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1 Introduction
Throughout the article, R denotes the set of real numbers, x = (x, x, . . . , xn) denotes
n-tuple (n-dimensional real vectors), the set of vectors can be written as

R
n =

{
x = (x, . . . , xn) : xi ∈R, i = , . . . , n

}
,

R
n
++ =

{
x = (x, . . . , xn) : xi > , i = , . . . , n

}
,

R
n
+ =

{
x = (x, . . . , xn) : xi ≥ , i = , . . . , n

}
.

In particular, the notations R, R++, and R+ denote R
, R

++and R

+, respectively.

The following conclusion is proved in [], p., [], p.-.

Theorem A Let the interval [a, b] ⊂ R, ϕ : Rn → R, f : [a, b] → R, and ψ(x, . . . , xn) =
ϕ(f (x), . . . , f (xn)) : [a, b]n →R.

(i) If ϕ is increasing and Schur convex and f is convex, then ψ is Schur convex.
(ii) If ϕ is increasing and Schur concave and f is concave, then ψ is Schur concave.

(iii) If ϕ is decreasing and Schur convex and f is concave, then ψ is Schur convex.
(iv) If ϕ is increasing and Schur convex and f is increasing and convex, then ψ is

increasing and Schur convex.
(v) If ϕ is decreasing and Schur convex and f is decreasing and concave, then ψ is

increasing and Schur convex.
(vi) If ϕ is increasing and Schur convex and f is decreasing and convex, then ψ is

decreasing and Schur convex.
(vii) If ϕ is decreasing and Schur convex and f is increasing and concave, then ψ is

decreasing and Schur convex.
(viii) If ϕ is decreasing and Schur concave and f is decreasing and convex, then ψ is

increasing and Schur concave.
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Theorem A is very effective for determine of the Schur convexity of the composite func-
tions.

The Schur geometrically convex functions were proposed by Zhang [] in , and was
investigated by Chu et al. [], Guan [], Sun et al. [], and so on. We also note that some
authors use the term ‘Schur-multiplicative convexity’. The theory of majorization was en-
riched and expanded by using these concepts. Regarding the Schur geometrically convex
functions, the aim of this paper is to establish the following theorem which is similar to
Theorem A.

Theorem  Let the interval [a, b] ⊂ R++, ϕ : Rn → R, f : [a, b] → R, and ψ(x, . . . , xn) =
ϕ(f (x), . . . , f (xn)) : [a, b]n →R.

(i) If ϕ is increasing and Schur geometrically convex and f is geometrically convex,
then ψ is Schur geometrically convex.

(ii) If ϕ is increasing and Schur geometrically concave and f is geometrically concave,
then ψ is Schur geometrically concave.

(iii) If ϕ is decreasing and Schur geometrically convex and f is geometrically concave,
then ψ is Schur geometrically convex.

(iv) If ϕ is increasing and Schur geometrically convex and f is increasing and
geometrically convex, then ψ is increasing and Schur geometrically convex.

(v) If ϕ is decreasing and Schur geometrically convex and f is decreasing and
geometrically concave, then ψ is increasing and Schur geometrically convex.

(vi) If ϕ is increasing and Schur geometrically convex and f is decreasing and
geometrically convex, then ψ is decreasing and Schur geometrically convex.

(vii) If ϕ is decreasing and Schur geometrically convex and f is increasing and
geometrically concave, then ψ is decreasing and Schur geometrically convex.

(viii) If ϕ is decreasing and Schur geometrically concave and f is decreasing and
geometrically convex, then ψ is increasing and Schur geometrically concave.

2 Definitions and lemmas
In order to prove our results, in this section we will recall useful definitions and lemmas.

Definition  [, ] Let x = (x, . . . , xn) and y = (y, . . . , yn) ∈R
n.

(i) x ≥ y means xi ≥ yi for all i = , , . . . , n.
(ii) Let � ⊂R

n, ϕ : � →R is said to be increasing if x ≥ y implies ϕ(x) ≥ ϕ(y). ϕ is said
to be decreasing if and only if –ϕ is increasing.

Definition  [, ] Let x = (x, . . . , xn) and y = (y, . . . , yn) ∈R
n.

We say y majorizes x (x is said to be majorized by y), denoted by x ≺ y, if
∑k

i= x[i] ≤
∑k

i= y[i] for k = , , . . . , n –  and
∑n

i= xi =
∑n

i= yi, where x[] ≥ · · · ≥ x[n] and y[] ≥ · · · ≥
y[n] are rearrangements of x and y in a descending order.

Definition  [, ] Let x = (x, . . . , xn) and y = (y, . . . , yn) ∈R
n.

(i) A set � ⊂R
n is said to be a convex set if

αx + ( – α)y =
(
αx + ( – α)y, . . . ,αxn + ( – α)yn

) ∈ �

for all x, y ∈ �, and α ∈ [, ].
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(ii) Let � ⊂R
n be a convex set. A function ϕ: � →R is said to be a convex function on

� if

ϕ
(
αx + ( – α)y

) ≤ αϕ(x) + ( – α)ϕ(y)

holds for all x, y ∈ �, and α ∈ [, ]. ϕ is said to be a concave function on � if and
only if –ϕ is a convex function on �.

(iii) Let � ⊂R
n. A function ϕ : � →R is said to be a Schur convex function on � if

x ≺ y on � implies ϕ(x) ≤ ϕ(y). A function ϕ is said to be a Schur concave function
on � if and only if –ϕ is a Schur convex function on �.

Lemma  (Schur convex function decision theorem) [, ] Let � ⊂ R
n be symmetric and

have a nonempty interior convex set. � is the interior of �. ϕ : � →R is continuous on �

and differentiable in �. Then ϕ is a Schur convex (or Schur concave, respectively) function
if and only if ϕ is symmetric on � and

(x – x)
(

∂ϕ

∂x
–

∂ϕ

∂x

)
≥  (or ≤ , respectively) ()

holds for any x ∈ �.

Definition  [] Let x = (x, . . . , xn) ∈R
n
++ and y = (y, . . . , yn) ∈R

n
++.

(i) A set � ⊂R
n
++ is called a geometrically convex set if

xαy–α =
(
xα

 y–α
 , . . . , xα

ny–α
n

) ∈ �

for all x, y ∈ � and α ∈ [, ].
(ii) Let � ⊂R++ be geometrically convex set. A function ϕ : I →R++ is called a

geometrically convex(or concave, respectively) function, if

ϕ
(
xαy–α

) ≤ (or ≥, respectively)
[
ϕ(x)

]α[
ϕ(y)

]–α

holds for all x, y ∈ � and α ∈ [, ].
(iii) Let � ⊂R

n
++. A function ϕ : � →R++ is said to be a Schur geometrically convex (or

concave, respectively) function on � if

log(x) = (log x, . . . , log xn) ≺ log(y) = (log y, . . . , log yn)

implies

ϕ(x) ≤ (or ≥, respectively)ϕ(y)

for all x, y ∈ �.

By Definition (iii), the following is obvious.

Proposition  Let � ⊂ R
n
++ be a set, and let log� = {(log x, . . . , log xn) : (x, . . . , xn) ∈ �}.

Then ϕ : � →R++ is a Schur geometrically convex (or concave, respectively) function on �

if and only if ϕ(ex , . . . , exn ) is a Schur convex (or concave, respectively) function on log�.
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Lemma  (Schur geometrically convex function decision theorem) [] Let � ⊂ R
n
++ be a

symmetric and geometrically convex set with a nonempty interior �. Let ϕ : � → R++ be
continuous on � and differentiable in �. If ϕ is symmetric on � and

(log x – log x)
(

x
∂ϕ

∂x
– x

∂ϕ

∂x

)
≥  (≤ ) ()

holds for any x = (x, . . . , xn) ∈ �, then ϕ is a Schur geometrically convex (Schur geometri-
cally concave) function.

Lemma  [] If f : [a, b] ⊂ R++ → R++ is geometrically convex (or concave, respectively) if
and only if log f (ex) is convex (or concave, respectively) on [log a, log b].

Lemma  [] If f : [a, b] ⊂ R++ → R++ is a twice differentiable function, then f is a geo-
metrically convex (or concave, respectively) function if and only if

x
[
f ′′(x)f (x) –

(
f ′(x)

)] + f (x)f ′(x) ≥  (or ≤ , respectively). ()

3 Proof of main results
Proof of Theorem  We only give the proof of Theorem (iv) in detail. Similar argument
leads to the proof of the rest part.

If ϕ is increasing and Schur geometrically convex and f is increasing and geometri-
cally convex, then by Proposition , ϕ(ex , . . . , exn ) is increasing and Schur convex and
by Lemma , g(x) = log f (ex) is increasing and convex on [log a, log b]. Then from The-
orem A(iv), it follows that ϕ(elog f (ex ), . . . , elog f (exn )) = ϕ(f (ex ), . . . , f (exn )) is increasing and
Schur convex. Again by Proposition , it follows that ψ(x, . . . , xn) = ϕ(f (x), . . . , f (xn)) is
increasing and Schur geometrically convex.

The proof of Theorem  is completed. �

4 Applications
Let x = (x, . . . , xn) ∈R

n. Its elementary symmetric functions are

Er(x) = Er(x, . . . , xn) =
∑

≤i<···<ir≤n

r∏

j=

xij , r = , . . . , n,

and we defined E(x) = , and Er(x) =  for r <  or r > n. The dual form of the elementary
symmetric functions are

E∗
r (x) = E∗

r (x, . . . , xn) =
∏

≤i<···<ir≤n

r∑

j=

xij , r = , . . . , n,

and we defined E∗
(x) = , and E∗

r (x) =  for r <  or r > n.
It is well known that Er(x) is an increasing and Schur concave function on R

n
+ []. By

Lemma , it is easy to prove that Er(x) is a Schur geometrically convex function on R++.
In fact, noting that

Er(x) = xxEr–(x, . . . , xn) + (x + x)Er–(x, . . . , xn) + Er(x, . . . , xn),
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then

(log x – log x)
(

x
∂Er(x)
∂x

– x
∂Er(x)
∂x

)

= (log x – log x)

× [
x

(
xEr–(x, . . . , xn) + Er–(x, . . . , xn)

)

– x
(
xEr–(x, . . . , xn) + Er–(x, . . . , xn)

)]

= (x – x)(log x – log x)Er–(x, . . . , xn) ≥ .

In [, ], Shi proved that E∗
r (x) is an increasing and Schur concave function and Schur

geometrically convex function on R
n
+.

For x = (x, . . . , xn) ∈R
n, the complete symmetric function cn(x, r) is defined as

cn(x, r) =
∑

i+i+···+in=r

n∏

j=

xij
j ,

where c(x, r) = , r ∈ {, , . . . , n}, i, i, . . . , in are non-negative integers.
The dual form of the complete symmetric function is

c∗
n(x, r) =

∏

i+i+···+in=r

n∑

j=

ijxj =
∏

≤k≤k≤···≤kr≤n

r∑

j=

xkj ,

where ij (j = , , . . . , n) are non-negative integers.
Guan [] discussed the Schur convexity of cn(x, r) and proved that cn(x, r) is increas-

ing and Schur convex on R
n
++. Subsequently, Chu et al. [] proved that cn(x, r) is Schur

geometrically convex on R
n
++.

Zhang and Shi [] proved that c∗
n(x, r) is increasing, Schur concave and Schur geomet-

rically convex on R
n
++.

In the following, we prove that the Schur geometric convexity of the composite functions
involving the above symmetric functions and their dual form by using Theorem .

Let f (x) = +x
–x , x ∈ (, ). Directly calculating yields

f ′(x) =


( – x) > ,

x
[
f ′′(x)f (x) –

(
f ′(x)

)] + f (x)f ′(x) =
(x + )
( – x) > .

That is, f is increasing and geometrically convex on (, ). Since Er(x), E∗
r (x), cn(x, r), and

c∗
n(x, r) are all increasing and Schur geometrically convex functions on R

n
++, and noticing

that f (x) = +x
–x > , for  < x < , by Theorem (iv), the following theorem holds.

Theorem  The following symmetric functions are increasing and Schur geometrically
convex on (, )n:

Er

(
 + x
 – x

)
=

∑

≤i<···<ir≤n

r∏

j=

 + xij

 – xij
, ()
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E∗
r

(
 + x
 – x

)
=

∏

≤i<···<ir≤n

r∑

j=

 + xij

 – xij
, ()

cn

(
 + x
 – x

, r
)

=
∑

i+i+···+in=r

n∏

j=

(
 + xj

 – xj

)ij
()

and

c∗
n

(
 + x
 – x

, r
)

=
∏

i+i+···+in=r

n∑

j=

ij

(
 + xj

 – xj

)
. ()

Remark  By Lemma , Xia and Chu [] proved that Er( +x
–x ) is Schur geometrically con-

vex on (, )n. By the properties of Schur geometrically convex function, Shi and Zhang
[] proved that E∗

r ( +x
–x ) is Schur geometrically convex on (, )n. By Theorem , we give a

new proof.

For r ≥ , let g(x) = x 
r , x ∈R++. Directly calculating yields

g ′(x) =

r

x

r – > ,

x
[
g ′′(x)g(x) –

(
g ′(x)

)] + g(x)g ′(x) = .

That is, g is increasing and geometrically convex (concave) on R
n
++. Since Er(x), E∗

r (x),
cn(x, r), and c∗

n(x, r) are all increasing and Schur geometrically convex function on R
n
++, by

Theorem (iv), the following theorem holds.

Theorem  The following symmetric functions are increasing and Schur geometrically
convex on R

n
++:

Er
(
x


r
)

=
∑

≤i<···<ir≤n

r∏

j=

x

r
ij , ()

E∗
r
(
x


r
)

=
∏

≤i<···<ir≤n

r∑

j=

x

r
ij , ()

cn
(
x


r , r

)
=

∑

i+i+···+in=r

n∏

j=

x
ij
r

j ()

and

c∗
n
(
x


r , r

)
=

∏

i+i+···+in=r

n∑

j=

ijx

r
j . ()

Remark 
(i) By Lemma , Guan [] and Jiang [] proved, respectively, that the Hamy

symmetric function Er(x 
r ) and its dual form E∗

r (x 
r ) is Schur geometrically convex

on R
n
++. In contrast, our proof is very simple by Theorem .

(ii) Here we prove Schur geometric convexity of cn(x 
r , r) on R

n
++ by Theorem . Guan

[] proved that cn(x 
r , r) is Schur concave on R

n
++ by Lemma .
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Since f (x) = +x
–x is increasing and geometrically convex on (, ), from Theorem (iv) and

Theorem , the following holds.

Theorem  The following symmetric functions are increasing and Schur geometrically
convex on (, )n:

Er

((
 + x
 – x

) 
r
)

=
∑

≤i<···<ir≤n

r∏

j=

(  + xij

 – xij

) 
r
, ()

E∗
r

((
 + x
 – x

) 
r
)

=
∏

≤i<···<ir≤n

r∑

j=

(  + xij

 – xij

) 
r
, ()

cn

((
 + x
 – x

) 
r
, r

)
=

∑

i+i+···+in=r

n∏

j=

(
 + xj

 – xj

) ij
r

()

and

c∗
n

((
 + x
 – x

) 
r
, r

)
=

∏

i+i+···+in=r

n∑

j=

ij

(
 + xj

 – xj

) 
r
. ()

Remark  By Lemma , Long and Chu [] proved that E∗
r (( +x

–x ) 
r ) is Schur geometrically

convex on (, )n. By Theorem , we give a new proof.

Let h(x) = x
–x , x ∈ (, ). Then h′(x) = 

(–x) > , h′′(x) = 
(–x) , and

x
[
h′′(x)h(x) –

(
h′(x)

)] + h(x)h′(x) =
x

( – x) > .

That is, h is increasing and geometrically convex on (, ). Since Er(x), E∗
r (x), cn(x, r), and

c∗
n(x, r) are all increasing and Schur geometrically convex function on R

n
++, and notice that

h(x) = x
–x > , for  < x < , by Theorem (iv), the following holds.

Theorem  The following symmetric functions are increasing and Schur geometrically
convex on (, )n:

Er

(
x

 – x

)
=

∑

≤i<···<ir≤n

r∏

j=

xij

 – xij
, ()

E∗
r

(
x

 – x

)
=

∏

≤i<···<ir≤n

r∑

j=

xij

 – xij
, ()

cn

(
x

 – x
, r

)
=

∑

i+i+···+in=r

n∏

j=

(
xj

 – xj

)ij
()

and

c∗
n

(
x

 – x
, r

)
=

∏

i+i+···+in=r

n∑

j=

ij

(
xj

 – xj

)
. ()
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Remark  By Lemma , Guan [] proved that Er( x
–x ) is Schur geometrically convex on

(, )n. By the judgment theorems of Schur geometric convexity for a class of symmetric
functions, Shi and Zhang [] give another proof. Here by Theorem , we give a new proof.

By the properties of Schur geometrically convex function, Shi and Zhang [] proved
that E∗

r ( x
–x ) is Schur geometrically convex on [ 

 , )n. By Theorem , this conclusion is
extended to the collection (, )n.

By Lemma , Sun et al. [] proved that cn( x
–x , r) is Schur geometrically convex on [, )n,

here by Theorem , we give a new proof.

Since f (x) = x
–x is increasing and geometrically convex on (, ), from Theorem (iv) and

Theorem , the following holds.

Theorem  The following symmetric functions are increasing and Schur geometrically
convex on (, )n:

Er

((
x

 – x

) 
r
)

=
∑

≤i<···<ir≤n

r∏

j=

( xij

 – xij

) 
r
, ()

E∗
r

((
x

 – x

) 
r
)

=
∏

≤i<···<ir≤n

r∑

j=

( xij

 – xij

) 
r
, ()

cn

((
x

 – x

) 
r
, r

)
=

∑

i+i+···+in=r

n∏

j=

(
xj

 – xj

) ij
r

()

and

c∗
n

((
x

 – x

) 
r
, r

)
=

∏

i+i+···+in=r

n∑

j=

ij

(
xj

 – xj

) 
r
. ()

Remark  By Lemma , Sun [] proved that Er(( x
–x ) 

r ) is Schur geometrically convex on
[, )n. Here by Theorem , we give a new proof.
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