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Abstract
In this paper, we consider a class of multiobjective E-convex programming problems
with inequality constraints, where the objective and constraint functions are E-convex
functions which were firstly introduced by Youness (J. Optim. Theory Appl.
102:439-450, 1999). Fritz-John and Kuhn-Tucker necessary and sufficient optimality
theorems for the multiobjective E-convex programming are established under the
weakened assumption of the theorems in Megahed et al. (J. Inequal. Appl. 2013:246,
2013) and Youness (Chaos Solitons Fractals 12:1737-1745, 2001). A mixed duality for
the primal problem is formulated and weak and strong duality theorems between
primal and dual problems are explored. Illustrative examples are given to explain the
obtained results.
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1 Introduction
The concepts of an E-convex set and an E-convex function were introduced first by
Youness []. Subsequently, necessary and sufficient optimality criteria for a class of E-
convex programming problems were discussed by Youness [], and E-Fritz-John and E-
Kuhn-Tucker problems, which modified the Fritz-John and Kuhn-Tucker problems, were
also presented. In Megahed et al. [], the concept of an E-differentiable convex function
which transforms a non-differentiable convex function to a differentiable function under
an operator E: Rn → R

n was presented, then a solution of mathematical programming
with a non-differentiable function could be found by applying the Fritz-John and Kuhn-
Tucker conditions due to Mangasarian [].

However, on the other hand, the results on E-convex programming in Youness [] were
not correct, and some counterexamples were given by Yang []. The results concerning
the characterization of an E-convex function f in terms of its E-epigraph in Youness []
were also not correct, and some characterizations of E-convex functions using a different
notion of epigraph were given by Duca et al. [].

Based on the correct results in Youness [], a class of semi-E-convex functions was in-
troduced by Chen [], the concepts of E-quasiconvex functions and strictly E-quasiconvex
functions were introduced by Syau and Stanley Lee [], respectively.
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In fact, after defining the E-convex function in , Youness [] pointed out that the
E-convex function that he defined had more generalized results than a convex function.
He dealt mainly with some properties of an E-convex set and an E-convex function, a pro-
gramming problem without E in both objective functions or constrained functions, and
the relation between solutions of objective and constrained functions with and without E.
He then drew the conclusion that the E-convex set and E-convex function were more gen-
eralized than the convex set and function proposed by Hanson [], Hanson and Mond [],
and Kaul and Kaur [].

This paper also addresses a counterexample of Theorem . in Youness []. Character-
ization of efficient solutions based on the modification of Theorem . in Youness [] is
presented. A sufficient optimality theorem is given by using this characterization and E-
convexity conditions. We obtain the scalarization method due to Chankong and Haimes
[] for multiobjective E-convex programming. By employing this scalarization method,
Fritz-John and Kuhn-Tucker necessary theorems for the multiobjective case are estab-
lished under the weakened assumption of the theorems in Megahed et al. [] and Youness
[]. Moreover, a mixed type dual for the primal problem is given. Under the assumption of
the E-convex conditions, weak and strong duality theorems between the primal and dual
problems are established, and we also propose some examples to illustrate our results.

2 Preliminaries
Let Rn denote the n-dimensional Euclidean space. The following conventions for a vector
in R

n will be used in this paper:

x < y if and only if xi < yi for all i = , , . . . , p,

x � y if and only if xi � yi for all i = , , . . . , p,

x ≤ y if and only if xi � yi for all i = , , . . . , p but x �= y.

We present some concepts of E-convex set and E-convex function; for convenience, we
recall the definition of E-convex set first.

Definition . [] A set M ⊂R
n is said to be E-convex iff there is a map E : Rn → R

n such
that ( – λ)E(x) + λE(y) ∈ M, for each x, y ∈ M, and λ ∈ [, ].

It is clear that if M ⊂ R
n is convex, then M is E-convex by taking a map E : Rn → R

n as
the identity map, but the converse may not be true; see the following example.

Example . Consider the set S = {(x, y) ∈ R
 | y � x,  � x � }. Let E(x, y) = (

√
x, y), it is

clear that S is E-convex (since S is convex). It is easy to check that E(S) is E-convex by
taking the map E(x, y) = (

√
x, y), while E(S) is not convex, where E(S) = {(x, y) ∈ R

 | y �
x,  � x � }.

However, if E : Rn → R
n is a surjective map, it is easy to check that the converse also

holds. Note that E is said to be surjective if there exists x ∈ M such that E(x) = y, ∀y ∈ E(M).
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Definition . [] A function f : Rn → R is said to be E-convex on M ∈ R
n iff there is a

map E : Rn →R
n such that M is an E-convex set and

f
(
λE(x) + ( – λ)E(y)

)
� λf

(
E(x)

)
+ ( – λ)f

(
E(y)

)

for each x, y ∈ M and  � λ � . Moreover, if

f
(
λE(x) + ( – λ)E(y)

)
� λf

(
E(x)

)
+ ( – λ)f

(
E(y)

)

then f is called E-concave on M. If the inequality signs in the above two inequalities are
strict, then f is called strictly E-convex and strictly E-concave, respectively.

Remark . Let f , g be E-convex on M. Then f + g , αf (α � ) are E-convex on the set M.

It is easy to check that every convex function f on a convex set M is an E-convex function,
where E is the identity map. But the converse may not hold, we recall the example from
[].

Example . Define the function f : R →R as

f (x) =

{
, if x > ,
–x, if x � ,

and let E : R → R be defined as E(x) = –x. Then R is an E-convex set and f is E-convex
but not convex.

Obviously, if f is a real-valued differentiable function on an E-convex set M ⊂ R
n, we

can define a differentiable E-convex function in the following.

Definition . f is E-convex on M if and only if for each x, y ∈ M

f
(
E(x)

)
– f

(
E(y)

)
� ∇f

(
E(y)

)(
E(x) – E(y)

)
.

3 Optimality criteria
In this section, we suppose that E : M → M (M ⊂ R

n) is a surjective map. In addition,
as we know if a set M ⊂ R

n is E-convex with respect to a mapping E : Rn → R
n, then

E(M) ⊂ M (see [], Proposition .). For an E-convex function f , we say that the function
(f ◦ E) : M →R defined by (f ◦ E)(x) = f (E(x)) for all x ∈ M is well defined (see []).

Consider the following multiobjective nonlinear program:

(MP) Maximize f (x) =
(
f(x), f(x), . . . , fp(x)

)
,

subject to x ∈ M =
{

x ∈R
n | gj(x) � , j = , , . . . , m

}
,

where fi : Rn → R, i ∈ P = {, , . . . , p} and gj : Rn → R, j ∈ Q = {, , . . . , m} are E-convex
functions.
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Then we give the following E-convex program related to (MP):

(MPE) Maximize (f ◦ E)(x) =
(
(f ◦ E)(x), f ◦ E

)
(x), . . . , fp ◦ E)(x)),

subject to x ∈ E(M) =
{

x ∈R
n | (gj ◦ E)(x) � , j = , , . . . , m

}
,

where fi ◦ E, i ∈ P and gj ◦ E, j ∈ Q are differentiable on M.
It states that, for a surjective map E, if f is E-convex, then f ◦ E is obviously convex.

Definition . A point x̄ ∈ E(M) is said to be an efficient solution of (MPE) if and only if
there is no other x ∈ E(M) such that

(fi ◦ E)(x) < (fi ◦ E)(x̄) for some i ∈ P

and

(fi ◦ E)(x) � (fi ◦ E)(x̄) for all i ∈ P,

where P = {, , . . . , p}, that is

(f ◦ E)(x) ≤ (f ◦ E)(x̄).

Now we give a counterexample which is easier to understand than the one in [], to show
that Theorem . (In (MP), the set M is an E-convex set.) in Youness [] is incorrect.

Example . In (MP), gj, j ∈ Q are E-convex, but M does not always need to be E-convex
set.

Let g(x) = x ∈ R and define the map E as E(x) = |x|. Then g(x) is E-convex. Take x = –,
y = –/. Then g(–) = –, g(–/) = –/.

So, –, –/ ∈ M = {x ∈R | g(x) � }. But, for all λ ∈ [, ],

g
(
λE(x) + ( – λ)E(y)

)
= g

(
λ|x| + ( – λ)|y|) =

 + λ


> .

Hence, M is not E-convex set.

Also, Theorem . in Youness [] is incorrect. The counterexample was given by Yang
[].

Now we would like to present the characterization of efficient solutions modifying The-
orem . in Youness [] by using only surjective assumption of the mapping E as follows.

Theorem . Let E : M → M be a surjective map. Then x̄ is an efficient solution of (MPE)
if and only if E(x̄) is an efficient solution of (MP).

Proof Suppose that E(x̄) is not an efficient solution of (MP). Then there exists z̄ ∈ M such
that f (z̄) ≤ f (E(x̄)). Since E is surjective, we have E(M) = M, then there exists ȳ ∈ M such
that z̄ = E(ȳ), that is, (f ◦ E)(ȳ) ≤ (f ◦ E)(x̄), which contradicts that x̄ is an efficient solution
of (MPE).
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Conversely, suppose that x̄ is not an efficient solution of (MPE), then there exists y∗ ∈
E(M) such that (f ◦ E)(y∗) ≤ (f ◦ E)(x̄). Since E is surjective, there exists z∗ ∈ M such that
E(y∗) = z∗. Hence f (z∗) ≤ f (E(x̄)), which contradicts that E(x̄) is an efficient solution of
(MP). �

With the help of Theorem . and the E-convexity assumption, we now give the sufficient
optimality condition.

Theorem . (Sufficient optimality condition) Assume that (x̄, λ̄, μ̄) satisfies the following
conditions:

λ̄∇(f ◦ E)(x̄) + μ̄∇(g ◦ E)(x̄) = ,

μ̄(g ◦ E)(x̄) = ,

(g ◦ E)(x̄) � ,

λ̄ > , μ̄� ,

where λ̄ ∈R
p, μ̄ ∈R

m.
Then x̄ is an efficient solution of (MPE).

Proof Suppose that x̄ is not an efficient solution of (MPE), then there exists x∗ ∈ E(M) such
that

(f ◦ E)
(
x∗) ≤ (f ◦ E)(x̄). (.)

Since fi and gj are E-convex and fi ◦ E and gj ◦ E are differentiable on M, for any x ∈ E(M),
we have

(fi ◦ E)(x) – (fi ◦ E)(x̄) � (x – x̄)∇(fi ◦ E)(x̄), (.)

(gj ◦ E)(x) – (gj ◦ E)(x̄) � (x – x̄)∇(gj ◦ E)(x̄). (.)

Since λ̄ > , μ̄� , from (.) and (.), for each i ∈ P and j ∈ Q, we have

λ̄(f ◦ E)(x) – λ̄(f ◦ E)(x̄) + μ̄(g ◦ E)(x) – μ̄(g ◦ E)(x̄)

� (x – x̄)
[
λ̄∇(f ◦ E)(x̄) + μ̄∇(g ◦ E)(x̄)

]
.

Since λ̄∇(f ◦ E)(x̄) + μ̄∇(g ◦ E)(x̄) = , μ̄(g ◦ E)(x̄) =  and (g ◦ E)(x̄) � , we get

(f ◦ E)(x) � (f ◦ E)(x̄),

which contradicts (.). �

Remark . If we replace the E-convexity of fi and λ̄ >  by the strictly E-convexity of fi

and λ̄ ≥ , respectively, then Theorem . also holds.

Now we present the following lemma due to Chankong and Haimes [] to deal with the
relationship between the scalar and multiobjective programming problems.
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Lemma . x̄ is an efficient solution for (MPE) if and only if x̄ solves

(MPE)k Minimize (fk ◦ E)(x)

subject to (fi ◦ E)(x) � (fi ◦ E)(x̄), i ∈ Pk := P \ {k},
(g ◦ E)(x) � ,

for each k = , , . . . , p.

Proof Suppose that x̄ is not a solution of (MPE)k . Then there exists x ∈ E(M) such that

(fk ◦ E)(x) < (fk ◦ E)(x̄), k ∈ P, (.)

(fi ◦ E)(x) � (fi ◦ E)(x̄), i �= k. (.)

From (.) and (.), we conclude that x̄ is not efficient for (MPE).
Conversely, assume that x̄ is a solution of (MPE)k for every k ∈ P, then for all x ∈ E(M)

with (fi ◦E)(x) � (fi ◦E)(x̄), i �= k, we have (fk ◦E)(x̄) � (fk ◦E)(x). Then there exists no other
x ∈ E(M) such that (fi ◦ E)(x) � (fi ◦ E)(x̄), i ∈ P, with strict inequality holding for at least
one i. This implies that x̄ is efficient for (MPE). �

Remark . Without loss of generality, we assume that P ∩ Q = ∅. Set

(Gt ◦ E)(x) =

{
(ft ◦ E)(x) – (ft ◦ E)(x̄), t ∈ Pk ,
(gt ◦ E)(x), t ∈ Q,

and T = Pk ∪ Q. Then (MPE)k is equivalent to the following problem:

min(fk ◦ E)(x) subject to (Gt ◦ E)(x) � , t ∈ T , for each k ∈ P.

In order to obtain the necessary optimality condition, we employ the following general-
ized linearization lemma due to Mangasarian [].

Lemma . Let x̄ be a local solution of (MPE)k , let fk ◦ E, for each k ∈ P and Gt ◦ E, t ∈ T
be differentiable at x̄. Then the system

∇(fk ◦ E)(x̄)z < ,

∇(GW ◦ E)(x̄)z < ,

∇(GV ◦ E)(x̄)z � ,

has no solution z ∈R
n, for each k ∈ P, where we denote

I =
{

t | (Gt ◦ E)(x̄) = 
}

, J =
{

t | (Gt ◦ E)(x̄) < 
}

, I ∪ J = T ,

V =
{

t | (Gt ◦ E)(x̄) =  and (Gt ◦ E) is E-concave at x̄
}

,

W =
{

t | (Gt ◦ E)(x̄) =  and (Gt ◦ E) is not E-concave at x̄
}

,

I = V ∪ W .
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We establish the following Fritz-John necessary optimality criteria by using Lemma ..

Theorem . (Fritz-John necessary condition) Assume that x̄ ∈ E(M) is an efficient solu-
tion of (MPE), then there exist λ̄ ∈R

p, μ̄ ∈R
m such that

λ̄∇(f ◦ E)(x̄) + μ̄∇(g ◦ E)(x̄) = ,

μ̄(g ◦ E)(x̄) = ,

(g ◦ E)(x̄) � ,

(λ̄, μ̄) ≥ .

Proof Since x̄ is an efficient solution of (MPE), then from Lemma ., x̄ solves (MPE)k for
each k ∈ P. By Lemma . and Remark ., we see that the system

∇(fk ◦ E)(x̄)z < ,

∇(GW ◦ E)(x̄)z < ,

∇(GV ◦ E)(x̄)z � ,

has no solution z ∈R
n. Hence by Motzin’s theorem [], there exist λ̄k , μ̄W , μ̄V such that

λ̄k∇(fk ◦ E)(x̄) + μ̄W ∇(GW ◦ E)(x̄) + μ̄V ∇(GV ◦ E)(x̄) = ,

(λ̄k , μ̄W ) ≥ ,

μ̄V � .

Since (GW ◦ E)(x̄) =  and (GV ◦ E)(x̄) = , it follows that if we define μ̄J =  and μ̄ =
(μ̄W , μ̄V , μ̄J ), then

μ̄(G ◦ E)(x̄) = μ̄W (GW ◦ E)(x̄) + μ̄V (GV ◦ E)(x̄) + μ̄J (GJ ◦ E)(x̄) = ,

here, we can reduce μ̄(g ◦ E)(x̄) = . Thus λ̄k∇(fk ◦ E)(x̄) + μ̄(g ◦ E)(x̄) =  and (λ̄k , μ̄) ≥ .
Then, for each k ∈ P, we have

λ̄∇(f ◦ E)(x̄) + μ̄∇(g ◦ E)(x̄) = ,

(λ̄, μ̄) ≥ .

Since x∗ ∈ E(M), (g ◦ E)(x∗) � .
The proof is complete. �

Theorem . (Kuhn-Tucker necessary condition) If x̄ ∈ E(M) is an efficient solution of
(MPE) and Gt ◦ E, t ∈ T satisfies a constraint qualification [] for (MPE)k for at least one
k ∈ P. Then there exist λ̄ ∈R

p and μ̄ ∈R
m such that

λ̄∇(f ◦ E)(x̄) + μ̄∇(g ◦ E)(x̄) = ,

μ̄(g ◦ E)(x̄) = ,
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(g ◦ E)(x̄) � ,

λ̄ ≥ , μ̄� .

Proof Since x̄ is an efficient solution of (MPE), then by Theorem . there exist λ̄ ∈ R
p,

μ̄ ∈R
m such that (x̄, λ̄, μ̄) satisfies

λ̄∇(f ◦ E)(x̄) + μ̄∇(g ◦ E)(x̄) = ,

μ̄(g ◦ E)(x̄) = ,

(g ◦ E)(x̄) � ,

(λ̄, μ̄) ≥ .

We only have to show that λ̄ ≥ , that is, λ̄k >  for at least one k ∈ P.
Since (λ̄, μ̄) ≥ , (λ̄, μ̄W ) ≥ , we have λ̄k >  for at least one k ∈ P if W is empty. Now,

we show that λ̄k >  for at least one k ∈ P if W is nonempty by contradiction.
Suppose that λ̄k =  for all k ∈ P. Since μ̄J =  as we define in the proof of Theorem .,

we have μ̄W ∇(GW ◦E)(x̄) + μ̄V ∇(GV ◦E)(x̄) = , μ̄W ≥ , μ̄V � . Since Gt ◦E satisfies the
Arrow-Hurwicz-Uzawa constraint qualification [] at x̄ for (MPE)k for at least one k ∈ P,
there exists z̄ ∈R

n such that

∇(GW ◦ E)(x̄)z̄ > , (.)

∇(GV ◦ E)(x̄)z̄ � . (.)

Multiplying (.) and (.) by μ̄W and μ̄V , respectively, then yields

μ̄W ∇(GW ◦ E)(x̄)z̄ + μ̄V ∇(GW ◦ E)(x̄)z̄ > ,

which contradicts the fact that

μ̄W ∇(GW ◦ E)(x̄)z̄ + μ̄V ∇(GW ◦ E)(x̄)z̄ = .

Hence λ̄k >  for at least one k ∈ P. Then we obtain λ̄ ≥ . �

Remark . If we replace our surjective assumption of E by bijection (or linearity) of E,
then our Fritz-John and Kuhn-Tucker necessary optimality results reduce to the ones in
Megahed et al. [] (or Youness []).

Example . Consider the following problem:

(̂MP) Minimize
(
f(x), f(x)

)
,

subject to x ∈ M =
{

x ∈R | g(x) � , g(x) � 
}

,

where f(x) = x, f(x) = x, g(x) = x – , and g(x) = –x.
Let E : M → E(M) defined by E(x) = x+ be the surjective map, then we get the following

E-convex programming problem related to (̂MP):
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(̂MPE) Minimize
(
(f ◦ E)(x), (f ◦ E)(x)

)
,

subject to x ∈ E(M) =
{

x ∈R | (g ◦ E)(x) � , (g ◦ E)(x) � 
}

,

where (f ◦ E)(x) = x – , (f ◦ E)(x) = x – x + , (g ◦ E)(x) = x – , and (g ◦ E)(x) = –x + .

(a) It is easy to check that the feasible sets of (̂MP) and (̂MPE) are M = [, ] and
E(M) = [, ], respectively.

(b) By the definition of an efficient solution, we see that x∗ =  ∈ M is the efficient
solution of (̂MP) and x̄ = E(x∗) =  ∈ E(M) is the efficient solution of (̂MPE), hence
Theorem . holds.

(c) We can easily check that (x̄, (λ̄, λ̄), (μ̄, μ̄)) = (, ( 
 , ), (, 

 )) satisfy the conditions
in Theorem ., and x̄ =  is the efficient solution of (̂MPE), hence Theorem .
holds.

(d) Since the efficient solution x̄ =  for (̂MPE), also solves both (̂MPE) and (̂MPE),
Lemma . holds, where

(̂MPE) Mimimize (f ◦ E)(x),

subject to (f ◦ E)(x) � (f ◦ E)(x̄),

x ∈ E(M),

and

(̂MPE) Mimimize (f ◦ E)(x),

subject to (f ◦ E)(x) � (f ◦ E)(x̄),

x ∈ E(M).

(e) As x̄ =  is the efficient solution of (̂MPE), then there exist λ̄ = ( 
 , ) and μ̄ = (, 

 )
satisfy the conditions in Theorem ., hence Theorem . holds.

(f ) x̄ =  is the efficient solution of (̂MPE) and it is easy to check the problem (̂MPE)

satisfies the Kuhn-Tucker constraint qualification [], and there exist λ̄ = ( 
 , ) and

μ̄ = (, 
 ) satisfying the conditions in Theorem ., hence Theorem . holds.

4 Duality
Recently, several researchers found some results on mixed dual model under some gener-
alized convexity; see [–], for example. In this section, first we establish the following
mixed dual problem (MD) to (MP):

(MD) Maximize
(

f(u) +
∑

j∈J

μT
j gj(u), . . . , fp(u) +

∑

j∈J

μT
j gj(u)

)

subject to
p∑

i=

λT
i ∇f T

i (u) +
q∑

j=

μT
j ∇gj(u) = ,

∑

j∈Jα

μT
j gj(u) � , α = , , . . . , r,

λ = (λ,λ, . . . ,λp) ∈ �+,

μj � , j ∈ Q = {, , . . . , q},
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where Jα ⊂ Q = {, , . . . , q}, α = , , . . . , r with
⋃r

α= Jα = Q and Jα ∩ Jβ = ∅ if α �= β . �+ =
{λ ∈ R

p | λ� ,λT e = , e = (, . . . , )T ∈R
p}.

Then we formulate the following mixed dual problem (MDE) to (MPE):

(MDE) Maximize
(

(f ◦ E)(u) +
∑

j∈J

μT
j (gj ◦ E)(u), . . . ,

(fp ◦ E)(u) +
∑

j∈J

μT
j (gj ◦ E)(u)

)

subject to
p∑

i=

λT
i ∇(fi ◦ E)(u) +

q∑

j=

μT
j ∇(gj ◦ E)(u) = ,

∑

j∈Jα

μT
j (gj ◦ E)(u) � , α = , , . . . , r,

λ = (λ,λ, . . . ,λp) ∈ �+,

μj � , j ∈ Q = {, , . . . , q},

where Jα ⊂ Q = {, , . . . , q}, α = , , . . . , r with
⋃r

α= Jα = Q and Jα ∩ Jβ = ∅ if α �= β ; �+ =
{λ ∈ R

p | λ� ,λT e = , e = (, . . . , )T ∈R
p}.

() If J = Q, then our mixed dual type (MDE) (or (MD)) reduces to the Wolfe dual type.
() If J = ∅, then our mixed dual type (MDE) (or (MD)) reduces to the Mond-Weir dual

type.

Theorem . Let E : M → M be a surjective map. Then ū is an efficient solution of (MDE)
if and only if E(ū) is an efficient solution of (MD).

Proof By Lemma ., we can obtain this theorem. �

Assume that f is an E-convex function and E : M → M (M ⊂R
n) is a surjective map, by

Lemma ., we can study dual problem between (MP) and (MD). Here, we would like to
study the dual problem between (MPE) and (MDE).

Theorem . (Weak duality) Assume that for all feasible x of (MPE) and all feasible
(u,λ,μ) of (MDE), fi, gj are E-convex functions. If also either

(a) λi >  for all i = , , . . . , p, or
(b)

∑p
i= λifi(·) +

∑q
j= μjgj(·) is strictly E-convex at u,

then the following cannot hold:

(fi ◦ E)(x) � (fi ◦ E)(u) +
∑

j∈J

μT
j (gj ◦ E)(u) for all i ∈ P, (.)

(fi ◦ E)(x) < (fi ◦ E)(u) +
∑

j∈J

μT
j (gj ◦ E)(u) for some i ∈ P. (.)

Proof Suppose to the contrary that (.) and (.) hold. Since x is feasible for (MPE) and
μ� , from (.) and (.), we imply

(fi ◦ E)(x) +
∑

j∈J

μT
j (gj ◦ E)(x) � (fi ◦ E)(u) +

∑

j∈J

μT
j (gj ◦ E)(u) for all i ∈ P, (.)
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(fi ◦ E)(x) +
∑

j∈J

μT
j (gj ◦ E)(x) < (fi ◦ E)(u) +

∑

j∈J

μT
j (gj ◦ E)(u) for some i ∈ P. (.)

If hypothesis (a) holds, then with
∑p

i= λi = , one has

p∑

i=

λi(fi ◦ E)(x) +
∑

j∈J

μT
j (gj ◦ E)(x) <

p∑

i=

λi(fi ◦ E)(u) +
∑

j∈J

μT
j (gj ◦ E)(u) (.)

and since fi, gj are E-convex and λi > , i = , , . . . , p, μ� , it now follows from (.) that

(
E(x) – E(u)

)T
( p∑

i=

λi∇(fi ◦ E)(u) +
∑

j∈J

μT
j (gj ◦ E)(u)

)

< ,

which contradicts the fact that

p∑

i=

λi∇(fi ◦ E)(u) +
q∑

j=

μT
j ∇(gj ◦ E)(u) = .

On the other hand, since λi � , i = , , . . . , p and
∑p

i= λi = , (.) and (.) imply

p∑

i=

λi(fi ◦ E)(x) +
∑

j∈J

μT
j (gj ◦ E)(x) �

p∑

i=

λi(fi ◦ E)(u) +
∑

j∈J

μT
j (gj ◦ E)(u). (.)

Now (.) and hypothesis (b) imply (.), which also contradicts the fact that

p∑

i=

λi∇(fi ◦ E)(u) +
q∑

j=

μT
j ∇(gj ◦ E)(u) = .

�

Corollary . Assume that weak duality (Theorem .) holds between (MPE) and (MDE).
If (ū, λ̄, μ̄) is feasible for (MDE) with μ̄T (g ◦ E)(ū) =  and if ū is feasible for (MPE), then ū
is efficient for (MPE) and (ū, λ̄, μ̄) is efficient for (MDE).

Proof Suppose that ū is not efficient for (MPE). Then there exists a feasible x for (MPE)
such that

(fi ◦ E)(x) � (fi ◦ E)(ū) for all i ∈ P, (.)

(fi ◦ E)(x) < (fi ◦ E)(ū) for some i ∈ P. (.)

By hypothesis μ̄T (g ◦ E)(ū) = , so (.) and (.) can be written as

(fi ◦ E)(x) � (fi ◦ E)(ū) + μ̄T (g ◦ E)(ū) for all i ∈ P,

(fi ◦ E)(x) < (fi ◦ E)(ū) + μ̄T (g ◦ E)(ū) for some i ∈ P.

Since (ū, λ̄, μ̄) is feasible for (MDE) and x is feasible for (MPE), these inequalities contradict
weak duality (Theorem .).
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Also, suppose that (ū, λ̄, μ̄) is not efficient for (MDE), then there exists a feasible solution
(u,λ,μ) for (MDE) such that

(fj ◦ E)(u) + μT (g ◦ E)(u) � (fj ◦ E)(ū) + μ̄T (g ◦ E)(ū) for all j ∈ P, (.)

(fi ◦ E)(u) + μT (g ◦ E)(u) > (fi ◦ E)(ū) + μ̄T (g ◦ E)(ū) for some i ∈ P. (.)

Since μ̄T (g ◦ E)(ū) = , (.) and (.) reduce to

(fj ◦ E)(u) + μT (g ◦ E)(u) ≥ (fj ◦ E)(ū) for all j ∈ P,

(fi ◦ E)(u) + μT (g ◦ E)(u) > (fi ◦ E)(ū) for some i ∈ P.

Since ū is feasible for (MPE), these inequalities contradict weak duality (Theorem .).
Therefore ū and (ū, λ̄, μ̄) are efficient for their respective problems. �

Theorem . (Strong duality) Let x̄ be an efficient solution for (MPE) and assume that x̄
satisfies a constraint qualification [] for (MPE)k for at least one k = , , . . . , p. Then there
exist λ̄ ∈ R

p and μ̄ ∈ R
q such that (x̄, λ̄, μ̄) is feasible for (MDE). Moreover, if weak duality

(Theorem .) holds between (MPE) and (MDE), then (x̄, λ̄, μ̄) is efficient for (MDE).

Proof Since x̄ is efficient for (MPE), by Lemma ., x̄ solves (MPE)k for all k = , , . . . , p. By
hypothesis, there exists a k ∈ P = {, , . . . , p} for which x̄ satisfies a constraint qualification
of (MPE)k .

From the Kuhn-Tucker necessary conditions [], there exist λi �  such that, for all i �= k
and μ� , μ ∈ R

m,

(fk ◦ E)(x̄) +
∑

i�=k

λi∇(fi ◦ E)(x̄) + ∇μT (g ◦ E)(x̄) = , (.)

μT (g ◦ E)(x̄) = . (.)

Now we divide all terms in (.) and (.) by  +
∑

i�=k λi and set λ̄k = 
+

∑
i�=k λi

> , λ̄j =
λi

+
∑

i�=k λi
� , μ̄ = μ

+
∑

i�=k λi
� . Since weak duality (Theorem .) holds, from Corollary .,

we conclude that (x̄, λ̄, μ̄) is feasible as well as efficient for (MDE). �

Example . Recall the problem in Example ., and we now give the mixed dual problem
to (̂MPE).

(̂MDE) Maximize
(
(f ◦ E)(u) + μ(g ◦ E)(u), (f ◦ E)(u) + μ(g ◦ E)(u)

)

subject to λT∇(f ◦ E)(u) + μT∇(g ◦ E)(u) = ,

μ(g ◦ E)(u) � ,

λ + λ = , λ � , μ � ,

where λ = (λ,λ) and μ = (μ,μ).
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As we know the feasible set of (̂MPE) is E(M) = [, ] and it is easy to check that the
feasible set of (̂MDE) denoted by G is G = {(u,λ,μ) ∈R×R

 ×R
 | λ(u–)++μ –μ =

,μ(–u + ) � ,  � λ � ,μ � ,μ � }.
Now we check the validity of weak duality, say Theorem ., that is, for any feasible point

x ∈ E(M) and (u,λ,μ) ∈ G with positive λ and λ,
(

x – 
x – x + 

)

≤
(

u –  + μ(u – )
u – u +  + μ(u – )

)

(.)

cannot hold. In fact, by the positivity of λ, we have G = {(u,λ,μ) ∈R×R
 ×R

|  � u �

 – +μ

λ
,  < λ < ,μ � }, and

min(x – ) =  > max
(
u –  + μ(u – )

)
=




–


λ
,

which implies (.) cannot hold, and we conclude that weak duality (Theorem .) holds.
Finally we turn to strong duality (Theorem .), as we know x̄ =  is an efficient so-

lution of (̂MPE), and with the satisfy of Kuhn-Tucker constraint qualification [], it is
easy to check that there exist λ̄ = (, ) and μ̄ = (, ) such that (x̄, λ̄, μ̄) = (, (, ), (, ))
is a feasible solution of (̂MDE). Moreover, if weak duality (Theorem .) holds, (x̄, λ̄, μ̄) =
(, (, ), (, )) is efficient for (̂MDE), hence strong duality (Theorem .) holds.
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