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1 Introduction
Hardy’s famous inequality reads

∫ ∞



(

x

∫ x


f (t) dt

)p

dx ≤
(

p
p – 

)p ∫ ∞


f p(x) dx, p > , ()

where f (x) is a p-integrable non-negative function on (,∞). The constant ( p
p– )p is sharp.

Hardy stated his inequality in  (see []) and finally proved it in  (see []). Since
then there has been an enormous development of this inequality to what today is called
Hardy-type inequalities. One important reason is that this theory is very important for
various applications both in mathematics and the technical sciences. See e.g. [–] and
the references given there. Let us just mention some important steps in this development.
One central problem was to characterize the weights u(x) and v(x) so that the more general
Hardy-type inequality

(∫ ∞



(∫ x


f (t) dt

)q

u(x) dx
) 

q
≤ C

(∫ ∞


f p(x)v(x) dx

) 
p

()

holds for various parameters p and q, and to also have some good estimates of the best
constant C (the operator norm). Here and in the sequel C does not depend on f . This
problem is nowadays solved for most cases (see e.g. the books mentioned above). How-
ever, for various applications it is also important to consider the mapping properties of the
more general operator Hk(f )(x) :=

∫ x
 k(x, t)f (t) dt, where k(x, t) is a kernel (a non-negative

and measurable function on {(x, t) :  ≤ x < ∞,  < t ≤ x}). In applications k = k(x, t) is
sometimes called the Green-kernel or unit impulse answer when solving technical prob-
lems modeled by linear differential equations. In the case with weighted Lebesgue spaces
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this problem is equivalent to study the inequality () with H replaced by Hk . It is still a
well-known open problem to characterize () with H replaced by Hk without restrictions
on k. However, the problem is more or less solved for some special cases, e.g. the follow-
ing:

(a) k(x, t) ≡  (the classical case; see e.g. [, ] and []);
(b) k(x, t) is of product type (see e.g. [] and the references therein);
(c) k(x, t) satisfies the so-called Oinarov condition (see e.g. [], Chapter , especially

p.);
(d) k(x, t) satisfies some generalized Oinarov condition (see [] and []).
It is also of great interest to investigate all the problems above when the inequalities are

studied only on the cone of non-decreasing functions. In particular, such inequalities give
precise results concerning embeddings between weighted Lorentz spaces described by dif-
ferent (quasi-)norms. Here, we mention the fundamental paper [] from  by Sawyer,
where he proved his famous ‘Sawyer duality principle’ for reduction of an inequality for
monotone functions to the corresponding inequality for non-negative functions.

There has been a similar development for Hardy-type inequalities in the discrete case.
For clarity and as an introduction of the main result of this paper we briefly describe this
development in Section , where we also compare with the continuous case and formulate
our main result. This main result is proved in Section . In order to prepare for this proof
we state some auxiliary results in Section . Finally, we give some applications connected
to Hölder’s summation method (see []) in Section .

2 The discrete case - formulation of the main result
The discrete form of Hardy’s inequality reads

∞∑
n=

(

n

n∑
k=

fk

)p

≤
(

p
p – 

)p ∞∑
n=

f p
n , p > , ()

where f = {fk} is any sequence of non-negative numbers. The constant ( p
p– )p is sharp also

in this case. By applying () with step-functions we obtain (). The discrete inequality
corresponding to () reads

( ∞∑
n=

( n∑
k=

fk

)q

un

) 
q

≤ C

( ∞∑
n=

f p
n vn

) 
p

, ()

where u = {un} and v = {vn} are sequences of non-negative numbers. Also in this case
the characterization of () is known for almost all reasonable parameters p and q (see
e.g. [] and the references therein). However, in this case the result does not follow au-
tomatically from the corresponding result in the continuous case but must be proved
separately. Also in this case it is important to study the more general case when the op-
erator H(f )(n) =

∑n
k= fk is replaced by a more general discrete kernel (matrix) operator

Hw(f )(n) =
∑n

k= wn,kfk , where wn,k ,  ≤ n ≤ ∞,  ≤ k ≤ n, are non-negative numbers. The
case when {fk} is a non-decreasing sequence is of special interest in this case too and gives
different characterizations. The corresponding result to ‘Sawyer duality principle’ for this
discrete case was proved in []. This result is important for our investigations in this
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paper. Also in this discrete case it is an open question how to characterize () with H re-
placed by Hw without any further restrictions on the matrix sequence {wn,k}. However,
several results corresponding to (a)-(d) in the continuous case are known. So, a character-
ization corresponding to (d) for the case  < p ≤ q < ∞ was proved in []. A characteriza-
tion for the case  < q < p < ∞ is an open problem. However, we can consider the setting
corresponding to some subclass of (d) that is as follows:

We consider the operator

(Sn–f )i =
i∑

k=

ω,k

k∑
k=

ω,k · · ·
kn–∑

kn–=

ωn–,kn–

kn–∑
j=

fj, i ≥ , ()

and call it a n-multiple discrete Hardy operator with weights.
Let us notice that if in () we change the order of summation, then the operator Sn– can

be rewritten in the form

(Sn–f )i =
i∑

j=

An–,(i, j)fj, i ≥ ,

where

An–,(i, j) =
i∑

kn–=j

ωn–,kn–

i∑
kn–=kn–

ωn–,kn– · · ·
i∑

k=k

ω,k , i ≥ j ≥ ,

for n >  and An–,(i, j) =  for n = .
One main problem is to find necessary and sufficient conditions on the weight sequences

ωi, i = , , . . . , n – , u and v for the validity of the inequality

( ∞∑
i=

uq
i

( i∑
j=

An–,(i, j)fj

)q) 
q

≤ C

( ∞∑
i=

vp
i fi

p

) 
p

()

for non-negative non-increasing sequences f = {fk}∞k= in the case  < q < p < ∞.
When n =  the operator Sn– becomes the standard discrete Hardy operator (Sf )i =∑i
j= fj. The validity of inequality () with the standard discrete Hardy operator has been

in detail investigated for non-negative sequences f and different relations between the
parameters p and q. A thorough analysis and review of the development of this problem
can be found e.g. in [, ] and []. For this case and when the sequence {fk} is non-
increasing we refer to the important paper [] and the references given there.

Concerning the general inequality () the following is known:

(α) for the case when {fk} is a non-negative sequence a characterization of () for the case
 < p ≤ q < ∞ was derived in [] while a corresponding characterization for the case
 < q < p < ∞ can be found in [];

(β) for the case when {fk} is a non-increasing sequence a characterization of () for the case
 < p ≤ q < ∞ was derived in [].

However, so far no such characterization in the case  < q < p < ∞ is known and it is the
main aim of this paper to fill in this gap. Our main result reads as follows.
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Theorem . Let  < q < p < ∞ and n ≥ . Suppose that Vk =
∑k

i= vp
i when k ≥ 

and V∞ = limk→∞ Vk . Then inequality () holds for all non-negative non-increasing se-
quences f = {fi}∞i= from lp,v if and only if E = max{E, E} < ∞ when V∞ = ∞ and E =
max{E, E′

, E} < ∞ when V∞ < ∞, where
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and

E := V
– 

p∞

( ∞∑
i=

( i∑
j=

An–,(i, j)

)q

uq
i

) 
q

. ()

Moreover, E ≈ C when V∞ = ∞ and E ≈ C when V∞ < ∞, where C is the best constant
in ().

3 Notations and auxiliary statements
Let 

p + 
p′ =  and 

q + 
q′ = . The symbol A 	 B means that A ≤ CB with some constant C,

which may depend only on the parameters p and q. Moreover, if A 	 B 	 A, then we write
A ≈ B.

For all i ≥ j ≥  we suppose that Al,m(i, j) =  when l < m and Al,m(i, j) =
∑i

kl=j ωl,kl ×∑i
kl–=kl

ωl–,kl– · · ·∑i
km=km+

ωm,km for n –  ≥ l ≥ m ≥ . Moreover, for all i < j we suppose
that Al,m(i, j) =  when l, m ≥ .

In [] the following lemma was proved.

Lemma A For all i, j, τ :  ≤ j ≤ τ ≤ i the estimates

max
m–≤r≤l

Ar,m(i, τ )Al,r+(τ , j) ≤ Al,m(i, j) ≤
l∑

r=m–

Ar,m(i, τ )Al,r+(τ , j) ()

hold when n –  ≥ l ≥ m ≥ .

We also need the following discrete analog of the ‘Sawyer duality principle’, which was
proved in [].
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Theorem A Let  < p, q < ∞. Let (ai,j) be a triangle matrix with ai,j ≥  when i ≥ j ≥  and
ai,j =  when i < j. Let Vk =

∑k
i= vp

i when k ≥  and V∞ = limk→∞ Vk . Then the inequality

( ∞∑
i=

uq
i

( i∑
j=

ai,jfj

)q) 
q

≤ C

( ∞∑
i=

vp
i fi

p

) 
p

()

for all non-negative non-increasing sequences f = {fi}∞i= from lp,v is equivalent to the in-
equality

( ∞∑
k=

( k∑
j=

∞∑
i=j

ai,jgi

)p′(
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– p′
p
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– p′

p
k+

)) 
p′

≤ C̃

( ∞∑
i=

gq′
i u–q′

i

) 
q′

()

for all non-negative sequences g = {gi}∞i= when V∞ = ∞, and it is equivalent to the inequal-
ity

( ∞∑
k=

( k∑
j=

∞∑
i=j

ai,jgi

)p′(
V

– p′
p

k – V
– p′

p
k+

)) 
p′

+

( ∞∑
j=

∞∑
i=j

ai,jgi

)( ∞∑
k=

vk

)– 
p

≤ C

( ∞∑
i=

gq′
i u–q′

i

) 
q′

()

for all non-negative sequences g = {gi}∞i= when V∞ < ∞.
Moreover, C̃ ≈ C when V∞ = ∞ and C ≈ C when V∞ < ∞, where C, C̃ and C are the

best constants in (), () and (), respectively.

We also need the following well-known result (see e.g. [], p.).

Theorem B Let  < q < p < ∞. Let {αi}∞i= be a non-negative sequence. Then the inequality

( ∞∑
i=

uq
i

( i∑
j=

αjfj

)q) 
q

≤ C

( ∞∑
i=

vp
i fi

p

) 
p

()

holds for all non-negative sequences f = {fi}∞i= from lp,v if and only if

H :=
∞∑
i=

(
uq

i

( ∞∑
j=i

uq
j

) q
p–q

( i∑
j=

α
p′
j v–p′

j

) q(p–)
p–q

)
< ∞.

Moreover, H ≈ C, where C is the best constant in ().

We also need two theorems from [].
The first theorem presents conditions for the validity of inequality () for only non-

negative sequences. Here we consider absolutely the same problem but with monotonic-
ity restriction. Thus, it helps us to compare the results with and without monotonicity
restriction. In addition, we need it to illustrate some applications given in the last section
of the presented paper.
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The second theorem studies inequality () for the dual operator S∗
n– to the operator Sn–

defined by

(
S∗

n–f
)

i =
∞∑
j=i

An–,(j, i)fj, i ≥ .

Theorem C Let  < q < p < ∞ and n ≥ . Then inequality () holds for all non-negative
sequences f = {fi}∞i= from lp,v if and only if

A(n) := max
≤τ≤n–

( ∞∑
i=

( ∞∑
j=i

Aq
τ ,(j, i)uq

j

) q
p–q

( i∑
k=

Ap′
n–,τ+(i, k)v–p′

k

) q(p–)
p–q

× �+
i

( ∞∑
j=i

Aq
τ ,(j, i)uq

j

)) p–q
pq

< ∞, ()

where �+
i Ej,i = Ej,i – Ej,i+.

Moreover, A(n) ≈ C, where C is the best constant in ().

Theorem D Let  < q < p < ∞ and n ≥ . Then the inequality

( ∞∑
i=

uq
i

( ∞∑
j=i

An–,(j, i)fj

)q) 
q

≤ C

( ∞∑
i=

vp
i fi

p

) 
p

()

holds for all non-negative sequences f = {fi}∞i= from lp,v if and only if

B(n) := max
≤τ≤n–

( ∞∑
i=

( ∞∑
j=i

Ap′
τ ,(j, i)v–p′

j

) p(q–)
p–q

( i∑
k=

Aq
n–,τ+(i, k)uq

k

) p
p–q

× �+
i

( ∞∑
j=i

Ap′
τ ,(j, i)v–p′

j

)) p–q
pq

< ∞.

Moreover, B(n) ≈ C, where C is the best constant in ().

4 Proof of Theorem 2.1
We start our proof from the case V∞ = ∞.

Assuming ai,j ≡ An–,(i, j), by Theorem A we see that inequality () for all non-negative
non-increasing sequences f = {fi}∞i= from lp,v is equivalent to the inequality

( ∞∑
k=

( k∑
j=

∞∑
i=j

An–,(i, j)gi

)p′(
V

– p′
p

k – V
– p′

p
k+

)) 
p′

≤ C̃

( ∞∑
i=

gq′
i u–q′

i

) 
q′

()

for all non-negative sequences g = {gi}∞i=.
Denote

(̃Sf )k =
k∑

j=

∞∑
i=j

An–,(i, j)gi.
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It is obvious that

(̃Sf )k ≈
k∑

j=

k∑
i=j

An–,(i, j)gi +
k∑

j=

∞∑
i=k

An–,(i, j)gi.

Since An–,(i, j) and gi are non-negative, we can change the order of summation in both
terms:

(̃Sf )k ≈
k∑

i=

i∑
j=

An–,(i, j)gi +
∞∑
i=k

k∑
j=

An–,(i, j)gi.

Let us, respectively, denote

(̃Sf )k =
k∑

i=

i∑
j=

An–,(i, j)gi =
k∑

i=

Ãigi,

where Ãi =
∑i

j= An–,(i, j), and

(̃Sf )k =
∞∑
i=k

k∑
j=

An–,(i, j)gi =
∞∑
i=k

Ãn–,(i, k)gi,

where Ãn–,(i, k) =
∑k

j= An–,(i, j).
Next, we will work with Ãn–,(i, k). Since i ≥ k ≥ j, then from () we see that

An–,(i, j) ≈
n–∑
r=

Ar,(i, k)An–,r+(k, j).

Substitute it in Ãn–,(i, k) and we find that

Ãn–,(i, k) ≈
k∑

j=

n–∑
r=

Ar,(i, k)An–,r+(k, j)

=
n–∑
r=

Ar,(i, k)
k∑

j=

An–,r+(k, j) =
n–∑
r=

Ar,(i, k) · bk,r ,

where bk,r =
∑k

j= An–,r+(k, j).
Therefore, the validity of inequality () is equivalent to the simultaneous validity of the

following inequalities:

( ∞∑
k=

( k∑
i=

Ãigi

)p′(
V

– p′
p

k – V
– p′

p
k+

)) 
p′

≤ C̃

( ∞∑
i=

u–q′
i gi

q′
) 

q′
()

and

( ∞∑
k=

( ∞∑
i=k

Ar,(i, k)gi

)p′

bp′
k,r

(
V

– p′
p

k – V
– p′

p
k+

)) 
p′

≤ C̃,r

( ∞∑
i=

u–q′
i gi

q′
) 

q′
, ()
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where  ≤ r ≤ n – . Moreover, if C̃ = max≤r≤n– C̃,r , then

C̃ ≈ max{C̃, C̃}. ()

It is obvious that inequality () is a standard Hardy inequality. Hence, according to
Theorem B, inequality () holds if and only if E < ∞. Moreover, we take into account the
following fact:

∞∑
j=s

(
V

– p′
p

j – V
– p′

p
j+

)
= V

– p′
p

s . ()

There are n inequalities in (). All of these n inequalities can be characterized by The-
orem D. It means that the condition E < ∞ is necessary and sufficient for the validity of
(). Moreover, in view of Theorem B, Theorem D and (), we see that E = max{E, E} ≈
C, where C is the best constant in ().

Let us turn to the case V∞ < ∞. The difference from the previous situation is that by
Theorem A inequality () holds if and only if () holds with some other constant C in-
stead of C̃, and

( ∞∑
j=

∞∑
i=j

An–,(i, j)gi

)( ∞∑
k=

vk

)– 
p

≤ C

( ∞∑
i=

gq′
i u–q′

i

) 
q′

()

simultaneously holds for all non-negative sequences g = {gi}∞i=. Moreover,

C ≈ max{C, C}. ()

By arguing as in the previous case, we see that inequality () holds if and only if the
conditions E < ∞ and E′

 < ∞ hold. Let us notice that the difference of the expressions E

and E′
 is only in the fact that we need to take into account the relation

∞∑
j=s

(
V

– p′
p

j – V
– p′

p
j+

)
= V

– p′
p

s – V
– p′

p∞

instead of the relation ().
Next, we study inequality (). Since An–,(i, j) and gi are non-negative, we can change

the order of summation in the first bracket of () and obtain

∞∑
i=

i∑
j=

An–,(i, j)gi ≤ CV

p∞

( ∞∑
i=

gq′
i u–q′

i

) 
q′

.

If we apply the reverse Hölder inequality to the last expression, we get

( ∞∑
i=

( i∑
j=

An–,(i, j)

)q

uq
i

) 
q

= CV

p∞.
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Therefore, inequality () holds if and only if E < ∞. Moreover, by Theorem B, Theo-
rem D and (), we see that E = max{E, E′

, E} ≈ C, where C is the best constant in ().
The proof of Theorem . is complete.

5 Applications
In the theory of series the estimates of norms of summable matrices are very important
problems. One of the important methods of summation is Hölder’s method by (H , n – )
defined as follows:

The series
∑∞

j= fj is summable by Hölder’s (H , n – ) method with the sum S if
limi→∞(Hn–f )i = S, where

(Hf )i = f + f + · · · + fi,

(Hn–f )i =
(Hn–f ) + (Hn–f ) + · · · + (Hn–f )i

i
, i = , , . . . .

This method, introduced in  by Hölder in [], is a generalization of the summation
method of arithmetic averages. It is obvious that (H , ) is the method of arithmetic averages
in the ordinary sense.

In [] it was shown that Hn– can be presented in the following form:

(Hn–f )i =

i

i∑
k=


k

k∑
k=


k

· · ·
kn–∑

kn–=


kn–

kn–∑
kn–=

kn–∑
j=

fj.

If wm,km ≡ 
km

for  ≤ m ≤ n –  and wn–,kn– ≡ , then we see that the operator Hn– is a
particular case of our operator Sn–, namely:

(Sn–f )i = i(Hn–f )i. ()

If we change the order of summation, then we find that for this particular operator Sn–

the summation matrix An–, has the following form:

An–,(i, j) =
i∑

kn–=j

i∑
kn–=kn–


kn–

· · ·
i∑

k=k


k

i∑
k=k


k

, i ≥ j ≥ . ()

Therefore, we can consider the following inequality:

( ∞∑
i=

ũq
i (Hn–f )q

i

) 
q

≤ C

( ∞∑
i=

vp
i fi

p

) 
p

, ()

which is equivalent to inequality (), where, in view of (), ui = ũi
i . Thus, according to

Theorem C and Theorem . we have the following results.

Theorem . Let  < q < p < ∞ and n ≥ . Then inequality () holds for all non-negative
sequences f = {fi}∞i= from lp,v if and only if A(n) < ∞ (see ()), where An–, is defined in
() and ui = ũi

i . Moreover, A(n) ≈ C, where C is the best constant in ().
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Theorem . Let  < q < p < ∞ and n ≥ . Suppose that Vk =
∑k

i= vp
i when k ≥  and

V∞ = limk→∞ Vk . Then inequality () holds for all non-negative non-increasing sequences
f = {fi}∞i= from lp,v if and only if E = max{E, E} < ∞ when V∞ = ∞ (see () and ()) and
E = max{E, E′

, E} < ∞ when V∞ < ∞ (see (), (), and ()), where An–, is defined in
() and ui = ũi

i . Moreover, E ≈ C when V∞ = ∞ and E ≈ C when V∞ < ∞, where C is
the best constant in ().
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