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Abstract
This note deals with approximate solutions in vector optimization involving a
generalized cone-invex set-valued mapping. First, a new class of generalized
cone-invex set-valued maps, called cone-subinvex set-valued maps, is introduced.
Then the sufficient optimality condition and two types dual theorems are established
for weakly approximate minimizers under the assumption of cone-subinvexity. Finally,
it also reveals the closed relationships between a weakly approximate minimizer of a
cone-subinvex set-valued optimization problem and a weakly approximate solution
of a kind of vector variational inequality.
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1 Introduction
Recently, there has been an increasing interest in the extension of vector optimization
to set-valued optimization. As a bridge between different areas of optimization, the the-
ory of set-valued optimization problems has wide applications in differential inclusion,
variational inequality, optimal control, game theory, economic equilibrium problem, de-
cision making, etc. For more details of set-valued optimization theory and applications,
the reader can refer to the excellent books [–].

The derivative of set-valued maps is most important for the formulation of optimality
conditions. Aubin and Frankowsa [] introduced the notion of a contingent derivative of
a set-valued map as an extension of the concept of Fréchet differentiability. From then on,
various approaches have been followed in defining the concept of derivative for set-valued
maps. Among these notions, a meaningful and useful concept is the contingent epideriva-
tive, which was given by Jahn and Rauh []. It is important to note that the contingent
epiderivative is a single-valued map. Recently, much attention has been paid to character-
izing optimality conditions for set-valued optimization and related problems by utilizing
contingent epiderivatives; for example, see [–]. On the other hand, convex analysis is a
powerful tool for the investigation of optimal solutions of vector optimization problems.
Various notions of generalized convexity have been introduced to weaken convexity. One
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of such generalizations is invexity, which was firstly introduced by Hanson [] for nonlin-
ear programming. Based upon this concept, some scholars developed further generaliza-
tions of invexity to vector optimization involving set-valued maps. For example, Luc and
Malivert [] extended the concept of invexity to set-valued optimization and investigated
the necessary and sufficient optimality conditions; Sach and Craven [] proved duality
theorems for set-valued optimization problems under invexity assumptions. In [–],
optimality conditions and a characterization of solution sets of set-valued optimization
problems involving generalized invexity are investigated.

Since duality assertions allow us to study a minimization problem through a maximiza-
tion problem and to know what one can expect in the best case. At the same time, duality
has resulted in many applications within optimization, and it has provided many unifying
conceptual insights into economics and management science. So, it is not surprising that
duality is one of the important topics in set-valued optimization. There are many papers
dedicated to duality theory of set-valued optimization, for instance, [–] cited in this
paper are closely related to the present work.

On the other hand, since it has been introduced by Giannessi [], the theory of vector
variational inequalities has shown many applications in vector optimization problems and
traffic equilibrium problems. In fact, some recent work has shown that optimality condi-
tions of some vector optimization problems can be characterized by vector variational
inequalities. For example, Al-Homidan and Ansari [] dealt with different kinds of gen-
eralized vector variational-like inequality problems and a vector optimization problem.
Some relationships between the solutions of generalized vector variational-like inequality
problem and an efficient solution of a vector optimization problem have been established;
Ansari et al. [] worked on the generalized vector variational-like inequalities involving
the Dini subdifferential, and some relations among these inequalities and vector optimiza-
tion problems are presented. In the literature [, ], the authors focused on the expo-
nential type vector variational-like inequalities and vector optimization problems with
exponential type invexities. Observing the above mentioned papers, we found that the in-
vexity plays exactly the same role in variational-like inequalities as the classical convexity
plays in variational inequalities. Motivated by this work, this paper will extend the partial
results to the setting of a set-valued mapping under the weaker invexity assumption.

In addition, approximate solutions of optimization problems are very important from
both the theoretical and the practical points of view because they exist under very mild
hypotheses and a lot of solution methods propose this kind of solutions. Thus, it is mean-
ingful to consider various concepts of approximate solutions to set-valued optimization
problems. Recently, approximate solutions for set-valued optimization have caught many
scholars’ attention; for example, see [–] and the references therein.

Based upon the above observation, the purpose of this paper is two aspects: first, to in-
troduce a new class of generalized set-valued cone-invex maps and establish sufficient op-
timal conditions and dual theorems of approximate solutions for set-valued optimization
problems under these generalized convexities; second, to study the optimality conditions
of weakly approximate minimizer in vector optimization involving generalized cone-invex
set-valued mappings by using the notions of vector variational inequality.

This paper is structured as follows: In Section , some well-known definitions and re-
sults used in the sequel are recalled; a new class of generalized set-valued cone-invex maps,
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named cone-subinvex set-valued maps, is introduced. In Section  and Section , we give
the sufficient optimality conditions and two types dual theorems of weakly approximate
minimizers, respectively. Section  is devoted to revealing the closed relation between
weakly approximate solutions of vector optimization and variational inequality involving
set-valued cone-subinvex mappings.

2 Preliminaries
In this paper, X, Y , and Z are assumed to be Banach spaces with topological dual X∗, Y ∗,
and Z∗, respectively. For any x ∈ X and x∗ ∈ X∗, the canonical form between X and X∗ is
denoted by x∗T x. Let D ⊂ Y and E ⊂ Z be pointed closed convex cones with int(D) �= ∅.
We write

D∗ =
{

y∗ : y∗T d ≥ ,∀d ∈ D
}

,

and similarly for E∗. Let F : X → Y be a set-valued mapping. The set

dom(F) :=
{

x ∈ X : F(x) �= ∅}

is called the domain of F . The set

graph(F) :=
{

(x, y) ∈ X × Y : y ∈ F(x)
}

is called the graph of the map F . The set

epi(F) :=
{

(x, y) ∈ X × Y : y ∈ F(x) + D
}

is called the epigraph of F .
Let (x̄, ȳ) ∈ graph(F). The contingent cone (see []) to epi(F) at (x̄, ȳ) denoted by

T(epi(F), (x̄, ȳ)), which consists of all tangent vectors

(x, y) := lim
n→∞λn

(
(xn, yn) – (x̄, ȳ)

)
,

where (x̄, ȳ) = limn→∞(xn, yn), (xn, yn) ∈ epi(F), λn > , for all n ∈N.

Definition . (see []) Let a pair (x̄, ȳ) ∈ graph(F) be given. A single-valued map DF(x̄, ȳ) :
X → Y whose epigraph equals the contingent cone to the epigraph of F at (x̄, ȳ), that is,

epi
(
DF(x̄, ȳ)

)
= T

(
epi(F), (x̄, ȳ)

)
,

is called contingent epiderivative of F at (x̄, ȳ). If the contingent epiderivative of F at any
point in graph(F) exists, then we say F is a contingent epiderivable set-valued map.

Next, we begin with recalling the concepts of a convex set and an invex set. It is
well known that a subset S of X is a convex set, if for any x, z ∈ S, t ∈ [, ], we have
tz + ( – t)x ∈ S.
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Definition . (see []) A subset S ⊂ X is said to be an η-invex set, if, for every x ∈ S,
z ∈ S, there exists a map η : X × X → X such that z + tη(x, z) ∈ S, for all t ∈ [, ].

Example . Let S = (, +∞) ⊂ R = X. Then S is invex with respect to η : X × X → X,
η(x, y) = x + y.

In Definition ., when η(x, z) = x – z, then S is a convex set. In general, the opposite is
not true.

Example . Suppose that S = [–, –] ∪ [, ], then S is an invex with respect to η(x, y),
defined by

η(x, y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x – y, if x ≤ , y ≤ ,

x – y, if x ≥ , y ≥ ,

– – y, if x ≥ , y ≤ ,

 – y, if x ≤ , y ≥ .

Obviously, S is not a convex set.

Definition . (see []) Let η : X × X → X be a map and F : X → Y be a contingent
epiderivable set-valued map at a point (x̄, ȳ) ∈ graph(F) with dom(DF(x̄, ȳ)) = X. Then F is
said to be a D-η-invex map at (x̄, ȳ) if

F(x) – ȳ ⊂ DF(x̄, ȳ)
(
η(x, x̄)

)
+ D, for all x ∈ X. (.)

F is said to be a D-η-invex map at x̄, if (.) holds for any ȳ ∈ F(x̄).

Example . Let X = R+, Y = R
, D = R


+, and F : R+ → R

 be defined by

F(x) =
{(

x, x
)
, x ≥ 

}
,

and the epigraph of F

epi(F) =
{(

x, (y, y)
) ∈R+ ×R


+ : (y, y) ∈ F(x) + R


+
}

.

Let  = x̄ ∈R+ and (, ) = ȳ = (ȳ, ȳ) ∈ F(x̄). By calculating, we have

T
(
epi(F),

(
, (, )

))
= R+ ×R


+.

Hence, for any x ∈R+,

DF
(
, (, )

)
(x) =

{
(, )

}
.

Therefore, DF(, (, )) exists for any x ∈R+ and for any map η : R+ ×R+ →R+, one has

(
x, x

)
– (, ) ∈ {

(, )
}

+ R

+, for all y ≥ .
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Hence,

F(x) – (, ) ⊂ DF
(
, (, )

)(
η(x, )

)
+ R


+, for all x ∈R+.

So, F is a D-η-invex map at (x̄, ȳ) = (, (, )) with respect to any mapping η.

Definition . Suppose that η : X × X → X, e ∈ int(D), ε ≥ , and F : X → Y is a contin-
gent epiderivable set-valued map at a point (x̄, ȳ) ∈ graph(F) with dom(DF(x̄, ȳ)) = X. Then
F is said to be a D-η-subinvex set-valued mapping at (x̄, ȳ) with respect to ε · e, if

ε · e + F(x) – ȳ ⊂ DF(x̄, ȳ)
(
η(x, x̄)

)
+ D, for all x ∈ X. (.)

F is said to be a D-η-subinvex map at x̄ with respect to ε · e, if (.) holds for any ȳ ∈ F(x̄).

Obviously, if F is a D-η-invex map at (x̄, ȳ) ∈ graph(F), then F is a D-η-subinvex set-
valued mapping at (x̄, ȳ) with respect to ε · e. However, the inverse proposition is not nec-
essarily true, as is illustrated in the following example.

Example . Let X = R, Y = R
, D = R


+, and F : R → R

 be defined by

F(x) =

⎧
⎨

⎩
{(y,√y) : y ≥ }, if x ≥ ,

{(y,√–y) : y ∈ [–, ]}, if x < ,

and the epigraph of F

epi(F) =
{(

x, (y, y)
) ∈R×R

 : (y, y) ∈ F(x) + R

+
}

.

Let  = x̄ ∈R and (, ) = ȳ = (ȳ, ȳ) ∈ F(x̄), we get

T
(
epi(F),

(
, (, )

))
= R×R


+

and

DF
(
, (, )

)
(x) =

{
(, )

}
, ∀x ∈R.

Thus, DF(, (, )) exists for any x ∈R. However, for any map η : R×R →R, we have

(
y, |√–y|) – (, ) /∈ {

(, )
}

+ R

+, for all y ∈ [–, ].

Hence,

F(x) – (, ) �⊂ DF
(
, (, )

)(
η(x, )

)
+ R


+, for all x ∈R,

which indicates that F is not D-η-invex at (x̄, ȳ) = (, (, )) with respect to any mapping η.
Now, choosing any η, e = (, ) ∈ int(R

+), and ε ≥  (or, e = (, ) ∈ int(R
+) and ε ≥ ), we

have

ε · e +
(
y, |√y|) – (, ) ∈ {

(, )
}

+ R

+, for all y ≥ , x ≥ ,
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and

ε · e +
(
y, |√–y|) – (, ) ∈ {

(, )
}

+ R

+, for all y ∈ [–, ], x < .

So, we get

ε · e + F(x) – (, ) ⊂ DF
(
, (, )

)(
η(x, )

)
+ R


+, for all x ∈R.

Hence, F is a D-η-subinvex set-valued mapping at (, (, )) with respect to ε · e.

3 Sufficient optimality conditions
Let F : X → Y and G : X → Z be two set-valued maps with dom(F) = dom(G) = X. In
Section  and Section , we consider the following set-valued optimization problem:

(SOP-I)

⎧
⎪⎪⎨

⎪⎪⎩

minimize F(x)

subject to G(x) ∩ (–E) �= ∅,

x ∈ X.

A point (x̄, ȳ) ∈ X × Y is said to be a feasible point of the problem (SOP-I) if x̄ ∈ X, ȳ ∈
F(x̄), and G(x̄)∩ (–E) �= ∅. Let � = {x ∈ X : (x, y) is a feasible point of the problem (SOP-I)}.
Then the weakly approximate minimizer for the set-valued optimization problem (SOP-I)
is defined in the following way.

Definition . (see []) (i) A point x̄ ∈ � is said to be a weak efficient solution of the
problem (SOP-I), if there exists ȳ ∈ F(x̄) such that

(
F(�) – ȳ

) ∩ (
– int(D)

)
= ∅,

and the pair (x̄, ȳ) ∈ graph(F) is said to be a weak minimizer of (SOP-I).
(ii) Let ε ≥  and e ∈ int(D). A point x̄ ∈ � is said to be a weak ε · e-efficient solution of

the problem (SOP-I), if there exists ȳ ∈ F(x̄) such that
(
F(�) – ȳ + ε · e

) ∩ (
– int(D)

)
= ∅,

and the pair (x̄, ȳ) ∈ graph(F) is said to be a weak ε · e-minimizer of (SOP-I).

Theorem . (Sufficient optimality condition) Let e ∈ int(D), ε ≥ , and (x̄, ȳ) ∈ graph(F)
be a feasible point of the problem (SOP-I) and z̄ ∈ G(x̄) ∩ (–E). Assume that the contingent
epiderivatives DF(x̄, ȳ) and DG(x̄, z̄) exist with dom(DF(x̄, ȳ)) = dom(DG(x̄, z̄)) = X. Let F
be D-η-subinvex at (x̄, ȳ) with respect to ε · e and G be E-η-invex at (x̄, z̄) with respect to the
same η. If there exists (y∗, z∗) ∈ D∗ × E∗ with y∗ �= Y∗ such that

y∗T DF(x̄, ȳ)
(
η(x, x̄)

)
+ z∗T DG(x̄, z̄)

(
η(x, x̄)

) ≥ , ∀x ∈ X, (.)

and

z∗T z̄ = , (.)

then (x̄, ȳ) is a weak ε · e-minimizer of the problem (SOP-I).



Yu and Kong Journal of Inequalities and Applications  (2015) 2015:324 Page 7 of 16

Proof Assuming that (x̄, ȳ) is not a weak ε · e-minimizer of the problem (SOP-I),

(
F(�) – ȳ + ε · e

) ∩ (
– int(D)

) �= ∅.

Hence, there exist x̂ ∈ � and ŷ ∈ F(x̂) such that

ŷ – ȳ + ε · e ∈ – int(D).

Noticing that y∗ ∈ D∗\{Y∗}, we get

y∗T (ŷ – ȳ + ε · e) < .

On the other hand, since F is D-η-subinvex at (x̄, ȳ) with respect to ε · e, we obtain

F(x̂) – ȳ + ε · e ⊂ DF(x̄, ȳ)
(
η(x̂, x̄)

)
+ D.

Therefore,

ŷ – ȳ + ε · e ∈ DF(x̄, ȳ)
(
η(x̂, x̄)

)
+ D.

So, we get

 > y∗T (ŷ – ȳ + ε · e) ≥ y∗T DF(x̄, ȳ)
(
η(x̂, x̄)

)
,

and then

y∗T DF(x̄, ȳ)
(
η(x̂, x̄)

)
< . (.)

Again, since G is E-η-invex at (x̄, z̄), we have

G(x̂) – z̄ ⊂ DG(x̄, z̄)
(
η(x̂, x̄)

)
+ E.

Because x̂ ∈ �, there exists an element ẑ ∈ G(x̂) ∩ (–E) such that

ẑ – z̄ ∈ DG(x̄, z̄)
(
η(x̂, x̄)

)
+ E.

It follows from z∗ ∈ E∗ that

z∗T (ẑ – z̄) ≥ z∗T DG(x̄, z̄)
(
η(x̂, x̄)

)
.

Since z∗T ẑ ≤  and z∗T z̄ = , we get z∗T (ẑ – z̄) ≤  and

z∗T DG(x̄, z̄)
(
η(x̂, x̄)

) ≤ . (.)

So, we have from (.) and (.)

y∗T DF(x̄, ȳ)
(
η(x̂, x̄)

)
+ z∗T DG(x̄, z̄)

(
η(x̂, x̄)

)
< ,

which contradicts (.). Hence, (x̄, ȳ) is a weak ε · e-minimizer of the problem (SOP-I). �
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4 Duality theorems
4.1 Mond-Weir type duality
For the primal problem (SOP-I), this subsection considers the Mond-Weir dual problem
(MWD):

(MWD)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

maximize y′

subject to y∗T DF(x′, y′)(η(x, x′)) + z∗T DG(x′, z′)(η(x, x′)) ≥ , ∀x ∈ X,

z∗T z′ ≥ , (y∗, z∗) ∈ (D∗\{Y∗}) × E∗,

x′ ∈ X, y′ ∈ F(x′) and z′ ∈ G(x′).

A point (x′, y′, z′, y∗, z∗) satisfying all the constraints of the problem (MWD) is called
a feasible point of the problem (MWD). Let K = {y′ : (x′, y′, z′, y∗, z∗) is a feasible point of
(MWD)}.

Definition . Let ε ≥  and e ∈ int(D). A feasible point (x′, y′, z′, y∗, z∗) of the problem
(MWD) is called a weak ε · e-maximizer of (MWD) if

(
K – y′ – ε · e

) ∩ int(D) = ∅.

Theorem . (Weak duality) Let e ∈ int(D), ε ≥ , (x̄, ȳ), and (x′, y′, z′, y∗, z∗) be feasible
points for (SOP-I) and (MWD), respectively. Suppose that F is D-η-subinvex at (x′, y′) with
respect to ε · e and G is E-η-invex at (x′, z′) with respect to the same η. Then we have

ȳ – y′ + ε · e /∈ – int(D). (.)

Proof We proceed by contradiction. Suppose that

ȳ – y′ + ε · e ∈ – int(D).

Since y∗ ∈ D∗\{Y∗}, we have

y∗T(
ȳ – y′ + ε · e

)
< . (.)

And because x̄ is feasible point for (SOP-I), we get G(x̄) ∩ (–E) �= ∅. Hence, there exists
z̄ ∈ G(x̄) ∩ (–E) such that z∗T z̄ ≤ . On the other hand, we have from the dual constraint
of (MWD) –z∗T z′ ≤ . Therefore,

z∗T(
z̄ – z′) ≤ . (.)

We get from (.) and (.)

y∗T(
ȳ – y′ + εe

)
+ z∗T(

z̄ – z′) < . (.)

Now, since F is D-η-subinvex at (x′, y′) with respect to ε · e and G is E-η-invex at (x′, z′),
we derive

F(x̄) – y′ + ε · e ⊂ DF
(
x′, y′)(η

(
x̄, x′)) + D
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and

G(x̄) – z′ ⊂ DG
(
x′, z′)(η

(
x̄, x′)) + E.

Therefore, we obtain

y∗T(
ȳ – y′ + ε · e

) ≥ y∗T DF
(
x′, y′)(η

(
x̄, x′)), (.)

and

z∗T(
z̄ – z′) ≥ z∗T DG

(
x′, z′)(η

(
x̄, x′)). (.)

Furthermore, we find from (.), (.), and (.) that

y∗T DF
(
x′, y′)(η

(
x̄, x′)) + z∗T DG

(
x′, z′)(η

(
x̄, x′)) < ,

which contradicts the dual constraint of (MWD). So, (.) is satisfied and this completes
the proof. �

Theorem . (Strong duality) Let e ∈ int(D), ε ≥ , and (x̄, ȳ) be a weak ε · e-minimizer of
(SOP-I). Suppose that, for some (y∗, z∗) ∈ (D∗\{Y∗}) × E∗ and z̄ ∈ G(x̄) ∩ (–E), (.) and
(.) are satisfied. Then (x̄, ȳ, z̄, y∗, z∗) is a feasible point for (MWD). Furthermore, if the
weak duality theorem, Theorem ., between (SOP-I) and (MWD) holds, then (x̄, ȳ, z̄, y∗, z∗)
is a weak ε · e-maximizer of (MWD).

Proof Since (.) and (.) hold, it is obvious that (x̄, ȳ, z̄, y∗, z∗) is a feasible point for
(MWD). Afterwards, we will prove that

(K – ȳ – ε · e) ∩ int(D) = ∅.

In fact, assume that there exists y′ ∈ K such that

y′ – ȳ – ε · e ∈ int(D).

This contradicts the weak duality theorem, Theorem ., between (SOP-I) and (MWD).
�

Theorem . (Converse duality) Let e ∈ int(D), ε ≥ , and (x′, y′, z′, y∗, z∗) be a feasible
point of the problem (MWD) and z′ ∈ G(x′) ∩ (–E). Suppose that F is D-η-subinvex at
(x′, y′) with respect to ε · e and G is E-η-invex at (x′, z′) with respect to the same η. Then
(x′, y′) is a weak ε · e-minimizer of the problem (SOP-I).

Proof Firstly, it is clearly that (x′, y′) is a feasible point of the problem (SOP-I). Next, as-
suming that (x′, y′) is not a weak ε · e-minimizer of the problem (SOP-I),

(
F(�) – y′ + ε · e

) ∩ (
– int(D)

) �= ∅.
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Hence, there are x̂ ∈ � and ŷ ∈ F(x̂) such that

(
ŷ – y′ + ε · e

) ∈ – int(D).

Noticing that y∗ ∈ D∗\{Y∗}, we have

y∗T(
ŷ – y′ + ε · e

)
< . (.)

Again, because x̂ ∈ �, we get G(x̂) ∩ (–E) �= ∅. Taking ẑ ∈ G(x̂) ∩ (–E), we derive from
z∗ ∈ E∗ that z∗T ẑ ≤ . By the constraint of (MWD), we have z∗T z′ ≥ . Therefore, we get

z∗T(
ẑ – z′) ≤ .

Together with (.), we obtain

y∗T(
ŷ – y′ + ε · e

)
+ z∗T(

ẑ – z′) < . (.)

On the other hand, since F is D-η-subinvex at (x′, y′) with respect to ε ·e and G is E-η-invex
at (x′, z′), it follows that

F(x̂) – y′ + ε · e ⊂ DF
(
x′, y′)(η

(
x̂, x′)) + D

and

G(x̂) – z′ ⊂ DG
(
x′, z′)(η

(
x̂, x′)) + E.

Thus, combining with (.), we get

 > y∗T(
ŷ – y′ + ε · e

)
+ z∗T(

ẑ – z′) ≥ y∗T DF
(
x′, y′)(η

(
x̂, x′)) + z∗T DG

(
x′, z′)(η

(
x̂, x′)).

So,

y∗T DF
(
x′, y′)(η

(
x̂, x′)) + z∗T DG

(
x′, z′)(η

(
x̂, x′)) < ,

which contradicts the dual constraint of (MWD). Hence, (x′, y′) is a weak ε · e-minimizer
of the problem (SOP-I). �

4.2 Wolfe type duality
Let us fix a point d ∈ D\{Y } and consider the following problem (WD), called the Wolfe
type dual problem of (SOP-I):

(WD)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

maximize y′ + z∗T z′ · d

subject to y∗T DF(x′, y′)(η(x, x′)) + z∗T DG(x′, z′)(η(x, x′)) ≥ , ∀x ∈ X,

y∗T d = (y∗, z∗) ∈ (D∗\{Y∗}) × E∗,

x′ ∈ X, y′ ∈ F(x′) and z′ ∈ G(x′).



Yu and Kong Journal of Inequalities and Applications  (2015) 2015:324 Page 11 of 16

A point (x′, y′, z′, y∗, z∗) satisfying all the constraints of problem (WD) is called a feasi-
ble point of the problem (WD). Let K = {y′ + z∗T z′ · d : (x′, y′, z′, y∗, z∗) is a feasible point
of (WD)}.

Definition . Let ε ≥  and e ∈ int(D). A feasible point (x′, y′, z′, y∗, z∗) of the problem
(WD) is called to be a weak ε · e-maximizer of (WD) if

(
K –

(
y′ + z∗T z′ · d

)
– ε · e

) ∩ int(D) = ∅.

Theorem . (Weak duality) Let e ∈ int(D), ε ≥ , (x̄, ȳ) and (x′, y′, z′, y∗, z∗) be feasible
points for (SOP-I) and (WD), respectively. Suppose that F is D-η-subinvex at (x′, y′) with
respect to ε · e and G is E-η-invex at (x′, z′) with respect to the same η. Then we have

ȳ – y′ – z∗T z′ · d + ε · e /∈ – int(D). (.)

Proof Assume that

ȳ – y′ – z∗T z′ · d + ε · e ∈ – int(D).

Since G(x̄) ∩ (–E) �= ∅, let z̄ ∈ G(x̄) ∩ (–E), z∗T z̄ ≤ . Hence, we get z∗T z̄ · d ∈ –D and

ȳ + z∗T z̄ · d – y′ – z∗T z′ · d + ε · e ∈ –D – int(D) ⊂ – int(D).

Noticing that y∗ ∈ D∗\{Y∗} and y∗T d = , we have

y∗T(
ȳ – y′ + ε · e

)
+ z∗T(

z̄ – z′) < . (.)

This proves that inequality (.) holds. So, the rest of the proof follows from the same
arguments as that of the weak duality theorem, Theorem ., for the problem (MWD), we
can still get

y∗T DF
(
x′, y′)(η

(
x̄, x′)) + z∗T DG

(
x′, z′)(η

(
x̄, x′)) < ,

which also contradicts the dual constraint of (WD). Thus, ȳ – y′ – z∗T z′ ·d +ε ·e /∈ – int(D),
as desired. �

Theorem . (Strong duality) Let e ∈ int(D), ε ≥ , and (x̄, ȳ) be a weak ε · e-minimizer
of (SOP-I). Suppose that, for some (y∗, z∗) ∈ (D∗\{Y∗}) × E∗ with y∗T · d = , (.) and
(.) are satisfied for some z̄ ∈ G(x̄) ∩ (–E). Then (x̄, ȳ, z̄, y∗, z∗) is a feasible point for (WD).
Furthermore, if the weak duality theorem, Theorem ., between (SOP-I) and (WD) holds,
then (x̄, ȳ, z̄, y∗, z∗) is a weak ε · e-maximizer of (WD).

Proof Since (.) and (.) are fulfilled, it is obviously that (x̄, ȳ, z̄, y∗, z∗) is a feasible point
for (WD). Next, we show that

(
K – ȳ – z∗T z̄ · d – ε · e

) ∩ int(D) = ∅.



Yu and Kong Journal of Inequalities and Applications  (2015) 2015:324 Page 12 of 16

Let (x, y, z, y∗
 , z∗

 ) be a feasible point for (WD) such that y + z∗T
 z · d ∈ K and

y + z∗T
 z · d – ȳ – z∗T z̄ · d – ε · e ∈ int(D).

We find from z∗T z̄ =  that

y + z∗T
 z · d – ȳ – ε · e ∈ int(D).

This contradicts the weak duality theorem, Theorem ., between (SOP-I) and (WD). �

Theorem . (Converse duality) Let e ∈ int(D), ε ≥ , and (x′, y′, z′, y∗, z∗) be a feasible
point of the problem (WD) with z′ ∈ G(x′) ∩ (–E) and z∗T z′ = . Suppose that F is D-η-
subinvex at (x′, y′) with respect to ε · e and G is E-η-invex at (x′, z′) with respect to the
same η. Then (x′, y′) is a weak ε · e-minimizer of the problem (SOP-I).

Proof Obviously, (x′, y′) is a feasible point of the problem (SOP-I). Let (x′, y′) be not a weak
ε · e-minimizer of the problem (SOP-I), then

(
F(�) – y′ + ε · e

) ∩ (
– int(D)

) �= ∅.

Hence, there exist x̂ ∈ � and ŷ ∈ F(x̂) such that

(
ŷ – y′ + ε · e

) ∩ (
– int(D)

) �= ∅.

Noticing that y∗ ∈ D∗\{Y∗}, we have

y∗T(
ŷ – y′ + ε · e

)
< . (.)

Again, since x̂ ∈ �, we get G(x̂) ∩ (–E) �= ∅. Let ẑ ∈ G(x̂) ∩ (–E), it follows from z∗ ∈ E∗ that
z∗T ẑ ≤ . Noticing that z∗T z′ = , we get

z∗T(
ẑ – z′) = z∗T ẑ ≤ .

Hence, we obtain

y∗T(
ŷ – y′ + ε · e

)
+ z∗T(

ẑ – z′) < ,

which illustrates that (.) is satisfied. By the same arguments as that of the converse du-
ality theorem, Theorem ., for the problem (MWD), we also have

y∗T DF
(
x′, y′)(η

(
x̂, x′)) + z∗T DG

(
x′, z′)(η

(
x̂, x′)) < .

This also contradicts the dual constraint of (WD). Hence, (x′, y′) is a weak ε · e-minimizer
of the problem (SOP-I). �
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5 Vector optimization and variational inequality
This section is devoted to a discussion of the relationship between approximate solutions
of set-valued optimization and that of a kind of vector variational inequality. Let S be a
nonempty invex subset of X and F : X → Y be a set-valued mapping. Considering the
following set-valued optimization problem (SOP-II):

(SOP-II)

⎧
⎨

⎩
minimize F(x)

subject to x ∈ S.

Let x̄ ∈ S, ȳ ∈ F(x̄) and η : X × X → X be a map. In the following, it is assumed that
DF(x̄, ȳ) exists, and η(S, x̄) := {η(x, x̄) : x ∈ S} belongs to the domain of DF(x̄, ȳ).

Now, we consider the vector variational inequality problem (VVIP)η , that is, to find x̄ ∈ S,
ȳ ∈ F(x̄) such that

(VVIP)η DF(x̄, ȳ)
(
η(x, x̄)

)
/∈ –D, ∀x ∈ S.

When η(x, x̄) = x – x̄, the vector variational inequality problem (VVIP) was investigated
by Liu and Gong [].

Definition . (i) The pair (x̄, ȳ) ∈ graph(F) is called a weak efficient solution of the prob-
lem (VVIP)η , if we have

DF(x̄, ȳ)
(
η(x, x̄)

)
/∈ – int(D), ∀x ∈ S.

(ii) Let e ∈ int(D) and ε ≥ . The pair (x̄, ȳ) is called a weak ε · e-efficient solution of the
problem (VVIP)η , if we have

DF(x̄, ȳ)
(
η(x, x̄)

)
+ ε · e /∈ – int(D), ∀x ∈ S.

Theorem . Let e ∈ int(D) and ε ≥ . If a pair (x̄, ȳ) is a weak ε · e-minimizer of problem
(SOP-II), then (x̄, ȳ) is a weak ε · e-efficient solution of (VVIP)η .

Proof Since the pair (x̄, ȳ) ∈ graph(F) is a weak ε · e-minimizer of (SOP-II), one has

(
F(S) – ȳ + ε · e

) ∩ – int(D) = ∅. (.)

We proceed by contradictions. Assume that there is an x′ ∈ S with y′ = DF(x̄, ȳ)(η(x′, x̄))
such that

ŷ := y′ + ε · e = DF(x̄, ȳ)
(
η
(
x′, x̄

))
+ ε · e ∈ – int(D). (.)

Denote F̂(·) := F(·) + ε · e. By the definition of a contingent epiderivative, we get

(
η
(
x′, x̄

)
, ŷ

) ∈ epi
(
DF̂(x̄, ȳ)

)
= T

(
epi(F̂), (x̄, ȳ)

)
.
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Then there are a sequence (xn, yn)n∈N in graph(F) with (xn, yn + ε · e)n∈N in epi(F̂) and a
sequence (λn)n∈N of positive real numbers with (x̄, ȳ) = limn→∞(xn, yn + ε · e) and

(
η
(
x′, x̄

)
, ŷ

)
= lim

n→∞λn
(
(xn, yn + ε · e) – (x̄, ȳ)

)
.

Hence, we get

ŷ = lim
n→∞λn(yn + ε · e – ȳ). (.)

Because of the condition (.) and (.), there is an n ∈N with

λn(yn + ε · e – ȳ) ∈ – int(D), ∀n ≥ n.

This leads to

yn + ε · e ∈ {ȳ} – int(D), ∀n ≥ n. (.)

At the same time, since (xn, yn + ε · e) ∈ epi(F̂), there exists y′
n ∈ F(xn) and dn ∈ D such that

yn + ε · e = y′
n + ε · e + dn. So, we get from (.)

y′
n + ε · e = yn + ε · e – dn

∈ {ȳ} – int(D) – D

⊂ {ȳ} – int(D), ∀n ≥ n.

Noticing that y′
n ∈ F(xn) ⊂ F(S), we get

y′
n + ε · e – {ȳ} ∈ (

F(S) – {ȳ} + ε · e
) ∩ – int(D).

This contradicts (.). The proof is completed. �

For the problem (SOP-II), since every weak minimizer is a weak ε · e-minimizer, we can
immediately derive Corollary ..

Corollary . Let e ∈ int(D) and ε ≥ . If a pair (x̄, ȳ) is a weak minimizer of problem
(SOP-II), then (x̄, ȳ) is a weak ε · e-minimizer of (VVIP)η .

Theorem . Let S be an invex set with respect to η and the set-valued mapping F : S → Y

be D-η-subinvex on S with respect to ε · e. If (x̄, ȳ) is a weak efficient solution of (VVIP)η ,
then (x̄, ȳ) is a weak ε · e-minimizer of the problem (SOP-II).

Proof By the assumptions, we get

DF(x̄, ȳ)
(
η(x, x̄)

)
/∈ – int(D), ∀x ∈ S. (.)

Assuming that (x̄, ȳ) is not a weak ε · e-minimizer of (SOP-II), then x̂ ∈ S, ŷ ∈ F(x̂) such
that

ŷ – ȳ + ε · e ∈ – int(D).



Yu and Kong Journal of Inequalities and Applications  (2015) 2015:324 Page 15 of 16

On the other hand, since F is D-η-subinvex on S with respect to ε · e, we see from Defini-
tion . that there is d̂ ∈ D such

ŷ – ȳ + ε · e = DF(x̄, ȳ)
(
η(x̂, x̄)

)
+ d̂.

Thus,

DF(x̄, ȳ)
(
η(x̂, x̄)

)
= ŷ – ȳ + ε · e – d̂ ∈ – int(D) – D ⊂ – int(D),

which contradicts (.). �

Remark . Theorem . generalizes and improves the result of Liu and Gong (see [],
Theorem ) in the following aspects:

() The constraint set which is a convex subset is extended to the invex set.
() The objective function, that is, a cone-convex set-valued mapping, is extended to

cone-subinvex.

Remark . This note only presents the relationships between a kind of generalized
variational-like inequalities and set-valued optimization problem. However, we do not
discuss the relationships of other kinds of variational-like inequalities and set-valued opti-
mization, and the existence problems of variational-like inequalities are not involved. For
more details related to these problems, we refer the reader to [, , ].

6 Conclusions and remarks
In this paper, we focus on the approximate solutions in set-valued optimization. We
present the notion of cone-subinvex set-valued maps and investigate its properties. A suf-
ficient optimality condition and two types dual theorems are established for weakly ap-
proximate minimizers under the assumption of cone-subinvexity. We also discuss the re-
lationships between a kind of vector variational inequality and set-valued optimization.
Under the assumption cone-subinvexity, it shows that the weakly approximate minimiz-
ers of set-valued optimization are characterized by the weakly approximate solution of a
kind of vector variational inequality.

It is worthy underlining that Ansari and Jahn [] defined the T-epiderivative of a set-
valued map, which includes the contingent epiderivative as its special case. They provided
necessary and sufficient conditions for a solution of a set-valued problems and some ex-
istence results for solutions of set-valued optimization problems and a generalized vector
T-inequality problem under the assumption of cone-convexity for set-valued maps. It is
possible to extend the notion of cone-subinvexity in the setting of T-epiderivative and to
deal with similar problems for approximate solutions in set-valued optimization, such as
optimality conditions and duality. This must be an interesting and meaningful work.
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