.

It is well known that if ω ∈ Ap with  < p < ∞, then ω ∈ Ar for all r > p and ω ∈ Aq for
some  < q < p.

Definition . ([]) Let  ≤ p < ∞,  < k <  and ω be a weighted function. Then the
weighted Morrey space Lp,k(ω) is defined by

Lp,k(ω) =
{

f ∈ Lp
loc(ω) : ‖f ‖Lp,k (ω) < ∞}

,

where

‖f ‖Lp,k (ω) = sup
Q

(


ω(Q)k

∫

Q

∣
∣f (x)

∣
∣
p
ω(x) dx

)/p

,

and the supremum is taken over all cubes Q in Rn.

Definition . ([]) Let  ≤ p < ∞,  < k <  and u, v be two weighted functions. Then
the weighted Morrey space Lp,k(u, v) for two weights is defined by

Lp,k(u, v) =
{

f ∈ Lp
loc(u, v) : ‖f ‖Lp,k (u,v) < ∞}

,

where

‖f ‖Lp,k (u,v) = sup
Q

(


v(Q)k

∫

Q

∣
∣f (x)

∣
∣
pu(x) dx

)/p

,

and the supremum is taken over all cubes Q in Rn.

Definition . Let  ≤ p < ∞,  < β <  and ω be a weighted function. A locally integrable
function b is said to be in the weighted Lipschitz space Lipp

β
(ω) if

‖b‖Lip
p
β

(ω) = sup
Q


ω(Q)β/n

(


ω(Q)

∫

Q

∣
∣b(x) – bQ

∣
∣
p
ω(x)–p dx

)/p

< ∞,
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where bQ = 
|Q|

∫

Q b(y) dy and the supremum is taken over all cubes Q ⊂ Rn. Moreover, we
denote simply by Lipβ (ω) when p = .

Definition . The Hardy-Littlewood maximal operator M is defined by

M(f )(x) = sup
Q�x


|Q|

∫

Q

∣
∣f (y)

∣
∣dy.

We set Ms(f ) = M(|f |s)/s, where  < s < ∞.
The sharp maximal operator M� is defined by

M�(f )(x) = sup
Q�x


|Q|

∫

Q

∣
∣f (y) – fQ

∣
∣dy ∼ sup

Q�x
inf
a∈C


|Q|

∫

Q

∣
∣f (y) – a

∣
∣dy.

We define the t-sharp maximal operator M�
t (f ) = M�(|f |t)/t , where  < t < .

Definition . ([]) A weighted function ω belongs to the reverse Hölder class RHr if
there exist two constants r >  and C >  such that the following reverse Hölder inequality

(


|Q|
∫

Q
ω(x)r dx

) 
r
≤ C

(


|Q|
∫

Q
ω(x) dx

)

holds for every cube Q in Rn. Denote by rω the critical index of ω for the reverse Hölder
condition. That is, rω = sup{r >  : ω ∈ RHr}.

Definition . For  < β < n,  ≤ r < ∞, the fractional maximal operator Mβ,r is defined
by

Mβ,r(f )(x) = sup
Q�x

(


|Q|–βr/n

∫

Q

∣
∣f (y)

∣
∣
r dy

) 
r
.

Definition . For  < β < n,  ≤ r < ∞ and a weight ω, the weighted fractional maximal
operator Mβ,r,ω is defined by

Mβ,r,ω(f )(x) = sup
Q�x

(


ω(Q)–βr/n

∫

Q

∣
∣f (y)

∣
∣
r
ω(y) dy

) 
r
,

where the above supremum is taken over all cubes Q containing x.

2 Main results
In what follows, we will give the main results in this paper.

Theorem . Let T be a strongly singular Calderón-Zygmund operator, α, β , δ be given as
in Definition ., and n(–α)

 < β < n
 (n ≥ ). Suppose  < β < , n(–α)+β

β
< p < n

β
, 

q = 
p – β

n ,
 < k < p

q , ω ∈ A and rω > (n(–α)+β)(p–)
βp–n(–α)–β

. If b ∈ Lipβ (ω), then [b, T] is bounded from Lp,k(ω)
to Lq,kq/p(ω–q,ω).

Theorem . Let T be a generalized Calderón-Zygmund operator and q′ be given as in
Definition .. Suppose  < β < , q′ < p < n/β, /s = /p – β/n,  < k < p/s, {jCj} ∈ l,
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ωs/p ∈ A and rω > max{ (p–)q′
p–q′ , –k

p/s–k }. If b ∈ Lipβ (ω), then [b, T] is bounded from Lp,k(ω) to
Ls,ks/p(ω–s,ω).

Noticing that the classical Calderón-Zygmund operator is a generalized Calderón-
Zygmund operator defined as in Definition . with Cj = –jδ (j ∈ N) and any  < q < ∞, we
can obtain the following result as a corollary.

Corollary . Let T be a classical Calderón-Zygmund operator,  < β < ,  < p < n/β,
/s = /p – β/n,  < k < p/s, ωs/p ∈ A and rω > –k

p/s–k . If b ∈ Lipβ (ω), then [b, T] is bounded
from Lp,k(ω) to Ls,ks/p(ω–s,ω).

Remark . As matter of fact, the result of Corollary . was obtained in [] with the
special case δ = . Thus Theorem . can be regarded as a generalization of the corre-
sponding result in []. And from this point of view, the range of the index in Theorem .
is reasonable.

3 Preliminaries
In order to obtain our main results, first we introduce some requisite lemmas.

Lemma . ([, ]) If T is a strongly singular Calderón-Zygmund operator, then T is the
type of weak (, ) and can be defined to be a continuous operator from L∞ to BMO.

It follows from Definition ., Lemma . and the interpolation theory that the strongly
singular Calderón-Zygmund operator T is bounded on Lp for  < p < ∞, and T is bounded
from Lu to Lv, n(–α)+β

β
≤ u < ∞ and  < u

v ≤ α. In particular, if we restrict n(–α)
 < β < n


in () of Definition ., then T is bounded from Lu to Lv, where n(–α)+β

β
< u < ∞ and

 < u
v < α.

Lemma . ([]) Let T be a generalized Calderón-Zygmund operator and the sequence
{Cj} ∈ l, then T is bounded on Lp(Rn) and the type of weak (, ), where  < p < ∞.

Lemma . ([]) Let  < t < ,  < p < ∞ and  < k < . If u, v ∈ A∞, then we have

∥
∥Mt(f )

∥
∥

Lp,k (u,v) ≤ C
∥
∥M�

t (f )
∥
∥

Lp,k (u,v)

for all functions f such that the left-hand side is finite. In particular, when u = v = ω and
ω ∈ A∞, we have

∥
∥Mt(f )

∥
∥

Lp,k (ω) ≤ C
∥
∥M�

t (f )
∥
∥

Lp,k (ω)

for all functions f such that the left-hand side is finite.

Lemma . ([]) Let μ ∈ A, then there are constants C, C and  < δ <  depending only
on A-constant of μ such that for any measurable subset E of a ball B,

C
|E|
|B| ≤ μ(E)

μ(B)
≤ C

( |E|
|B|

)δ

.
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Lemma . ([]) Let T be a strongly singular Calderón-Zygmund operator, and α, β , δ

be given as in Definition .. If n(–α)+β

β
< p < ∞,  < k <  and ω ∈ Aβp/[n(–α)+β], then T

is bounded on Lp,k(ω).

Lemma . ([]) Let T be a generalized Calderón-Zygmund operator, q′ be the same as
in Definition ., and the sequence {Cj} ∈ l. If q′ < p < ∞,  < k <  and ω ∈ Ap/q′ , then T is
bounded on Lp,k(ω).

Lemma . If ε > , then ln x ≤ 
ε
xε for all x ≥ .

The above result comes from the monotone property of the function ϕ(x) = ln x – 
ε
xε .

Lemma . ([]) Let  < β < n,  < p < n/β, /s = /p – β/n and ωs/p ∈ A. Then if
 < k < p/s and rω > –k

p/s–k , we have

∥
∥Mβ,(f )

∥
∥

Ls,ks/p(ωs/p ,ω) ≤ C‖f ‖Lp,k (ω).

Lemma . ([]) Let  < β < n,  < p < n/β, /s = /p – β/n,  < k < p/s and ω ∈ A∞.
Then, for every  < r < p, we have

∥
∥Mβ ,r,ω(f )

∥
∥

Ls,ks/p(ω) ≤ C‖f ‖Lp,k (ω).

Lemma . ([, ]) Let  < β <  and ω ∈ A. Then, for any  ≤ p < ∞, there exists an
absolute constant C >  such that ‖b‖Lip

p
β

(ω) ≤ C‖b‖Lipβ (ω).

Lemma . Let  < β < , ω ∈ A and f be a function in Lipβ (ω). Suppose  ≤ p < ∞,
x ∈ Rn, and r, r > . Then

(


|B(x, r)|
∫

B(x,r)

∣
∣f (y) – fB(x,r)

∣
∣
p
ω(y)–p dy

) 
p

≤ C‖f ‖Lipβ (ω)ω(x)
(

 +
∣
∣
∣
∣
ln

r

r

∣
∣
∣
∣

)(
ω(B(x, r))
|B(x, r)|

)– 
p′

max
i=,

ω
(

B(x, ri)
)β/n.

Proof Without loss of generality, we may assume that  < r ≤ r and omit the case  <
r < r due to their similarity. For  < r ≤ r, there are k, k ∈ Z such that k– < r ≤ k

and k– < r ≤ k . Then k ≤ k and

(k – k – ) ln  < ln
r

r
< (k – k + ) ln .

Thus, we have

(


|B(x, r)|
∫

B(x,r)

∣
∣f (y) – fB(x,r)

∣
∣
p
ω(y)–p dy

) 
p

≤
(


|B(x, r)|

∫

B(x,r)

∣
∣f (y) – fB(x,k )

∣
∣
p
ω(y)–p dy

) 
p

+ |fB(x,r) – fB(x,k )|
(


|B(x, r)|

∫

B(x,r)
ω(y)–p dy

) 
p
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≤
(

n

|B(x, k )|
∫

B(x,k )

∣
∣f (y) – fB(x,k )

∣
∣
p
ω(y)–p dy

) 
p

+

(

|fB(x,r) – fB(x,k )| +
k–
∑

j=k

|fB(x,j+) – fB(x,j)|
)

×
(


|B(x, r)|

∫

B(x,r)
ω(y)–p dy

) 
p

≤ C‖f ‖Lipβ (ω)ω(x)

p ω

(

B
(

x, k
))β/n

+

(


|B(x, r)|

∫

B(x,r)

∣
∣f (y) – fB(x,k )

∣
∣dy

+
k–
∑

j=k


|B(x, j)|

∫

B(x,j)

∣
∣f (y) – fB(x,j+)

∣
∣dy

)

×
(


|B(x, r)|

∫

B(x,r)
ω(y)–p dy

) 
p

.

Write


|B(x, r)|

∫

B(x,r)

∣
∣f (y) – fB(x,k )

∣
∣dy

≤ n

|B(x, k )|
(∫

B(x,k )

∣
∣f (y) – fB(x,k )

∣
∣
p
ω(y)–p dy

) 
p

×
(∫

B(x,k )
ω(y) dy

) 
p′

≤ n ω(B(x, k ))
|B(x, k )|

×
(


ω(B(x, k ))

∫

B(x,k )

∣
∣f (y) – fB(x,k )

∣
∣
p
ω(y)–p dy

) 
p

≤ n‖f ‖Lipβ (ω)ω(x)ω
(

B
(

x, k
))β/n

and


|B(x, j)|

∫

B(x,j)

∣
∣f (y) – fB(x,j+)

∣
∣dy

≤ n

|B(x, j+)|
(∫

B(x,j+)

∣
∣f (y) – fB(x,j+)

∣
∣
p
ω(y)–p dy

) 
p

×
(∫

B(x,j+)
ω(y) dy

) 
p′

≤ n ω(B(x, j+))
|B(x, j+)|

×
(


ω(B(x, j+))

∫

B(x,j+)

∣
∣f (y) – fB(x,j+)

∣
∣
p
ω(y)–p dy

) 
p

≤ n‖f ‖Lipβ (ω)ω(x)ω
(

B
(

x, j+))β/n.
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If  < p < ∞, then it follows from ω ∈ A ⊂ Ap′ that

(


|B(x, r)|
∫

B(x,r)
ω(y)–p dy

) 
p

≤ C
(


|B(x, r)|

∫

B(x,r)
ω(y) dy

)– 
p(p′–)

= C
(

ω(B(x, r))
|B(x, r)|

)– 
p′

.

If p = , then the above estimate holds obviously.
Thus

(


|B(x, r)|
∫

B(x,r)

∣
∣f (y) – fB(x,r)

∣
∣
p
ω(y)–p dy

) 
p

≤ C‖f ‖Lipβ (ω)ω(x)

p ω

(

B
(

x, k
))β/n

+ C

(

‖f ‖Lipβ (ω)ω(x)ω
(

B
(

x, k
))β/n

+
k–
∑

j=k

‖f ‖Lipβ (ω)ω(x)ω
(

B
(

x, j+))β/n
)(

ω(B(x, r))
|B(x, r)|

)– 
p′

≤ C‖f ‖Lipβ (ω)ω(x)ω
(

B
(

x, k
))β/n

(
ω(B(x, r))
|B(x, r)|

)– 
p′

+ C(k – k + )‖f ‖Lipβ (ω)ω(x)ω
(

B
(

x, k
))β/n

×
(

ω(B(x, r))
|B(x, r)|

)– 
p′

≤ C‖f ‖Lipβω(x)
(

 +
∣
∣
∣
∣
ln

r

r

∣
∣
∣
∣

)(
ω(B(x, r))
|B(x, r)|

)– 
p′

ω
(

B(x, r)
)β/n.

This completes the proof of Lemma .. �

Lemma . Let T be a strongly singular Calderón-Zygmund operator, α, β , δ be given as
in Definition . and n(–α)

 < β < n
 . Let  < β < ,  < t < , n(–α)+β

β
< s < ∞, ω ∈ A ∩ RHr

with r > (n(–α)+β)(s–)
βs–n(–α)–β

, and b ∈ Lipβ (ω), then we have, for a.e. x ∈ Rn,

M�
t
(

[b, T]f
)

(x) ≤ C‖b‖Lipβ (ω)
(

ω(x)Mβ,s,ω(Tf )(x) + ω(x)Mβ,s,ω(f )(x)
)

.

Proof For any ball B = B(x, rB) with the center x and radius rB, there are two cases.
Case : rB > .
We decompose f = f + f, where f = f χB and χB denotes the characteristic function of

B. Observe that

[b, T](f )(y) =
(

b(y) – bB
)

T(f )(y) – T
(

(b – bB)f
)

(y) – T
(

(b – bB)f
)

(y).
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Since  < t < , we have
(


|B|

∫

B

∣
∣
∣
∣[b, T](f )(y)

∣
∣
t –

∣
∣T

(

(b – bB)f
)

(x)
∣
∣
t∣
∣dy

)/t

≤
(


|B|

∫

B

∣
∣[b, T](f )(y) + T

(

(b – bB)f
)

(x)
∣
∣
t dy

)/t

≤ C
(


|B|

∫

B

∣
∣
(

b(y) – bB
)

T(f )(y)
∣
∣
t dy

)/t

+ C
(


|B|

∫

B

∣
∣T

(

(b – bB)f
)

(y)
∣
∣
t dy

)/t

+ C
(


|B|

∫

B

∣
∣T

(

(b – bB)f
)

(y) – T
(

(b – bB)f
)

(x)
∣
∣
t dy

)/t

:= I + I + I.

Since ω ∈ A, by Hölder’s inequality and Lemma ., we have

I ≤ C
|B|

∫

B

∣
∣
(

b(y) – bB
)

T(f )(y)
∣
∣dy

≤ C
|B|

(∫

B

∣
∣b(y) – bB

∣
∣
s′
ω(y)–s′ dy

)/s′(∫

B

∣
∣Tf (y)

∣
∣
s
ω(y) dy

)/s

≤ C
ω(B)β/n

(


ω(B)

∫

B

∣
∣b(y) – bB

∣
∣
s′
ω(y)–s′ dy

)/s′

×
(

C
ω(B)–βs/n

∫

B

∣
∣Tf (y)

∣
∣
s
ω(y) dy

)/s
ω(B)
|B|

≤ C‖b‖Lip β (ω)Mβ,s,ω(Tf )(x)ω(x).

It follows from Kolmogorov’s inequality [], Lemma ., Lemma ., Hölder’s inequal-
ity and Lemma . that

I ≤ C
|B|

∫

B

∣
∣
(

b(y) – bB
)

f (y)
∣
∣dy

≤ C
|B|

(∫

B

∣
∣b(y) – bB

∣
∣
s′
ω(y)–s′ dy

)/s′(∫

B

∣
∣f (y)

∣
∣
s
ω(y) dy

)/s

≤ C
ω(B)β/n

(


ω(B)

∫

B

∣
∣b(y) – bB

∣
∣
s′
ω(y)–s′ dy

)/s′

×
(


ω(B)–βs/n

∫

B

∣
∣f (y)

∣
∣
s
ω(y) dy

)/s
ω(B)
|B|

≤ C‖b‖Lipβ(ω)Mβ,s,ω(f )(x)ω(x).

Since rB >  and |y – x|α ≤ |z – x| for any y ∈ B, z ∈ (B)c, by () of Definition ., we can
get

I ≤ C
|B|

∫

B

∣
∣T

(

(b – bB)f
)

(y) – T
(

(b – bB)f
)

(x)
∣
∣dy

≤ C
|B|

∫

B

∫

(B)c

∣
∣K(y, z) – K(x, z)

∣
∣
∣
∣b(z) – bB

∣
∣
∣
∣f (z)

∣
∣dz dy
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≤ C
∞

∑

j=


|B|

∫

B

∫

j+B\jB

|y – x|δ
|z – x|n+ δ

α

∣
∣b(z) – bB

∣
∣
∣
∣f (z)

∣
∣dz dy

≤ Crδ– δ
α

B

∞
∑

j=

(

j)– δ
α


|j+B|

∫

j+B

∣
∣b(z) – bB

∣
∣
∣
∣f (z)

∣
∣dz.

By Hölder’s inequality and Lemma ., we have

I ≤ C
∞

∑

j=

(

j)– δ
α


|j+B|

(∫

j+B

∣
∣b(z) – bB

∣
∣
s′
ω(z)–s′ dz

)/s′

×
(∫

j+B

∣
∣f (z)

∣
∣
s
ω(z) dz

)/s

≤ C
∞

∑

j=

(

j)– δ
α


|j+B| |

j+B| 
s′
(∫

j+B

∣
∣f (z)

∣
∣
s
ω(z) dz

)/s

× ‖b‖Lipβ (ω)ω(x)
(

 +
∣
∣
∣
∣
ln


j+

∣
∣
∣
∣

)(
ω(j+B)
|j+B|

)– 
s
ω

(

j+B
)β/n

≤ C‖b‖Lipβ (ω)ω(x)
∞

∑

j=

j
(

j)– δ
α


|j+B|

∣
∣j+B

∣
∣


s′
(

ω(j+B)
|j+B|

)– 
s

× ω
(

j+B
)/s

(


ω(j+B)–βs/n

∫

j+B

∣
∣f (z)

∣
∣
s
ω(z) dz

)/s

≤ C‖b‖Lipβ (ω)ω(x)Mβ,s,ω(f )(x)
∞

∑

j=

j
(

j)– δ
α

≤ C‖b‖Lipβ (ω)ω(x)Mβ,s,ω(f )(x).

Case :  < rB ≤ .
Since r > (n(–α)+β)(s–)

βs–n(–α)–β
, then n(–α)+β

β
< rs

s+r– . There exists s such that n(–α)+β

β
< s <

rs
s+r– . For this index s, there exists l such that T is bounded from Ls to Ll and  < s

l
< α.

Then we can take θ satisfying  < s
l

< θ < α. Let B̃ = B(x, rθ
B). Write f = f + f, where

f = f χB̃, then

[b, T](f )(y) =
(

b(y) – bB
)

T(f )(y) – T
(

(b – bB)f
)

(y) – T
(

(b – bB)f
)

(y).

Since  < t < , we have
(


|B|

∫

B

∣
∣
∣
∣[b, T](f )(y)

∣
∣
t –

∣
∣T

(

(b – bB)f
)

(x)
∣
∣
t∣
∣dy

)/t

≤
(


|B|

∫

B

∣
∣[b, T](f )(y) + T

(

(b – bB)f
)

(x)
∣
∣
t dy

)/t

≤ C
(


|B|

∫

B

∣
∣
(

b(y) – bB
)

T(f )(y)
∣
∣
t dy

)/t

+ C
(


|B|

∫

B

∣
∣T

(

(b – bB)f
)

(y)
∣
∣
t dy

)/t



Lin et al. Journal of Inequalities and Applications  (2015) 2015:338 Page 12 of 19

+ C
(


|B|

∫

B

∣
∣T

(

(b – bB)f
)

(y) – T
(

(b – bB)f
)

(x)
∣
∣
t dy

)/t

:= II + II + II.

Similarly to estimate I, we get

II ≤ C‖b‖Lipβ (ω)Mβ,s,ω(Tf )(x)ω(x).

Since  < s < s < ∞, there exists l ( < l < ∞) such that 
s

= 
s + 

l . It follows from Hölder’s
inequality and the (Ls , Ll )-boundedness of T that

II ≤ C
(


|B|

∫

B

∣
∣T

(

(b – bB)f
)

(y)
∣
∣
l dy

) 
l

≤ C|B|– 
l

(∫

B̃

∣
∣b(y) – bB

∣
∣
s ∣∣f (y)

∣
∣
s dy

) 
s

≤ C|B|– 
l

(∫

B̃

∣
∣b(y) – bB

∣
∣
l
ω(y)– l

s dy
) 

l
(∫

B̃

∣
∣f (y)

∣
∣
s
ω(y) dy

) 
s

≤ CMβ,s,ω(f )(x)ω(B̃)

s – β

n |B|– 
l

(∫

B̃

∣
∣b(y) – bB

∣
∣
l
ω(y)– l

s dy
) 

l
.

Denote p = (r–)(s–s)
s(s–) . The fact s < rs

s+r– implies  < p < ∞. Then we get p′
 = (r–)(s–s)

rs–(s+r–)s

and  < p′
 < ∞. By Hölder’s inequality, Lemma ., and noticing that r = lp

s′ – p
p′


, we have

II ≤ CMβ,s,ω(f )(x)ω(B̃)

s – β

n |B|– 
l

(∫

B̃
ω(y)

lp
s′ – p

p′
 dy

) 
lp

×
(∫

B̃

∣
∣b(y) – bB

∣
∣
lp′

ω(y)–lp′
 dy

) 
lp′



≤ CMβ,s,ω(f )(x)ω(B̃)

s – β

n |B|– 
l |B̃| 

l ‖b‖Lipβ (ω)ω(x)

×
(

 +
∣
∣
∣
∣
ln

rθ
B

rB

∣
∣
∣
∣

)(
ω(B̃)
|B̃|

)– 
(lp′

)′
(

ω(B̃)
|B̃|

) r
lp

ω(B̃)
β
n

≤ C‖b‖Lipβ (ω)ω(x)Mβ,s,ω(f )(x)ω(B̃)

s |B|– 

l |B̃| 
l

×
(

 + ( – θ ) ln

rB

)(
ω(B̃)
|B̃|

)– 
s
.

Denote ε = n( θ
s

– 
l

). The inequality  < s
l

< θ implies that ε > . By Lemma ., we
have

II ≤ C‖b‖Lipβ (ω)ω(x)Mβ,s,ω(f )(x)|B|– 
l |B̃| 

l + 
s

(

 +

ε

r–ε
B

)

≤ C‖b‖Lipβ (ω)ω(x)Mβ,s,ω(f )(x)r
n( θ

s
– 

l
)–ε

B

= C‖b‖Lipβ (ω)ω(x)Mβ,s,ω(f )(x).
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Let ε = δ
α

(α – θ ). It follows from θ < α that ε > . For any y ∈ B and z ∈ (B̃)c, there
is |y – x|α ≤ rα

B ≤ rθ
B ≤ |z – x| since  < rB ≤ . Applying () of Definition ., Hölder’s

inequality, Lemma . and Lemma ., we get

II ≤ C
|B|

∫

B

∣
∣T

(

(b – bB)f
)

(y) – T
(

(b – bB)f
)

(x)
∣
∣dy

≤ C
|B|

∫

B

∫

(B̃)c

∣
∣K(y, z) – K(x, z)

∣
∣
∣
∣b(z) – bB

∣
∣
∣
∣f (z)

∣
∣dz dy

≤ C
∞

∑

j=


|B|

∫

B

∫

j+B̃\j B̃

|y – x|δ
|z – x|n+ δ

α

∣
∣b(z) – bB

∣
∣
∣
∣f (z)

∣
∣dz dy

≤ Crδ– θδ
α

B

∞
∑

j=

(

j)– δ
α


|j+B̃|

(∫

j+B̃

∣
∣b(z) – bB

∣
∣
s′
ω(y)–s′ dy

) 
s′

×
(∫

j+B̃

∣
∣f (z)

∣
∣
s
ω(y) dy

) 
s

≤ Crδ– θδ
α

B

∞
∑

j=

(

j)– δ
α


|j+B̃|

∣
∣j+B̃

∣
∣


s′ ‖b‖Lipβ (ω)ω(x)ω

(

j+B̃
) β

n

×
(

 +
∣
∣
∣
∣
ln

rB

j+rθ
B

∣
∣
∣
∣

)(
ω(j+B̃)
|j+B̃|

)– 
s
Mβ,s,ω(f )(x)ω

(

j+B̃
) 

s – β
n

≤ Crδ– θδ
α

B

∞
∑

j=

(

j)– δ
α ‖b‖Lipβ (ω)ω(x)Mβ,s,ω(f )(x)

(

j + ( – θ ) ln

rB

)

≤ C‖b‖Lipβ (ω)ω(x)Mβ,s,ω(f )(x)rδ– θδ
α

B

∞
∑

j=

(

j)– δ
α

(

j +

ε

r–ε
B

)

≤ C‖b‖Lipβ (ω)ω(x)Mβ,s,ω(f )(x)r
δ
α (α–θ )–ε
B

∞
∑

j=

j
(

j)– δ
α

≤ C‖b‖Lipβ (ω)ω(x)Mβ,s,ω(f )(x).

Putting the estimates in both cases together, we have

M�
t
(

[b, T]f
)

(x) ∼ sup
rB>

inf
a∈C

(


|B(x, rB)|
∫

B(x,rB)

∣
∣
∣
∣[b, T](f )(y)

∣
∣
t – a

∣
∣dy

) 
t

≤ C‖b‖Lipβ (ω)
(

ω(x)Mβ,s,ω(Tf )(x) + ω(x)Mβ,s,ω(f )(x)
)

.

This completes the proof of Lemma .. �

Lemma . Let T be a generalized Calderón-Zygmund operator, q′ be the same as in
Definition . and the sequence {jCj} ∈ l. Let  < δ < ,  < β < , ω ∈ A, rω > q′, and
b ∈ Lipβ (ω), then, for all r > rω–

rω–q′ q′, we have

M�
δ

(

[b, T]f
)

(x) ≤ C‖b‖Lipβ (ω)
(

ω(x)Mβ,r,ω(Tf )(x)

+ ω(x)Mβ,r,ω(f )(x) + ω(x)+ β
n Mβ,r(f )(x)

)

,

a.e. x ∈ Rn.
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Proof For any ball B = B(x, rB) which contains x, we decompose f = f + f, where f = fχB .
Observe that

[b, T]f (y) =
(

b(y) – bB
)

Tf (y) – T
(

(b – bB)f
)

(y).

Since  < δ < , we have

(


|B|
∫

B

∣
∣
∣
∣[b, T]f (y)

∣
∣
δ –

∣
∣T

(

(b – bB)f
)

(x)
∣
∣
δ∣
∣dy

)/δ

≤
(


|B|

∫

B

∣
∣[b, T]f (y) + T

(

(b – bB)f
)

(x)
∣
∣
δ dy

)/δ

≤ C
(


|B|

∫

B

∣
∣
(

b(y) – bB
)

Tf (y)
∣
∣
δ dy

)/δ

+ C
(


|B|

∫

B

∣
∣T

(

(b – bB)f
)

(y)
∣
∣
δ dy

)/δ

+ C
(


|B|

∫

B

∣
∣T

(

(b – bB)f
)

(y) – T
(

(b – bB)f
)

(x)
∣
∣
δ dy

)/δ

:= I + II + III.

Since ω ∈ A, then it follows from Hölder’s inequality and Lemma . that

I ≤ C
|B|

∫

B

∣
∣
(

b(y) – bB
)

Tf (y)
∣
∣dy

≤ C
|B|

(∫

B

∣
∣b(y) – bB

∣
∣
r′
ω(y)–r′ dy

)/r′(∫

B

∣
∣Tf (y)

∣
∣
r
ω(y) dy

)/r

≤ C


ω(B)β/n

(


ω(B)

∫

B

∣
∣b(y) – bB

∣
∣
r′
ω(y)–r′ dy

)/r′

×
(



ω(B)– βr
n

∫

B

∣
∣Tf (y)

∣
∣
r
ω(y) dy

)/r
ω(B)
|B|

≤ C‖b‖Lipβ (ω)ω(x)Mβ,r,ω(Tf )(x).

By Kolmogorov’s inequality, Lemma ., Hölder’s inequality and Lemma ., we have

II ≤ C
|B|

∫

B

∣
∣
(

b(y) – bB
)

f (y)
∣
∣dy

≤ C
|B|

(∫

B

∣
∣b(y) – bB

∣
∣
r′
ω(y)–r′ dy

)/r′(∫

B

∣
∣f (y)

∣
∣
r
ω(y) dy

)/r

≤ C


ω(B)β/n

(


ω(B)

∫

B

∣
∣b(y) – bB

∣
∣
r′
ω(y)–r′ dy

)/r′

×
(



ω(B)– βr
n

∫

B

∣
∣f (y)

∣
∣
r
ω(y) dy

)/r
ω(B)
|B|

≤ C‖b‖Lipβ (ω)ω(x)Mβ,r,ω(f )(x).
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For III , we have

III ≤ C
|B|

∫

B

∣
∣T

(

(b – bB)f
)

(y) – T
(

(b – bB)f
)

(x)
∣
∣dy

≤ C
|B|

∫

B

∫

(B)c

∣
∣K(y, z) – K(x, z)

∣
∣
∣
∣b(z) – bB

∣
∣
∣
∣f (z)

∣
∣dz dy

≤ C
∞

∑

j=


|B|

∫

B

∫

j|y–x|≤|z–x|<j+|y–x|

∣
∣K(y, z) – K(x, z)

∣
∣

× ∣
∣b(z) – bB

∣
∣
∣
∣f (z)

∣
∣dz dy

≤ C
∞

∑

j=


|B|

∫

B

∫

j|y–x|≤|z–x|<j+|y–x|

∣
∣K(y, z) – K(x, z)

∣
∣

× ∣
∣b(z) – bj+B

∣
∣
∣
∣f (z)

∣
∣dz dy

+ C
∞

∑

j=


|B|

∫

B

∫

j|y–x|≤|z–x|<j+|y–x|

∣
∣K(y, z) – K(x, z)

∣
∣

× |bj+B – bB|∣∣f (z)
∣
∣dz dy

:= III + III.

Since r > rω–
rω–q′ q′ > q′, there exists  < l < ∞ such that 

q + 
l + 

r = . By Hölder’s inequality
for the three numbers q, l and r, we can get

III ≤ C
∞

∑

j=


|B|

∫

B

(∫

j|y–x|≤|z–x|<j+|y–x|

∣
∣K(y, z) – K(x, z)

∣
∣
q dz

)/q

×
(∫

j|y–x|≤|z–x|<j+|y–x|

∣
∣b(z) – bj+B

∣
∣
l
ω(z)(/r′–)l dz

)/l

×
(∫

j|y–x|≤|z–x|<j+|y–x|

∣
∣f (z)

∣
∣
r
ω(z) dz

)/r

dy

≤ C
∞

∑

j=


|B|

∫

B
Cj

(

j|y – x|
)–n/q′

dy

×
(∫

j+B

∣
∣b(z) – bj+B

∣
∣
l
ω(z)(/r′–)l dz

)/l

×
(∫

j+B

∣
∣f (z)

∣
∣
r
ω(z) dz

)/r

.

Denote p = s–
q′(r–)

r–q′ –
. It follows from r > rω–

rω–q′ q′ that rω > r–
r–q′ q′. Since rω = sup{s >  : ω ∈

RHs}, there exists s such that ω ∈ RHs and s > r–
r–q′ q′. We can get  < p < ∞ and s = lp

r′ – p
p′


.

Applying Hölder’s inequality for p and p′
, we have

III ≤ C
∞

∑

j=


|B|

∫

B
Cj

(

j|y – x|
)–n/q′

dy
(∫

j+B

∣
∣f (z)

∣
∣
r
ω(z) dz

)/r

×
(∫

j+B

∣
∣b(z) – bj+B

∣
∣
lp′

ω(z)–lp′
 dz

) 
lp′
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×
(∫

j+B
ω(z)

lp
r′ – p

p′
 dz

) 
lp

≤ C
∞

∑

j=

Cj
(

j)–n/q′ |B|–/q′
ω

(

j+B
) 

lp′


+ 
r (– βr

n )

×
(∫

j+B
ω(z)

lp
r′ – p

p′
 dz

) 
lp

×
(


ω(j+B)–βr/n

∫

j+B

∣
∣f (z)

∣
∣
r
ω(z) dz

) 
r

×
(


ω(j+B)

∫

j+B

∣
∣b(z) – bj+B

∣
∣
lp′

ω(z)–lp′
 dz

) 
lp′



≤ C‖b‖Lipβ (ω)Mβ,r,ω(f )(x)
∞

∑

j=

Cj
(

j)–n/q′ |B|–/q′

×
[(


|j+B|

∫

j+B
ω(z)s dz

)/s] s
lp

ω
(

j+B
) 

lp′


+ 
r ∣
∣j+B

∣
∣


lp

≤ C‖b‖Lipβ (ω)Mβ,r,ω(f )(x)
∞

∑

j=

Cj
(

j)–n/q′ |B|–/q′

× ω(j+B)

r′ – 

lp′


+ 
lp′


+ 

r

|j+B|

r′ – 

lp′


– 
lp

≤ C‖b‖Lipβ (ω)Mβ,r,ω(f )(x)ω(x).

Noticing that ω ∈ A, it follows from Lemma . that

|bj+B – bB| ≤ C‖b‖Lipβ (ω)jω(x)ω
(

j+B
) β

n .

It follows from Hölder’s inequality that

III ≤ C
∞

∑

j=


|B|

∫

B

(∫

j|y–x|≤|z–x|<j+|y–x|

∣
∣K(y, z) – K(x, z)

∣
∣
q dz

)/q

×
(∫

j+B
|bj+B – bB|l dz

)/l(∫

j+B

∣
∣f (z)

∣
∣
r dz

)/r

dy

≤ C
∞

∑

j=

Cj
(

j)–n/q′ 
|B|

∫

B
|y – x|–n/q′

dy |bj+B – bB|∣∣j+B
∣
∣
/l

×
(



|j+B|– βr
n

∫

j+B

∣
∣f (z)

∣
∣
r dz

)/r
∣
∣j+B

∣
∣


r – β

n

≤ C‖b‖Lipβ (ω)ω(x)
∞

∑

j=

jCj
(

j)–n/q′ |B|–/q′

× ω
(

j+B
) β

n
∣
∣j+B

∣
∣


l Mβ,r(f )(x)

∣
∣j+B

∣
∣


r – β

n

≤ C‖b‖Lipβ (ω)Mβ,r(f )(x)ω(x)
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×
∞

∑

j=

jCj
(

j)–n/q′(
j+)n/q′ ∣

∣j+B
∣
∣


l + 

r – 
q′ ω(x)

β
n

≤ C‖b‖Lipβ (ω)Mβ,r(f )(x)ω(x)+ β
n .

Putting the above estimates together and taking the supremum over all balls B which
contain x, we can get the desired result. �

Lemma . Let  < β < n,  < p < n/β, /s = /p – β/n, and ωs/p ∈ A. Then, if  < r < p,
 < k < p/s, rω > –k

p/s–k , we have

∥
∥Mβ,r(f )

∥
∥

Ls,ks/p(ωs/p ,ω) ≤ C‖f ‖Lp,k (ω).

Proof Note that

Mβ,r(f )(x) =
(

Mβr,
(|f |r)(x)

)/r .

Let β̃ = βr, s̃ = s/r, and p̃ = p/r. We have  < β̃ < n and  < p̃ < n/β̃ . Then /s̃ = /p̃ – β̃/n,
ωs̃/p̃ ∈ A,  < k < p̃/s̃, and rω > –k

p̃/s̃–k . Using Lemma ., we obtain

∥
∥Mβ,r(f )

∥
∥

Ls,ks/p(ωs/p ,ω) =
∥
∥Mβ̃ ,

(|f |r)∥∥/r
Ls̃,ks̃/p̃(ωs̃/p̃ ,ω)

≤ C
∥
∥|f |r∥∥/r

Lp̃,k (ω) = C‖f ‖Lp,k (ω). �

4 Proof of main results
First, we will give the proof of Theorem ..

Proof of Theorem . Since rω > (n(–α)+β)(p–)
βp–n(–α)–β

, there is r such that r > (n(–α)+β)(p–)
βp–n(–α)–β

and

ω ∈ RHr . Then p > (n(–α)+β)(r–)
βr–n(–α)–β

. There exists s such that p > s > (n(–α)+β)(r–)
βr–n(–α)–β

> n(–α)+β

β
.

The fact s > (n(–α)+β)(r–)
βr–n(–α)–β

implies that r > (n(–α)+β)(s–)
βs–n(–α)–β

. By Lemma . and Lemma .,
we have

∥
∥[b, T](f )

∥
∥

Lq,kq/p(ω–q ,ω)

≤ ∥
∥Mt

(

[b, T]f
)∥
∥

Lq,kq/p(ω–q ,ω)

≤ C
∥
∥M�

t
(

[b, T]f
)∥
∥

Lq,kq/p(ω–q ,ω)

≤ C‖b‖Lipβ (ω)
(∥
∥ω(·)Mβ,s,ω(Tf )

∥
∥

Lq,kq/p(ω–q ,ω)

+
∥
∥ω(·)Mβ,s,ω(f )

∥
∥

Lq,kq/p(ω–q ,ω)

)

= C‖b‖Lipβ (ω)
(∥
∥Mβ,s,ω(Tf )

∥
∥

Lq,kq/p(ω) +
∥
∥Mβ,s,ω(f )

∥
∥

Lq,kq/p(ω)

)

.

Therefore, applying Lemma . and Lemma ., we obtain

∥
∥[b, T](f )

∥
∥

Lq,kq/p(ω–q ,ω) ≤ C‖b‖Lipβ (ω)
(‖Tf ‖Lp,k (ω) + ‖f ‖Lp,k (ω)

)

≤ C‖b‖Lipβ (ω)‖f ‖Lp,k (ω).

This completes the proof of Theorem .. �
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Then we will give the proof of Theorem ..

Proof of Theorem . It follows from rω > p–
p–q′ q′ that p > rω–

rω–q′ q′. There exists r such that
p > r > rω–

rω–q′ q′. By Lemma . and Lemma ., we have

∥
∥[b, T]f

∥
∥

Ls,ks/p(ω–s ,ω)

≤ ∥
∥Mδ

(

[b, T]f
)∥
∥

Ls,ks/p(ω–s ,ω)

≤ C
∥
∥M�

δ

(

[b, T]f
)∥
∥

Ls,ks/p(ω–s ,ω)

≤ C‖b‖Lipβ (ω)
(∥
∥ω(·)Mβ,r,ω(Tf )

∥
∥

Ls,ks/p(ω–s ,ω)

+
∥
∥ω(·)Mβ,r,ω(f )

∥
∥

Ls,ks/p(ω–s ,ω)

+
∥
∥ω(·)+β/nMβ,r(f )

∥
∥

Ls,ks/p(ω–s ,ω)

)

= C‖b‖Lipβ (ω)
(∥
∥Mβ,r,ω(Tf )

∥
∥

Ls,ks/p(ω)

+
∥
∥Mβ,r,ω(f )

∥
∥

Ls,ks/p(ω) +
∥
∥Mβ,r(f )

∥
∥

Ls,ks/p(ωs/p ,ω)

)

.

Therefore, applying Lemma ., Lemma . and Lemma ., we obtain

∥
∥[b, T]f

∥
∥

Ls,ks/p(ω–s ,ω) ≤ C‖b‖Lipβ (ω)
(‖Tf ‖Lp,k (ω) + ‖f ‖Lp,k (ω)

)

≤ C‖b‖Lipβ (ω)‖f ‖Lp,k (ω).

This completes the proof of Theorem .. �

Finally let us give the proof of the corollary.

Proof of Corollary . Choose q such that max{ prω
(p–)(rω–) , , p′} < q < ∞, then  < q′ < ,

q′ < p and q′ < prω
p+rω– . It follows from q′ < prω

p+rω– that rω > (p–)q′
p–q′ .

Since T is a generalized Calderón-Zygmund operator defined as in Definition . with
Cj = –jδ (j ∈ N) and this pair of numbers (q, q′), then by Theorem . we have that [b, T]
is bounded from Lp,k(ω) to Ls,ks/p(ω–s,ω). �
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