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Abstract
In this paper, following a very recent and new approach of Aizpuru et al. (Quaest.
Math. 37:525-530, 2014), we further generalize a concept of α-density to that of
fα-density, where f is an unbounded modulus and 0 < α ≤ 1. As a consequence, we
obtain a new nonmatrix convergence method, namely f -statistical convergence of
order α or Sfα-convergence, which is intermediate between the ordinary convergence
and the statistical convergence of order α. We also introduce a new concept of
strong Cesàro summability of order α with respect to a modulus function f , and
finally we investigate the relationship between the set Sfα of all f -statistically
convergent sequences of order α and the set wf

α of all strongly Cesàro summable
sequences of order α with respect to f .
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1 Introduction and historical background
The credit of introducing the idea of statistical convergence, which is in fact a general-
ization of the usual notion of convergence, goes to Zygmund []. Formally the concept
of statistical convergence was introduced by Steinhaus [] and Fast [] and later reintro-
duced by Schoenberg []. Statistical convergence also arises as an example of ‘convergence
in density’ as introduced by Buck in [].

Statistical convergence has emerged as one of the most active areas of research in
summability theory after the pioneering works of Šalát [] and Fridy []. Later on sta-
tistical convergence was further investigated from the sequence space point of view and
linked with summability theory by Connor [], Çinar et al. [], Et et al. [], Savas [],
Sengül and Et [], and many others.

Let N denote the set of all natural numbers. The number sequence x = (xk) is said to be
statistically convergent to the number l if for each ε >  the set {k ∈ N : |xk – l| ≥ ε} has
natural density zero, where the natural density of a subset K ⊂ N (see [], Chapter ) is
defined by

d(K) = lim
n→∞


n

∣
∣{k ≤ n : k ∈ K}∣∣,
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where |{k ≤ n : k ∈ K}| denotes the number of elements of K not exceeding n. Obviously
we have d(K) =  provided that K is a finite set of positive integers. If a sequence is statis-
tically convergent to l, then we write it as S-lim xk = l. The set of all statistically convergent
sequences is denoted by S.

The idea of a modulus function was structured by Nakano [] in . Following Ruckle
[] and Maddox [], we recall that a modulus f is a function from [,∞) to [,∞) such
that (i) f (x) =  if and only if x = , (ii) f (x + y) ≤ f (x) + f (y) for x ≥ , y ≥ , (iii) f is
increasing, (iv) f is continuous from the right at . Hence f must be continuous everywhere
on [,∞). A modulus may be unbounded or bounded. For example, f (x) = xp where  <
p ≤ , is unbounded, but f (x) = x

+x is bounded.
Connor [], Ghosh and Srivastava [], Bhardwaj and Singh [–], Çolak [], Altin

and Et [] and some others have used a modulus function to construct some sequence
spaces.

In the year , Aizpuru et al. [] defined a new concept of density with the help
of an unbounded modulus function and, as a consequence, they obtained a new concept
of nonmatrix convergence which is intermediate between the ordinary convergence and
the statistical convergence, and agrees with the statistical convergence when the modulus
function is the identity mapping.

Quite recently, Bhardwaj et al. [] have introduced and studied a new concept of
f -statistical boundedness by using the approach of Aizpuru et al. []. It is shown that the
concept of f -statistical boundedness is intermediate between the ordinary boundedness
and the statistical boundedness. It is also proved that bounded sequences are precisely
those sequences which are f -statistically bounded for every unbounded modulus f .

We now recall some definitions that will be needed in the sequel.

Definition . [] Let f be an unbounded modulus function. The f -density of a set A ⊂N

is defined by

df (A) = lim
n→∞

f (|{k ≤ n : k ∈ A}|)
f (n)

in case this limit exists.

Remark . The concept of f -density reduces to that of natural density when f (x) = x. In
case of natural density, it is well known that d(A) + d(N – A) = . But this result remains
no longer true in case of f -density, i.e., df (A) + df (N – A) =  does not hold, in general.
For example, if we take f (x) = log (x + ) and A = {n : n ∈ N}, then df (A) = df (N – A) = .
However, in case of f -density, we can assert that if df (A) =  then df (N – A) = . As in
the case of natural density, finite sets also have zero f -density and so for any finite set A,
df (A) + df (N – A) = .

Note that Aizpuru et al. [] have used the notation df (A) to denote the f -density of A.

Remark . For any unbounded modulus f and A ⊂ N, df (A) =  implies that d(A) = .
But converse need not be true in the sense that a set having zero natural density may
have non-zero f -density with respect to some unbounded modulus f . For example, if we
take f (x) = log (x + ) and A = {, , , . . .}, then d(A) =  but df (A) = /. However, in view
of Remark ., d(A) =  implies df (A) =  is always true in case of any finite set A ⊂ N,
irrespective of the choice of unbounded modulus f .
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Definition . [] Let f be an unbounded modulus function. A number sequence x =
(xk) is said to be f -statistically convergent to l, or Sf -convergent to l, if for each ε > ,

df ({k ∈N : |xk – l| ≥ ε
})

= ,

i.e., lim
n→∞


f (n)

f
(∣
∣
{

k ≤ n : |xk – l| ≥ ε
}∣
∣
)

= ,

and we write it as Sf -lim xk = l. The set of all f -statistically convergent sequences is denoted
by Sf .

In view of Definition . and Remark ., it follows that every f -statistically convergent
sequence is statistically convergent, but a statistically convergent sequence need not be
f -statistically convergent for every unbounded modulus f .

Statistical convergence of order α ( < α ≤ ) was introduced by Çolak [], and also
independently by Bhunia et al. [], using the notion of natural density of order α (where
n is replaced by nα in the denominator in the definition of natural density). It was observed
in [, ] that the behavior of this new kind of convergence was not exactly parallel to that
of statistical convergence. For a detailed account of many more interesting investigations
concerning statistical convergence of order α, one may refer to [, , –] and [].

Definition . [] Let α be any real number such that  < α ≤ . The α-density of a set
A ⊂N is defined by

dα(A) = lim
n→∞


nα

∣
∣{k ≤ n : k ∈ A}∣∣

in case this limit exists. Note that α-density of any set reduces to its natural density in
case α = . As we have earlier seen, the relation d(A) + d(N – A) =  is no longer true if
we replace natural density by f -density, same is the case if natural density is replaced by
α-density for α ∈ (, ). Moreover, as in the case of f -density, α-density of finite sets is also
zero.

Remark . If A has zero α-density for some α ∈ (, ], then it has zero natural density.
But converse need not be true, in the sense that a set having zero natural density may
have non-zero α-density for some α ∈ (, ). For example, if we take A = {, , , . . .} then
d(A) =  but dα(A) = ∞ for any α ∈ (, 

 ).

Definition . [] Let  < α ≤ . A number sequence x = (xk) is said to be statistically
convergent of order α to l, or Sα-convergent to l, if for each ε > ,

dα

({

k ∈N : |xk – l| ≥ ε
})

= ,

i.e., lim
n→∞


nα

∣
∣
{

k ≤ n : |xk – l| ≥ ε
}∣
∣ = ,

and we write it as Sα-lim xk = l. The set of all statistically convergent sequences of order
α is denoted by Sα . In case α = , the statistical convergence of order α reduces to the
statistical convergence.
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Throughout this paper s, l∞ and c will denote the space of all, bounded and conver-
gent sequences of complex numbers, respectively, and C will denote the set of all complex
numbers. Moreover, we shall be concerned only with the sequences of scalars.

Spaces of strongly summable sequences were discussed by Kuttner [], Maddox [, ]
and others. The well-known spaces wo, w and w∞ of strongly Cesàro summable sequences
are defined as:

wo =

{

x ∈ s : lim
n→∞


n

n
∑

k=

|xk| = 

}

,

w =

{

x ∈ s : lim
n→∞


n

n
∑

k=

|xk – l| =  for some number l

}

,

w∞ =

{

x ∈ s : sup
n


n

n
∑

k=

|xk| < ∞
}

.

Maddox [] extended the definition of strong Cesàro summability to that of strong Cesàro
summability with respect to a modulus and, consequently, introduced and studied the
sequence spaces wo(f ), w(f ) and w∞(f ) which generalized the classical sequence spaces
wo, w and w∞, respectively. Recently, Çolak [] extended the definition of strong Cesàro
summability to that of strong p-Cesàro summability of order α, where  < α ≤  and p is
a positive real number. The space of strongly p-Cesàro summable sequences of order α is
denoted by wα

p .
In this paper, we first extend the notion of α-density to that of fα-density in the same way

as natural density was extended to f -density by Aizpuru et al. [] and then introduce a
new and more general nonmatrix summability method, namely f -statistical convergence
of order α, where f is an unbounded modulus function and α is a real number such that
 < α ≤ . The set of all f -statistically convergent sequences of order α is denoted by Sf

α .
In the second section, we establish inclusion relations among the set of all f -statistically
convergent sequences of order α for different values of α and, in particular, we get an
inclusion relation between the set of f -statistically convergent sequences of order α and
the set of f -statistically convergent sequences. We also study inclusion relations between
the newly introduced space Sf

α and the already existing spaces Sα and S. In the third section,
we extend the notion of strong Cesàro summability of order α to that of strong Cesàro
summability of order α (α > ) with respect to a modulus f , in the same way as the notion
of strong Cesàro summability was extended to that of strong Cesàro summability with
respect to a modulus f by Maddox [] and, consequently, we obtain the sequence spaces
wf

α,o, wf
α and wf

α,∞ which generalize and unify the corresponding earlier spaces of Maddox
[] and Çolak []. We establish inclusion relations between the newly introduced spaces
wf

α,o, wf
α , wf

α,∞ and finally obtain a condition under which the notions of strong Cesàro
summability of order α with respect to a modulus f and strong Cesàro summability of
order α are equivalent. Some information on multipliers for wf

α,∞ is also given. In the last
section, we study inclusion relations between the space Sf

α of all f -statistically convergent
sequences of order α and the space wf

α of all strongly Cesàro summable sequences of order
α with respect to a modulus f .

2 f -Statistical convergence of order α

We begin this section by introducing a new concept of fα-density of a subset of N.
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Definition . Let f be an unbounded modulus function and α be any real number such
that  < α ≤ . We define the fα-density of the subset A of N by

df
α(A) = lim

n→∞


f (nα)
f
(∣
∣{k ≤ n : k ∈ A}∣∣)

in case this limit exists, where |{k ≤ n : k ∈ A}| denotes the number of elements of A not
exceeding n.

Remark . For α =  and f (x) = x, the fα-density reduces to the natural density and when
α = , fα-density becomes the f -density. In case f (x) = x, fα-density is the α-density.

The equality df
α(A) + df

α(N – A) =  does not hold, in general, where α ∈ (, ] and f
is any unbounded modulus. For example, if we take f (x) = xp,  < p ≤ , α ∈ (, ) and
A = {n : n ∈N}, then df

α(A) = ∞ = df
α(N – A).

As expected, finite sets have zero fα-density for any unbounded modulus f and α ∈ (, ].

Remark . For any unbounded modulus f and α ∈ (, ], if df
α(A) =  then, by the defini-

tion of limit and the fact that f being modulus is subadditive, for every p ∈N, there exists
no ∈ N such that for n ≥ no we have

f
(∣
∣{k ≤ n : k ∈ A}∣∣) ≤ 

p
f
(

nα
) ≤ 

p
pf

(
nα

p

)

= f
(

nα

p

)

and since f is increasing, we have


nα

∣
∣{k ≤ n : k ∈ A}∣∣ ≤ 

p
and so dα(A) = .

In view of Remark . and Remark ., we have the following.

Remark . If A ⊂ N has zero fα-density for some unbounded modulus f and for some
α ∈ (, ], then it has zero α-density and hence zero natural density.

Remark . Converse of Remark . need not be true in the sense that a set having zero
α-density for some α ∈ (, ] may have non-zero fα-density for some unbounded modulus
f with the same α. Similarly, a set having zero natural density may have non-zero fα-density
for some unbounded modulus f and α ∈ (, ]. This can be verified by the following ex-
ample.

Example . Let f (x) = log(x + ) and A = {, , , . . .}= the set of squares of natural num-
bers. Then d(A) =  and dα(A) =  for α ∈ ( 

 , ] but df
α(A) ≥ df (A) = /. Therefore

df
α(A) �= .

Lemma . For any unbounded modulus f and A ⊂N, df
β (A) ≤ df

α(A) for  < α ≤ β ≤ .

Thus, for any unbounded modulus f and  < α ≤ β ≤ , if A has zero fα-density then it
has zero fβ -density. In particular, a set having zero fα-density for some α ∈ (, ] has zero
f -density. However, the converse is not true as the following example demonstrates.
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Example . Let f (x) = xp, where  < p ≤  and A = {, , , . . .}. It is easy to see that
df (A) = . But df

α(A) �=  for any α ∈ (, /) since

f (|{k ≤ n : k ∈ A}|)
f (nα)

≥ ([
√

n])p – 
(nα)p

=
([
√

n])p

nαp –


nαp

=
([
√

n])p

(
√

n)p
(
√

n)p

nαp –


nαp

=
([
√

n])p

(
√

n)p


np(α–/) –


nαp

and hence, taking limit as n → ∞ on both sides, we get df
α(A) = ∞ as limn→∞ ([

√
n])p

(
√

n)p is
finite.

We now introduce a new concept of f -statistical convergence of order α as follows.

Definition . Let f be an unbounded modulus and  < α ≤ . A sequence x = (xk) is said
to be f -statistically convergent of order α to l or Sf

α-convergent to l if for each ε > ,

df
α

({

k ∈N : |xk – l| ≥ ε
})

= ,

i.e., lim
n→∞


f (nα)

f
(∣
∣
{

k ≤ n : |xk – l| ≥ ε
}∣
∣
)

= .

In this case, we write Sf
α-lim xk = l. The set of all sequences which are f -statistically con-

vergent of order α is denoted by Sf
α . We write Sf

α, to denote the set of all f -statistically null
sequences of order α. It is clear that Sf

α, ⊂ Sf
α for any unbounded modulus f and α ∈ (, ].

On specifying f and α in Sf
α-convergence, we obtain some well-known nonmatrix con-

vergence methods.
For α = , Sf

α-convergence is the same as f -statistical convergence.
For f (x) = x, Sf

α-convergence becomes statistical convergence of order α.
For f (x) = x and α = , Sf

α-convergence reduces to statistical convergence.

Remark . In Definition ., and hence in Definition . also, we have not allowed α to
exceed , since in case α > , the f -statistical limit of order α may not be unique as is clear
from the following example.

Example . Let f be an unbounded modulus such that limt→∞ f (t)
t > . The existence of

such a modulus is guaranteed, as Maddox [] proved that for any modulus f , limt→∞ f (t)
t

exists.
Let x = (xk) be a sequence defined as follows:

xk =

⎧

⎨

⎩

 if k = n,

 if k �= n,
n = , , , . . . .
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Then we have


f (nα)

f
(∣
∣
{

k ≤ n : |xk – | ≥ ε
}∣
∣
) ≤ f ( n

 )
f (nα)

and


f (nα)

f
(∣
∣
{

k ≤ n : |xk – | ≥ ε
}∣
∣
) ≤ f ( n

 )
f (nα)

.

Since limt→∞ f (t)
t > , we have

lim
n→∞


f (nα)

f
(∣
∣
{

k ≤ n : |xk – | ≥ ε
}∣
∣
)

= 

and

lim
n→∞


f (nα)

f
(∣
∣
{

k ≤ n : |xk – | ≥ ε
}∣
∣
)

= 

for α >  and for each ε > . Hence x = (xk) is Sf
α-convergent to both  and , i.e., Sf

α-lim xk =
 as well as Sf

α-lim xk = .

It is easy to see that every convergent sequence is Sf
α-convergent, i.e., c ⊂ Sf

α , for any un-
bounded modulus f and α ∈ (, ]. But, as is clear from the following example, the converse
need not hold always good.

Example . Consider the sequence x = (xk) defined by

xk =

⎧

⎨

⎩

 if k = n,

 if k �= n,
n = , , , . . .

and take f (x) = xp,  < p ≤ . Then the sequence x = (xk) ∈ Sf
α for α ∈ ( 

 , ] although it is
not convergent.

Theorem . Let f be an unbounded modulus and  < α ≤ . Let x = (xk), y = (yk) be any
two sequences. Then

(i) If Sf
α-lim xk = l and c ∈C, then Sf

α-lim cxk = cl.
(ii) If Sf

α-lim xk = l and Sf
α-lim yk = l, then Sf

α-lim(xk + yk) = l + l.

Theorem . Let f be an unbounded modulus and α, β be such that  < α ≤ β ≤ . Then
Sf

α ⊂ Sf
β and the strict inclusion may occur.

Proof The inclusion follows readily in view of the fact that f is increasing and  < α ≤ β ≤
. To show that the strict inclusion may occur, consider the sequence x = (xk) defined by

xk =

⎧

⎨

⎩

 if k = n,

 if k �= n,
n = , , , . . .

and take f (x) = xp,  < p ≤ . Then x ∈ Sf
β for β ∈ ( 

 , ], but x /∈ Sf
α for α ∈ (, 

 ). �
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Corollary . If a sequence is f -statistically convergent of order α to l for some unbounded
modulus f and  < α ≤ , then it is f -statistically convergent to l, i.e., Sf

α ⊂ Sf and the strict
inclusion may occur.

In view of Remarks . and . we have the following.

Theorem . Let f be an unbounded modulus and  < α ≤ . Then
(i) Sf

α ⊂ Sα and the strict inclusion may occur.
(ii) Sf

α ⊂ S and the strict inclusion may occur.

Proof To show that the strict inclusion may occur, consider the sequence x = (xk) defined
as follows:

xk =

⎧

⎨

⎩

k if k = n,

 if k �= n,
n = , , , . . . .

Let f (x) = log(x + ). Then x ∈ Sα for α ∈ ( 
 , ] and hence x ∈ S. But x /∈ Sf

α as df
α({k ∈ N :

|xk – | ≥ ε}) ≥ df ({k ∈ N : |xk – | ≥ ε}) = 
 ( �= ). �

To summarize, the overall picture regarding inclusions among the already existing
spaces c, S, Sα , Sf and the newly introduced space Sf

α is as shown below:

Sf ⊂ S
∪ ∪

c ⊂ Sf
α ⊂ Sα

3 Strong Cesàro summability of order α with respect to a modulus
We begin this section by introducing the generalizations of the spaces of strongly Cesàro
summable sequences of order α.

Definition . Let f be a modulus and α be a positive real number. We define

wf
α,o =

{

x ∈ s : lim
n→∞


nα

n
∑

k=

f
(|xk|

)

= 

}

,

wf
α =

{

x ∈ s : lim
n→∞


nα

n
∑

k=

f
(|xk – l|) =  for some number l

}

,

wf
α,∞ =

{

x ∈ s : sup
n


nα

n
∑

k=

f
(|xk|

)

< ∞
}

.

Some well-known spaces are obtained by specializing f and α.
For example, if α =  then the sequence spaces defined above become wo(f ), w(f ) and

w∞(f ) of Maddox [], respectively.
If we take f (x) = x, then the first two spaces are the same as the spaces wα

p and wα
op of

Çolak [] for p = . In case f (x) = x, we shall denote the space wf
α,∞ by wα,∞.
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As a final illustration taking f (x) = x and α = , we obtain the familiar spaces wo, w and
w∞ of strongly Cesàro summable sequences, respectively.

Remark . In the spaces wα
p and wα

op of Çolak [], α is a positive real number less than
or equal to , whereas in our spaces wf

α,o and wf
α , α is any positive real, i.e., there is no

upper ceiling of α.
Moreover, we have used the symbols wf

o, wf , wf
∞, wα,o and wα in place of wo(f ), w(f ),

w∞(f ), wα
op (for p = ) and wα

p (for p = ), respectively, for the sake of notational conve-
nience.

It is easy to see that wf
α,o, wf

α and wf
α,∞ are linear spaces over the complex field C.

We now establish some inclusion relations between the spaces wf
α,o, wf

α and wf
α,∞.

Theorem .
(i) For any modulus f and positive α, wf

α,o ⊂ wf
α,∞.

(ii) For any modulus f and α ≥ , wf
α ⊂ wf

α,∞.

Proof We establish only the second inclusion, the first being obvious. Let x ∈ wf
α . By defi-

nition of modulus function (iii) and (ii), we have


nα

n
∑

k=

f
(|xk|

) ≤ 
nα

n
∑

k=

f
(|xk – l|) + f

(|l|) 
nα

n
∑

k=

,

and since α ≥  and x ∈ wf
α , we have x ∈ wf

α,∞, which completes the proof. �

Our next theorem is a generalization of Theorem  of Maddox [].

Theorem . For any modulus f and α ≥ , we have wα ⊂ wf
α , wα,o ⊂ wf

α,o and wα,∞ ⊂
wf

α,∞.

Proof The first two inclusions are easily proved, so we consider only the last inclusion. Let
x ∈ wα,∞ so that

sup
n


nα

n
∑

k=

|xk| < ∞.

Let ε >  and choose δ with  < δ <  such that f (t) < ε for  < t ≤ δ. Consider


nα

∑n
k= f (|xk|) =

∑

 +
∑

, where the first summation is over |xk| ≤ δ and the second is
over |xk| > δ. Then

∑

 ≤ ε 
nα– , and for |xk| > δ we use the fact that

|xk| < |xk|/δ <  +
[|xk|/δ

]

,

where [t] denotes the integral part of t. By definition of modulus function (iii) and (ii), we
have, for |xk| > δ,

f
(|xk|

) ≤ (

 +
[|xk|/δ

])

f () ≤ f ()|xk|/δ.
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Hence
∑

 ≤ f ()δ– 
nα

∑n
k= |xk|, which together with

∑

 ≤ ε 
nα– yields


nα

n
∑

k=

f
(|xk|

) ≤ ε


nα– + f ()δ– 
nα

n
∑

k=

|xk|.

Since α ≥  and x ∈ wα,∞, we have x ∈ wf
α,∞ and the proof is complete. �

Theorem . Let f be a modulus and α be a positive real number. If limt→∞ f (t)
t > , then

wf
α ⊂ wα .

Proof Following the proof of Proposition  of Maddox [], we have β = limt→∞ f (t)
t =

inf{f (t)/t; t > }. By definition of β , we have f (t) ≥ βt for all t ≥ . Since β > , we have
t ≤ β–f (t) for all t ≥  and so


nα

n
∑

k=

|xk – l| ≤ β– 
nα

n
∑

k=

f
(|xk – l|)

from where it follows that x ∈ wα whenever x ∈ wf
α . �

Remark . We have just seen in Theorem . that the inclusion wα ⊂ wf
α is true in case

α ≥ , without any restriction on the modulus f , whereas in Theorem . we have estab-
lished that wf

α ⊂ wα is true only for such a modulus function f for which limt→∞ f (t)
t > ,

there being no restriction on α.

Combining these two results we have the following.

Theorem . Let f be any modulus such that limt→∞ f (t)
t >  and α ≥ . Then wf

α = wα .

Theorem . Let f be a modulus and β ≥ α > . Then wf
α ⊂ wf

β and the strict inclusion
may occur.

Proof To show that the strict inclusion may occur, let f be a modulus and consider the
sequence x = (xk) defined by

xk =

⎧

⎨

⎩

 if k = n,

 if k �= n,
n = , , , . . . .

Using the fact that f () = , it is easy to see that


nβ

n
∑

k=

f
(|xk – |) ≤

√
n

nβ
f () =


nβ–/ f () for every n ∈N.

Since 
nβ–/ f () →  as n → ∞ for β > /, so x ∈ wf

β for β > /. Also


nα

n
∑

k=

f
(|xk – |) ≥

√
n – 
nα

f () for every n ∈N
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and
√

n–
nα f () → ∞ as n → ∞ for  < α < /, which implies that x /∈ wf

α for  < α <
/. �

Some information on multipliers for wf
α,∞ is given below. For any set E of sequences, the

space of multipliers of E, denoted by M(E), is given by

M(E) = {a ∈ s : ax ∈ E for all x ∈ E}.

Theorem . Let f be a modulus and α be a positive real number. Then
(i) l∞ ⊂ M(wf

α,∞),
(ii) M(wf

α,∞) ⊂ wf
α,∞ if α ≥ ,

(iii) If f is bounded and α ≥ , then

M
(

wf
α,∞

)

= wf
α,∞ = s.

Proof (i) b ∈ l∞ implies that |bk| <  + [H] for some H >  and for all k, and so


nα

n
∑

k=

f
(|bkxk|

) ≤ (

 + [H]
) 

nα

n
∑

k=

f
(|xk|

)

for all x ∈ wf
α,∞,

which gives the first inclusion.
(ii) The second inclusion follows from the fact that e = (, , , . . .) ∈ wf

α,∞ for α ≥ .
(iii) If f is bounded and α ≥ , then for any x = (xk) ∈ s,


nα

n
∑

k=

f
(|xk|

) ≤ sup
{

f (y) : y ≥ 
} 

nα– ,

so that wf
α,∞ = s. Similarly, by part (ii) and the above argument, we have M(wf

α,∞) = wf
α,∞.
�

Recall [] that a sequence space E is called
. normal if y = (yk) ∈ E whenever |yk| ≤ |xk|, k ≥ , for some x = (xk) ∈ E,
. monotone if it contains the canonical preimages of all its stepspaces.

Theorem . [] If E is a sequence space, the following are equivalent.
(i) E is normal,

(ii) l∞ ⊂ M(E),
(iii) M(E) is normal.

Lemma . [] Every normal sequence space is monotone.

In view of Theorems ., . and Lemma ., we have the following.

Theorem . For any modulus f and positive real number α, the spaces wf
α,∞ and

M(wf
α,∞) are normal as well as monotone.
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4 Relation between f -statistical convergence of order α and strong Cesàro
summability of order α with respect to a modulus

It was shown by Çolak [] that for α ∈ (, ], if a sequence is strongly Cesàro summable
of order α to l, then it is statistically convergent of order α to l. We now wish to find
some condition on f , if any, so that strong Cesàro summability of order α with respect
to a modulus f to l of a sequence implies its f -statistical convergence of order α to l. We
also wish to obtain some condition on f , if any, under which strong Cesàro summability of
order α with respect to a modulus f to l of a sequence implies its statistical convergence
of order α to l.

Maddox [] showed the existence of an unbounded modulus f for which there exists a
positive constant c such that f (xy) ≥ cf (x)f (y) for all x ≥ , y ≥ . Using this we have the
following.

Theorem . Let  < α ≤ β ≤ . Let f be an unbounded modulus such that there is a pos-
itive constant c such that f (xy) ≥ cf (x)f (y) for all x ≥ , y ≥  and limt→∞ f (t)

t > . If a se-
quence is strongly Cesàro summable of order α with respect to f to l, then it is f -statistically
convergent of order β to l.

Proof For any sequence x = (xk) and ε > , by the definition of modulus function (ii)
and (iii), we have

n
∑

k=

f
(|xk – l|) ≥ f

( n
∑

k=

|xk – l|
)

≥ f
(∣
∣
{

k ≤ n : |xk – l| ≥ ε
}∣
∣ε

)

≥ cf
(∣
∣
{

k ≤ n : |xk – l| ≥ ε
}∣
∣
)

f (ε)

and since α ≤ β ,


nα

n
∑

k=

f
(|xk – l|) ≥ cf (|{k ≤ n : |xk – l| ≥ ε}|)f (ε)

nα

≥ cf (|{k ≤ n : |xk – l| ≥ ε}|)f (ε)
nβ

=
cf (|{k ≤ n : |xk – l| ≥ ε}|)f (ε)f (nβ )

nβ f (nβ )
.

From where, using the fact that limt→∞ f (t)
t >  and x ∈ wf

α , it follows that x ∈ Sf
β and the

proof is complete. �

If we take β = α in Theorem ., we have the following.

Corollary . Let f be an unbounded modulus such that there is a positive constant c such
that f (xy) ≥ cf (x)f (y) for all x ≥ , y ≥  and limt→∞ f (t)

t > . Let  < α ≤ . If a sequence is
strongly Cesàro summable of order α with respect to f to l, then it is f -statistically conver-
gent of order α to l.

If we take α =  in Corollary ., then we have the following.
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Corollary . Let f be an unbounded modulus such that there is a positive constant c
such that f (xy) ≥ cf (x)f (y) for all x ≥ , y ≥  and limt→∞ f (t)

t > . If a sequence is strongly
Cesàro summable with respect to f to l, then it is f -statistically convergent to l.

Remark . If we take f (x) = x in Theorem ., we obtain Theorem . of Çolak [] for
the case p = .

Theorem . Let f be a modulus function such that limt→∞ f (t)
t >  and α ∈ (, ]. If a

sequence is strongly Cesàro summable of order α with respect to f to l, then it is statistically
convergent of order α to l.

Taking α =  in Theorem . we obtain the following result which is a particular case of
part (a) of Theorem  of Connor [].

Corollary . Let f be a modulus function such that limt→∞ f (t)
t > . If a sequence is

strongly Cesàro summable with respect to f to l, then it is statistically convergent to l.

Taking f (x) = x and α =  in Theorem ., we obtain the following result, which is con-
tained in Theorem . of Connor [], for the case q = .

Corollary . If a sequence is strongly Cesàro summable to l, then it is statistically con-
vergent to l.
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