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Abstract
A class of linear time-delay systems with periodic coefficients and a large parameter is
studied. We establish conditions under which the zero solution is asymptotically
stable. This result allows us to study the asymptotic stability of the zero solution to the
time-delay systems without spectral methods and Lyapunov-Krasovskii functionals.
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1 Introduction
There are a large number of works devoted to delay differential equations (for instance,
see [–] and the bibliography therein). One of the interesting questions is the asymptotic
stability of solutions to delay differential equations. This question is very important from
theoretical and practical viewpoints, because delay differential equations arise in many
applied problems when describing the processes whose rates of change are defined by
present and previous states (for example, see [–] and the bibliography therein). The
case of variable coefficients is of special interest and is more complicated in comparison
with the case of constant coefficients.

This article presents a continuation of our work on stability of solutions to delay differ-
ential equations. We consider linear systems of delay differential equations with periodic
coefficients of the form

d
dt

y(t) = μA(t)y(t) + B(t)y(t – τ ), t > , ()

where A(t), B(t) are (n × n) matrices with T-periodic continuous entries; i.e.,

A(t + T) ≡ A(t), B(t + T) ≡ B(t),

τ >  is the time delay, and μ >  is a parameter. We suppose that the spectrum of the
matrix A(t) belongs to the left half-plane C– = {λ ∈C : Reλ < } for every t ≥ . Using our
results of [–], we prove that in this case there exists μ∗ >  such that the zero solution
to () is asymptotically stable for μ > μ∗ and suggest a way for calculating μ∗.
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2 Preliminaries
In [–] we studied the question about the asymptotic stability of solutions to systems
of ordinary differential equations and systems of delay differential equations with periodic
coefficients. We proved theorems on asymptotic stability which are analogs of the classic
theorems on the asymptotic stability for equations with constant coefficients. We now
formulate two theorems used hereinafter.

First, we recall the criterion [] for the asymptotic stability of the zero solution to the
system of ordinary differential equations with T-periodic coefficients

d
dt

y(t) = A(t)y(t), A(t + T) ≡ A(t). ()

Hereinafter the matrix inequality Q >  (or Q < ) means that the matrix Q is positive (or
negative) definite.

Theorem  I. If the zero solution to () is asymptotically stable, then, for every continuous
matrix C(t) on [, T], there is a unique solution H(t) to the boundary value problem

{
d
dt H + HA(t) + A∗(t)H = –C(t),  < t < T ,
H() = H(T);

()

moreover, if

C(t) = C∗(t) > , t ∈ [, T], ()

then

H(t) = H∗(t) > , t ∈ [, T].

II. Suppose that the right-hand side C(t) of the Lyapunov differential equation is continuous
on [, T] and satisfies (). If the boundary value problem () has a Hermitian solution H(t)
such that H() > , then the zero solution to () is asymptotically stable.

It should be noted that, in the case of constant coefficients, this result coincides with
the Lyapunov criterion. Using Theorem  and the Lyapunov-Krasovskii functionals intro-
duced in [], we proved the following theorem [, ] on the asymptotic stability of the
zero solution to the time-delay system

d
dt

y(t) = A(t)y(t) + B(t)y(t – τ ), t > , ()

where

A(t + T) ≡ A(t), B(t + T) ≡ B(t).

Theorem  Suppose that there are matrices

L(t) = L∗(t) ∈ C[, T] and K(s) = K∗(s) ∈ C[, τ ] ()



Demidenko and Matveeva Journal of Inequalities and Applications  (2015) 2015:331 Page 3 of 10

such that

L() = L(T) > , K(s) > ,
d
ds

K(s) < , s ∈ [, τ ], ()

and the following Riccati type matrix differential inequality holds:

d
dt

L(t) + L(t)A(t) + A∗(t)L(t) + L(t)B(t)K–(τ )B∗(t)L(t) + K() <  ()

for t ∈ [, T]. Then the zero solution to () is asymptotically stable.

Using the mentioned matrices L(t), K(s), estimates characterizing exponential decay of
solutions to () at infinity were established in [, ].

Before studying the asymptotic stability of the zero solution to (), firstly we consider
the system of ordinary differential equations of the form

d
dt

y(t) = μA(t)y(t), t > , A(t + T) ≡ A(t). ()

Let the spectrum of A(t) belong to the left half-plane C– for every t ≥  and μ > . It is
well known that there are examples of periodic matrices A(t) such that the zero solution to
() is not asymptotically stable for arbitrary μ > . Indeed, consider (see []) the system
() with

A(t) =

(
– cos(t) –   sin(t) + 
 sin(t) –   cos(t) – 

)

and μ = . Obviously, λ = –, λ = – are the eigenvalues of A(t). It is not hard to verify
that

y(t) =

(
y(t)
y(t)

)
=

(
et sin(t)
et cos(t)

)

is a solution to () for μ = . Clearly,

∥∥y(t)
∥∥ → ∞, t → ∞,

and the zero solution to this system is not stable (here ‖y(t)‖ =
√

y
 (t) + y

(t)). This exam-
ple shows that the zero solution to () is not asymptotically stable for arbitrary μ > . At
the same time, according to Krein’s result, the zero solution to () is asymptotically stable
for μ 	  large enough (see []). Below we propose a way for calculating a value μ > 
such that the zero solution to () is asymptotically stable for μ > μ. This result will be
used in the next section.

Since the spectrum of A(t) belongs to the left half-plane C– for every t ∈ [, T], by the
Lyapunov criterion, for every fixed t ∈ [, T], there exists a unique solution H(t) = H∗(t) >
 to the Lyapunov matrix equation

HA(t) + A∗(t)H = –I.
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Introduce the following notations: Hmax = maxt∈[,T] ‖H(t)‖, νmax = maxt∈[,T] ν(H(t)),
where ν(H(t)) = ‖H(t)‖‖H–(t)‖ is the condition number of H(t). Here and hereafter we
use the spectral norm of matrices.

Theorem  Let N be a number such that the following inequality holds:

max
|t–s|≤ T

N

∥∥A(t) – A(s)
∥∥ ≤ 

Hmax
√

νmax
.

Then the zero solution to () is asymptotically stable for

μ > μ =
NHmax

T
lnνmax. ()

Proof Let Y (t) be the matriciant of (); i.e., Y (t) is a solution to the Cauchy problem

{
d
dt Y = μA(t)Y , t > ,
Y |t= = I.

Obviously, for every fixed tj ≥ , the matrix Y (t) is a solution to the Cauchy problem

{
d
dt Y = μA(t)Y , t > tj ≥ ,
Y |t=tj = Yj,

where Yj = Y (tj). Rewrite this Cauchy problem in the form

{
d
dt Y = μA(tj)Y + μ(A(t) – A(tj))Y , t > tj ≥ ,
Y |t=tj = Yj.

Clearly, every solution to the problem is a solution to the integral matrix equation

Y (t) = exp
(
(t – tj)μA(tj)

)
Yj +

∫ t

tj

exp
(
(t – s)μA(tj)

)
μ

(
A(s) – A(tj)

)
Y (s) ds.

Consequently,

∥∥Y (t)
∥∥ ≤ ∥∥exp

(
(t – tj)μA(tj)

)∥∥‖Yj‖

+ μ

∫ t

tj

∥∥exp
(
(t – s)μA(tj)

)∥∥∥∥A(s) – A(tj)
∥∥∥∥Y (s)

∥∥ds. ()

Since the spectrum of A(tj) belongs to the left half-plane C–, by Krein’s inequality [] we
have

∥∥exp
(
tA(tj)

)∥∥ ≤
√

ν(Hj) exp

(
–

t
‖Hj‖

)
, t > , ()

where Hj is a solution to the Lyapunov matrix equation

HjA(tj) + A∗(tj)Hj = –I,
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ν(Hj) = ‖Hj‖‖H–
j ‖. Using (), from () we obtain

∥∥Y (t)
∥∥ ≤

√
ν(Hj) exp

(
–

(t – tj)μ
‖Hj‖

)
‖Yj‖

+ μ

√
ν(Hj)

∫ t

tj

exp

(
–

(t – s)μ
‖Hj‖

)∥∥A(s) – A(tj)
∥∥∥∥Y (s)

∥∥ds.

According to the conditions of the theorem, if t ∈ [tj, tj + T
N ] then

∥∥A(t) – A(tj)
∥∥ ≤ 

Hmax
√

νmax
.

Hence,

∥∥Y (t)
∥∥ ≤ √

νmax exp

(
–

(t – tj)μ
Hmax

)
‖Yj‖ +

μ

Hmax

∫ t

tj

exp

(
–

(t – s)μ
Hmax

)∥∥Y (s)
∥∥ds.

From Gronwall’s inequality (for example, see []) we have

∥∥Y (t)
∥∥ ≤ √

νmax‖Yj‖ exp

(
–

(t – tj)μ
Hmax

)
, t ∈

[
tj, tj +

T
N

]
. ()

Let tj = jT
N , j = , . . . , N . By () we obtain

‖Yj‖ ≤ √
νmax‖Yj–‖ exp

(
–

Tμ

NHmax

)
, j = , . . . , N .

Since ‖Y‖ = ‖Y ()‖ = ,

‖Yj‖ ≤ (
√

νmax)j exp

(
–

jTμ

NHmax

)
, j = , . . . , N .

Consequently, from () we derive

∥∥Y (t)
∥∥ ≤ (

√
νmax)j+ exp

(
–

tμ
Hmax

)
, t ∈ [tj, tj+], j = , . . . , N – .

As a result, we have the following estimate for the matriciant of ():

∥∥Y (t)
∥∥ ≤ (

√
νmax)N exp

(
–

tμ
Hmax

)
, t ∈ [, T]. ()

Then the following inequality holds for the monodromy matrix:

∥∥Y (T)
∥∥ ≤ (

√
νmax)N exp

(
–

μT
Hmax

)
. ()

Hence, if μ satisfies () then ‖Y (T)‖ <  and the spectrum of the monodromy matrix Y (T)
belongs to the unit disk {λ ∈ C : |λ| < }. Consequently, in view of the spectral criterion,
the zero solution to () is asymptotically stable.

The theorem is proved. �
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Remark  It should be noted that N satisfying the conditions of Theorem  exists owing
to the continuity of the entries of A(t) on [, T].

Remark  It follows from the proof that all solutions to () tend to zero as t → ∞.

3 Asymptotic stability of solutions to delay differential equations
We now consider the time-delay systems of the form (). Using the theorems formulated
in Section , we indicate a value μ∗ such that the zero solution to () is asymptotically
stable for μ > μ∗.

Theorem  Let N be a number such that the following inequality holds:

max
|t–s|≤ T

N

∥∥A(t) – A(s)
∥∥ ≤ 

Hmax
√

νmax
,

let μ∗ >  satisfy the equality

μ∗
(

 – (νmax)N exp

(
–

μ∗T
Hmax

))
= eατ /Hmax(νmax)N max

t∈[,T]

∥∥B(t)
∥∥ ()

for some α > . Then the zero solution to () is asymptotically stable for μ > μ∗.

Proof By Theorem , if there are matrices L(t) and K(s) satisfying (), (), and the Riccati
type matrix differential inequality of the form ()

d
dt

L(t) + μL(t)A(t) + μA∗(t)L(t) + L(t)B(t)K–(τ )B∗(t)L(t) + K() < , ()

then the zero solution to () is asymptotically stable. Let us show that such matrices L(t)
and K(s) exist.

It is not hard to see that μ∗ > μ, where μ is defined in (). Consequently, by Theo-
rem  the zero solution to () is asymptotically stable for μ > μ∗; moreover, () is satisfied.
Hence, according to Theorem , for such μ there exists a unique solution L(t) = L∗(t) to
the boundary value problem

{
d
dt L + μLA(t) + μA∗(t)L = –I,  < t < T ,
L() = L(T) > .

()

Using the matriciant Y (t) of (), the solution to this problem can be written in the form
(see [])

L(t) =
(
Y –(t)

)∗
[∫ ∞

t

(
Y (s)

)∗Y (s) ds
]

Y –(t)

=
∫ ∞



(
Y (η + t)Y –(t)

)∗(Y (η + t)Y –(t)
)

dη.

Consider the matrix

Ỹ (η) = Y (η + t)Y –(t)
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for every fixed t. Obviously, it is the matriciant of the system

d
dη

ỹ(η) = μA(η + t)ỹ(η).

By (), we have the estimate

∥∥Ỹ (η)
∥∥ ≤ (

√
νmax)N exp

(
–

μη

Hmax

)
, η ∈ [, T]. ()

Using the property of the matriciant

Ỹ (η + kT) ≡ Ỹ (η)Y k(T), k = , , . . . ,

rewrite the formula for the solution L(t) to () as

L(t) =
∫ ∞



(
Ỹ (η)

)∗Ỹ (η) dη =
∞∑

k=

∫ (k+)T

kT

(
Ỹ (η)

)∗Ỹ (η) dη

=
∫ T



(
Ỹ (η)

)∗Ỹ (η) dη +
(
Y (T)

)∗
[∫ T



(
Ỹ (η)

)∗Ỹ (η) dη

]
Y (T)

+
(
Y (T)

)∗
[∫ T



(
Ỹ (η)

)∗Ỹ (η) dη

]
Y (T) + · · · .

Denote D =
∫ T

 (Ỹ (η))∗Ỹ (η) dη. Then we obviously obtain the inequality

∥∥L(t)
∥∥ ≤ ‖D‖ +

∥∥Y (T)
∥∥‖D‖ +

∥∥Y (T)
∥∥‖D‖ + · · · .

By () and (), we infer ‖Y (T)‖ < . Consequently,

∥∥L(t)
∥∥ ≤ 

 – ‖Y (T)‖ ‖D‖.

Using the definition of D and (), we have

‖D‖ ≤
∫ T



∥∥Ỹ (η)
∥∥ dη ≤ (νmax)N

∫ T


exp

(
–

μη

Hmax

)
dη

=
Hmax(νmax)N

μ

(
 – exp

(
–

μT
Hmax

))
≤ Hmax(νmax)N

μ
.

Hence, by (), we obtain

∥∥L(t)
∥∥ ≤ Hmax(νmax)N

μ

(
 – (νmax)N exp

(
–

μT
Hmax

))–

. ()

We now take K(s) = 
 e–αsI . Then verification of () for the matrices L(t) and K(s) re-

duces to verification of the inequality

eατ L(t)B(t)B∗(t)L(t) –



I < . ()
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From () we derive

∥∥eατ L(t)B(t)B∗(t)L(t)
∥∥ ≤ eατ

∥∥L(t)
∥∥∥∥B(t)

∥∥

≤ eατ (Hmax)(νmax)N

μ

×
(

 – (νmax)N exp

(
–

μT
Hmax

))–∥∥B(t)
∥∥.

Hence, for every continuous matrix B(t) and every τ > , if μ > μ∗, where μ∗ is given by
(), then

∥∥eατ L(t)B(t)B∗(t)L(t)
∥∥ <




;

i.e., () is valid. Consequently, the zero solution to () is asymptotically stable.
Theorem  is proved. �

Remark  It follows from the proof that all solutions to () tend to zero as t → ∞.

4 Conclusion
In the present paper we considered the systems of delay differential equations with pe-
riodic coefficients of the form (). We established the conditions on the coefficients and
the parameter under which the zero solution is asymptotically stable. These conditions
are formulated in terms of inequalities. This result allows us to study the asymptotic sta-
bility of the zero solution to time-delay systems of such type without spectral methods
(analogs of the Lyapunov-Floquet theory) and Lyapunov-Krasovskii functionals. In this
connection let us note [, ] that the stability of solutions to nonautonomous linear de-
lay differential systems has been studied by using the approaches based on the so-called
Azbelev W -transform and the Bohl-Perron type theorem, respectively. Using the results
of [, ], it is easy to write down the estimates for solutions to () characterizing the
exponential decay rate at infinity.

It should be noted that the results obtained in the present paper can be extended to the
systems with several delays of the form

d
dt

y(t) = μA(t)y(t) +
m∑
j=

Bj(t)y(t – τj), t > , ()

where τj > , j = , . . . , m. Indeed, if there are matrices L(t) and Kj(s) satisfying (), (), and
the Riccati type matrix differential inequality of the form

d
dt

L(t) + μL(t)A(t) + μA∗(t)L(t)

+
m∑
j=

L(t)Bj(t)K–
j (τj)B∗

j (t)L(t) +
m∑
j=

Kj() < , ()
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then the zero solution to () is asymptotically stable. This inequality is an analog of ().
As above, we may take the solution to () as L(t) and

Kj(s) = γje–αjsI, αj > ,γj > ,
m∑
j=

γj < .

Then verification of () reduces to verification of the inequality

m∑
j=


γj

eαjτj L(t)Bj(t)B∗
j (t)L(t) –

(
 –

m∑
j=

γj

)
I < .

This inequality is an analog of (). By (), it gives us immediately the condition for μ

under which the zero solution to () is asymptotically stable.
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