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Abstract
In this paper we use a result of Nunokawa to extend some results on univalent
functions given by Miller and Mocanu. As a consequence, we get several sufficient
conditions for starlikeness over the expression f (z)f ′′(z)/f ′2(z).
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1 Introduction and preliminaries
Let A denote the class of functions f (z) that are analytic in the open unit disk D = {z :
|z| < } and are normalized such that f () = f ′() –  = , i.e., f (z) = z + az + · · · . Functions
from A that are one-to-one are called normalized univalent functions. One of the largest
classes of univalent functions is the class of strongly starlike functions of order α,  < α ≤ ,
denoted by˜S∗(α) and consisting of function f ∈A such that
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For α = , we obtain the well-known class of starlike functions f (z) that map the unit disk
onto a starlike region, i.e., if ω ∈ f (D), then tω ∈ f (D) for all t ∈ [, ]. For details, see [].

A major contribution in the theory of univalent functions was done by the work of Miller
and Mocanu. In the s, in [, ], they introduced the concept of differential subordi-
nations, which was a big step forward and led to numerous valuable results by hundreds
of mathematicians around the world following their work. More details on this topic can
be found in [].

Using methods from the theory of differential subordinations, Miller and Mocanu
proved the following two results.

Theorem . (Corollary .a. from [], p.) Let B(z) and C(z) be complex-valued func-
tions defined in D with

∣

∣Im C(z)
∣

∣ ≤ Re B(z) (z ∈D).
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If p(z) is analytic in D with p() = , and if

Re
[

B(z)zp′(z) + C(z)p(z)
]

>  (z ∈D),

then

Re p(z) >  (z ∈D).

Theorem . (Theorem  from []; Theorem .c from [], p.) Let β = . . . . be
the solution of βπ + arctgβ – π/ = , and let α = α(β) = β + 

π
arctgβ for  < β ≤ β. If p

is analytic in D, with p() = , then

∣

∣arg
[

zp′(z) + p(z)
]∣

∣ <
απ


(z ∈ D)

implies

∣

∣arg p(z)
∣

∣ <
βπ


(z ∈D).

These two results are closely related since for B(z) = C(z), bearing in mind that for ω =
x + iy and x > ,
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,

Theorem . reduces to the following.

Theorem . (Corollary .a. from [], p.) Let B(z) be a complex-valued function
defined in D with

∣

∣arg
[

B(z)
]∣

∣ ≤ π


(z ∈D).

If p(z) is analytic in D with p() = , and if

Re
{

B(z)
[

zp′(z) + p(z)
]}

>  (z ∈ D),

then

Re p(z) >  (z ∈D).

Both of these results (Theorem . and Theorem .) will be extended in this paper.
Namely, we will extend the result of Theorem . for values of β bigger than β, and we
will obtain a result complementary to Theorem . (with more flexible conditions). At
the end these new results will be applied for obtaining several sufficient conditions for
starlikeness over the expression

f (z)f ′′(z)
f ′(z)

.
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This expression was introduced in [], and after that it has attracted significant attention
(some of those results can be found in [–]).

For proving the main result, we will use the following lemma due to Nunokawa which
is an extension of the well-known Jack lemma [].

Lemma . ([, ]) Let p(z) be a function analytic in z ∈D with p() =  and p(z) �=  for
all z ∈D. If there exists a point z ∈D such that
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, (.)

where

[

p(z)
]/ϕ = ±ai and a > .

2 Main results and consequences
As we will see later, using Lemma . we obtain the following result which, we will see
later, for some choice of parameters extends the results of Miller and Mocanu given in
Theorem . and Theorem ..

Theorem . Let β ∈ (, ] and β = . . . . be the solution of the equation βπ +
arctgβ – π/ = . Also, let α ∈ (, ] be such that

(i) |β + 
π

arctgβ – α – | ≤  when β ≤ β;
(ii) |β + α – | ≤  when β ≥ β.

If B(z) is such that

∣

∣arg B(z)
∣

∣ ≤
{

ϕ ≡ π
 (β – α) + arctgβ , β ≤ β

ϕ ≡ π
 ( – β – α), β ≥ β

}

≡ ϕ, (.)

and if p(z) is an analytic function in D with p() =  and p(z) �=  for all z ∈ D, then
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(z ∈ D) (.)
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implies

∣

∣arg p(z)
∣

∣ <
βπ


(z ∈D).

Proof In the beginning, let us note a few things that we will use later in the proof. First, the
function g(β) ≡ βπ + arctgβ – π

 is an increasing one on the interval (, ], which easily
leads to a conclusion that

ϕ = min{ϕ,ϕ},

where ϕ, ϕ and ϕ are defined in (.). Second, conditions (i) and (ii) are equivalent to

 ≤ ϕ ≤ π when β ≤ β

and

 ≤ ϕ ≤ π when β ≥ β,

respectively.
Now, let us assume that there exists a point z ∈D such that
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∣arg
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βπ


for |z| < |z|

and
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.

Then, according to Lemma .,

[

p(z)
]/β = ±ai, a > 

and

zp′(z)
p(z)

= ilβ ,

where (.) and (.) hold. Therefore,

I ≡ arg
{

B(z)
[

zp′(z) + p(z)
]}

= arg

{

B(z) · p(z) ·
[

zp′(z)
p(z)

+ 
]}

= arg B(z) +
βπ


+ arg(ilβ + ).

Now, let us consider the case when p(z) = ia, a >  and l ≥ . For the value of I , condition
(.) implies

I ≥ –
∣

∣arg B(z)
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> –
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∣
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απ
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ϕ
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and

I <
∣

∣arg B(z)
∣

∣ +
βπ


+

π


<

∣

∣arg B(z)
∣

∣ +
βπ


–

π


+

απ


︸ ︷︷ ︸

ϕ

+π

≤ ∣

∣arg B(z)
∣

∣ – ϕ + π ≤ π .

Therefore, I ∈ (, π ) and

|I| =

{

I, I ∈ (,π ]
π – I, I ∈ (π , π )

}

≥
{

–| arg B(z)| + βπ

 + arctgβ , I ∈ (,π ]
π – [| arg B(z)| + βπ

 + π
 ], I ∈ (π , π )

}

= –
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}

≥ –
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∣
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.

This is a contradiction to condition (.).
In a similar way we come to a contradiction in the remaining case, p(z) = –ia, a >  and

l ≤ –.
Thus, the initial assumption is not correct, i.e., | arg p(z)| < βπ

 for all z ∈D. �

Remark . Theorem . makes sense, i.e., conditions (.) and (.) can be true at the
same time since p() =  implies that

arg
{

B(z)
[

zp′(z) + p(z)
]}∣

∣

z= = arg
[

B()
]

can be in (–ϕ,ϕ) and in (–απ/,απ/) at the same time for certain functions B(z) and p(z).

For β =  in Theorem . we obtain the following.

Corollary . Let α ∈ (, 
 ] and let B(z) be such that

∣

∣arg B(z)
∣

∣ ≤ π



(




– α

)

(z ∈D).

If p(z) is an analytic function in D with p() =  and p(z) �=  for all z ∈D, then

∣

∣arg
{

B(z)
[

zp′(z) + p(z)
]}∣

∣ <
απ


(z ∈ D)

implies

Re p(z) >  (z ∈D).

For α =  in Corollary ., we obtain the following.
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Corollary . Let B(z) be such that

∣

∣arg B(z)
∣

∣ ≤ π


(z ∈D).

If p(z) is an analytic function in D with p() =  and p(z) �=  for all z ∈D, then

Re
{

B(z)
[

zp′(z) + p(z)
]}

>  (z ∈ D)

implies

Re p(z) >  (z ∈D).

Remark .
(i) In comparison with Theorem ., Corollary . requires an additional condition

(p(z) �=  for all z ∈ D). On the other hand, the remaining conditions are more
flexible than the conditions of Theorem .. Namely, Theorem . requires

∣

∣arg B(z)
∣

∣ ≤ π


and

∣

∣arg
{

B(z)
[

zp′(z) + p(z)
]}∣

∣ <
π


,

while Corollary . requires

∣

∣arg B(z)
∣

∣ ≤ π


–

απ


and

∣

∣arg
{

B(z)
[

zp′(z) + p(z)
]}∣

∣ <
απ


.

Note that the sum of the bounds on the right-hand side in both cases is π/.
(ii) Corollary . is slightly weaker than Theorem . because of the extra condition

requiring p(z) �=  for all z ∈D.

Taking B(z) =  in Theorem ., we obtain the following result.

Corollary . Let β ∈ (, ] and β = . . . . be the solution of the equation βπ +
arctgβ – π/ = . Also, let

α ≡ α(β) =

{

β + π
 arctgβ , β ≤ β,

 – β , β ≥ β.
(.)

If p(z) is an analytic function in D with p() =  and p(z) �=  for all z ∈D, then

∣

∣arg
{

B(z)
[

zp′(z) + p(z)
]}∣

∣ <
απ


(z ∈ D)

implies

∣

∣arg p(z)
∣

∣ <
βπ


(z ∈D).

Proof The conclusion follows directly from Theorem . since α defined by (.) satisfies
its conditions (i) and (ii). �

Remark . In the case when β ≤ β, Corollary . is the same as Theorem ., i.e., it
extends Theorem . to the values of β in the interval [β, ].
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3 Sufficient conditions for starlikeness
Theorem . in the case when p(z) = f (z)

zf ′(z) (⇒ zp′(z) + p(z) =  – f (z)f ′′(z)/f ′(z)) and B(z) =
eiθπ/ brings the following sufficient condition for starlikeness.

Corollary . Let β ∈ (, ] and β = . . . . be the solution of the equation βπ +
arctg(β) – π

 = . Also, let α ∈ (, ] be such that
(i) |β + 

π
arctgβ – α – | ≤  when β ≤ β;

(ii) |β + α – | ≤  when β ≥ β.
If θ ∈ [–, ] is such that

|θ | ≤
{

β – α + 
π

arctgβ , β ≤ β,
 – β – α, β ≥ β,

(.)

and if f ∈A is such that f (z)
zf ′(z) �=  for all z ∈D, then

∣

∣

∣

∣

arg

{

eiθπ/ ·
[

 –
f (z)f ′′(z)

f ′(z)

]}∣

∣

∣

∣

<
απ


(z ∈D) (.)

implies that the function f (z) is strongly starlike of order β .

Proof It is easy to check that (.) implies inequality (.) and the rest follows from Theo-
rem .. �

Now we will apply part (i) from the previous corollary on a specific function from the
classA and get that it is strongly starlike of certain order. It is much more difficult to obtain
this conclusion directly.

Example
(i) Let a ∈ (, ) and let β∗ be the unique real root of the equation

βπ


+ arctgβ = arcsin a (.)

on the interval (, ]. Then the function f (z) = z( + a
 z)–/ is strongly starlike of

order β∗.
(ii) If we choose a =  in the previous example, we obtain that the function

f (z) = z( + 
 z)–/ is strongly starlike of order β = . . . . .

(iii) Example (i) can be rewritten in the following form: if β ∈ (,β] and
a = sin( βπ

 + arctgβ), then the function f (z) = z( + a
 z)–/ is strongly starlike of

order β .
(iv) Choosing β = / in the previous example, we obtain a = . . . . and

f (z) = z( + a
 z)–/ ∈ ˜S∗(/).

Proof (i) First, let us note that βπ

 + arctgβ is an increasing function on the interval [, ]
with minimal and maximal value,  and π

 , respectively. Therefore, equation (.) has,
indeed, a unique real solution on the interval (, ].
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Further, it can be easily verified that f () =  and that f ′(z) = 
√

( + az)–/, f ′() = ,
i.e., f (z) ∈A. Also, f (z)

zf ′(z) = +az/
z �=  for all z ∈D and

 –
f (z)f ′′(z)

f ′(z)
=  + az,

i.e.,

sup
z∈D

∣

∣

∣

∣

arg

[

 –
f (z)f ′′(z)

f ′(z)

]∣

∣

∣

∣

= arcsin a =
απ


.

Therefore, choosing in Corollary .(i): β = β∗, α = β + 
π

arctgβ and θ = , we realize that
all its conditions are satisfied. So, f (z) ∈ ˜S∗(β).

This is more difficult to obtain from the definition of strong starlikeness of order β since
zf ′(z)
f (z) = z

+az/ . �

Remark . For the function F(z) = f (z)f ′′(z)
f ′(z) , condition (.) is equivalent to the condition:

F(D) lies in the sector {ω : | argω| < απ
 } rotated by angle ( – θ )π/ and translated by .

Proof Condition (.) is equivalent to

eiθπ/ · [ – F(D)
] ⊆

{

ω ∈C : | argω| <
απ



}

,

i.e., to

–eiθπ/ · F(D) ⊆ –eiθπ/ +
{

ω ∈C : | argω| <
απ



}

,

F(D) ⊆  – e–iθπ/ ·
{

ω ∈C : | argω| <
απ



}

and

F(D) ⊆  + ei(–θ )π/ ·
{

ω : | argω| <
απ



}

. �

If we choose β = , α = / and θ =  in Corollary ., we have the following.

Corollary . Let f ∈A and f (z)
zf ′(z) �=  for all z ∈D. If

∣

∣

∣

∣

arg

[

 –
f (z)f ′′(z)

f ′(z)

]∣

∣

∣

∣

<
π


(z ∈D),

i.e.,

F(D) ⊆  –
{

ω : | argω| <
π



}

,

where F(z) = f (z)f ′′(z)
f ′(z) , then f (z) is a starlike function.
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Remark . Corollary .(i) from [] says that starlikeness of f (z) ∈A follows from

F(D) ⊂ {x + iy : x ≤ .} ∪ {

x + iy : y > – + x
} ≡ �.

The boundary of the region � is the curve y = ±√
– + x which for x =  has two tangents

y = ±(x–) that, for x ≥ , are boundary of the region 	 = {ω : | argω| < π/}. This implies
that 	 ⊂ �, i.e., that the result from Corollary . follows from Corollary .(i) [].
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