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Abstract
The aim of this note is twofold: first, to show that arcwise connected
cone-quasiconvex set-valued mappings can be characterized in terms of classical
arcwise connected quasiconvexity of certain real-valued functions, defined by
Gerstewitz’s scalarization function; second, by making use of the recent result
concerning the Pareto reducibility in multicriteria arcwise connected
cone-quasiconvex optimization problems to establish similar set-valued optimization
problems under appropriate assumptions.
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1 Introduction
It is well known that convexity and its various generalizations play a dominant role in
optimization. In order to relax the convexity assumption, many kinds of generalized con-
vexity have been introduced by many authors. Among the different notions of generalized
convexity, quasiconvexity and arcwise connected convexity have found many important
applications; see for instance [–]. In convex analysis, the new generalized convexity
can be derived by combining two or more existing types of generalized convexity. A good
example is the arcwise connected quasiconvexity, which was presented by mixing arcwise
connected convexity together with quasiconvexity. In fact, the real-valued arcwise con-
nected quasiconvex functions had already appeared in early works, such as []. In [],
La Torre and Popovici extended this notion to vector-valued functions taking values in
real partially ordered vector spaces, and applied it to study the contractibility of efficient
sets and Pareto reducibility in multicriteria optimization. The notion of Pareto reducibil-
ity, introduced by Popovici in [], is to represent the weakly efficient solution set as the
union of the sets of efficient solutions of all subproblems obtained from the original one by
selecting certain criteria. Popovici in [] extended the Pareto reducibility in multicriteria
optimization problems to explicitly quasiconvex set-valued optimization; for more details
related to the Pareto reducibility, refer to [, , , , ]. La Torre in [] introduced the
arcwise connected cone-quasiconvex set-valued mapping and investigated the optimality
conditions for a set-valued optimization involving this type of data. A natural question
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arises: is the arcwise connected cone-quasiconvex set-valued optimization problem also
Pareto reducible? One aim of this paper is to show, with the help of results obtained for
multicriteria optimization in [], that the answer is positive.

Another interesting topic in vector optimization is to characterize the generalized cone-
convexity of the vector-valued (or set-valued) objective functions in terms of usual gen-
eralized convexity of certain real-valued functions, by means of some appropriate scalar-
ization functionals. For instance, it was presented in [, ] that cone-convex and cone-
quasiconvex functions can be characterized by means of the extreme directions of a polar
cone and Gerstewitz’s scalarization functions; similar characterizations of weakly cone-
convex and weakly cone-quasiconvex functions were given in []; scalar characteriza-
tions of cone-convex functions in variable domination structures were proposed in [].
For characterizations of cone-convexity and cone-quasiconvexity for set-valued maps, we
refer to [, ] and the references therein. The second aim of this note is to show that the
arcwise connected cone-quasiconvex set-valued mappings can also be characterized by
means of Gerstewitz’s scalarization functions.

We begin in Section  by recalling some definitions and preliminary results concerning
arcwise connected cone-quasiconvex set-valued mappings. In addition, several properties
for arcwise connected cone-quasiconvex set-valued mappings, which will be used in the
sequel, are discussed. Section  is devoted to the characterizations of arcwise connected
cone-quasiconvex set-valued mappings by means of Gerstewitz’s scalarization function.
Finally, in Section , by restricting our attention on set-valued optimization with the value
of objective function in a finite dimensional Euclidean space, we get the sufficient condi-
tion for the Pareto reducibility with the help of the results derived for arcwise connected
cone-quasiconvex multicriteria optimization in [].

2 Preliminaries
Let X be a real linear space and Y be a real Banach spaces, D ⊂ Y be a closed convex cone.
Considering the partially order induced by D, defined as follows:

y ≤D y if y – y ∈ D.

From now on, we always assume that S is a nonempty subset of X. Let us recall the no-
tions of arcwise connected convexity for a set and arcwise connected cone-quasiconvexity
for a set-valued mapping.

Definition . [] A subset S ⊂ X is said to be an arcwise connected set, if for every x ∈ S,
x ∈ S, there exists a continuous vector-valued function Hx,x : [, ] → S, called an arc,
such that

Hx,x () = x, Hx,x () = x.

In this paper, the empty set ∅ is assumed to be an arcwise connected set. On the other
hand, obviously, if a set is convex, then it is arcwise connected set. In general, the opposite
is not true.

Example . Let

S =
{

(x, x) ∈R
 : x

 + x
 ≥ , x > , x > 

}
.
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Clearly, S is not convex. However, S is an arcwise connected set with respect to the arc
Hx,z, defined by

Hx,z(t) =
(√

( – t)x
 + tz

 ,
√

( – t)x
 + tz



)
, ∀x = (x, x), z = (z, z) ∈ S, t ∈ [, ].

Let ϕ : S ⊂ X →R be a real-valued function. Recall that ϕ is said to be arcwise connected
quasiconvex, if for all x, x ∈ X and t ∈ [, ] there exists an arc Hx,x : [, ] → S such that
Hx,x () = x, Hx,x () = x, and

ϕ
(
Hx,x (t)

) ≤ max
{
ϕ(x),ϕ(x)

}
,

which means that for every λ ∈R the following level set is arcwise connected:

Levϕ(λ) :=
{

x ∈ S : ϕ(x) ≤ λ
}

.

In the literature [, ], the notion of arcwise connected quasiconvexity has been extended
to the vector-valued functions and set-valued mappings, respectively. For any set-valued
map F : S → Y and every set A ⊂ Y , we denote by dom(F) = {x ∈ S : F(x) 	= ∅} and
F–(A) := {x ∈ S : F(x) ∩ A 	= ∅} efficient domain of F and the inverse image of A by F ,
respectively. Throughout this paper, we always assume that dom F = S for the set-valued
mapping F : S ⊂ X → Y . A function f : S ⊂ X → Y is called a selection of F if f (x) ∈ F(x)
for all x ∈ S.

Definition . [] Let F : S ⊂ X → Y be a set-valued mapping. It is said that F is arcwise
connected D-quasiconvex if the generalized level set

LevF (y) =
{

x ∈ S : there is z ∈ F(x) such that y – z ∈ D
}

is an arcwise connected set for every point y ∈ Y . Actually, F is arcwise connected D-
quasiconvex if for all x, x ∈ X and t ∈ [, ] there exists an arc Hx,x : [, ] → S such that
Hx,x () = x, Hx,x () = x and

(
F(x) + D

) ∩ (
F(x) + D

) ⊂ F
(
Hx,x (t)

)
+ D.

If the set-valued mapping F degenerates to a vector-valued function, then the defini-
tion of arcwise connected D-quasiconvexity coincides with the definition of ‘arcwise D-
quasiconvexity’ introduced by La Torre and Popovici in []. In order to unify the termi-
nology, we still use ‘arcwise connected cone-quasiconvexity’ in the case of single-valued
functions. Let us see an example of arcwise connected cone-quasiconvex set-valued map.

Example . Let X = R, Y be the space of all real sequences y in R

y = (ξ, ξ, . . . , ξn, . . .)

in which limn→∞ ξn = . Let D be the set of all nonnegative sequences in Y . Define

‖y‖ = sup
n

|ξn|, ∀y ∈ Y .
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Then Y is a Banach space. For S = R+, the set-valued mapping F : S → Y defined by

F(x) =
{(

x,
x


, . . . ,

x

n
, . . .

)
,
(

–x, –
x


, . . . , –

x

n
, . . .

)}
, ∀x ∈ S,

is arcwise connected D-quasiconvex with respect to the arc

Hx,z(t) =
√

 – t · x +
√

t · z, ∀x, z ∈ S.

Next, some basic properties concerning arcwise connected cone-quasiconvex set-
valued maps can easily be obtained and some of them will be used in the sequel.

Proposition . Let F : S ⊂ X → Y be a set-valued map and D, D be two convex cones
of Y , D ⊂ D. If F is arcwise connected D-quasiconvex, then F is also arcwise connected
D-quasiconvex.

Proof In fact, for any y ∈ Y , suppose that the generalized level set of F with respect to the
ordering cone D

LevD
F (y) =

{
x ∈ S : there is z ∈ F(x) such that y – z ∈ D

}

is arcwise connected. Then, for any x, x ∈ {x ∈ S : y ∈ F(x) + D}, there exists an arc
Hx,x [, ] → S such that Hx,x () = x, Hx,x () = x, and Hx,x (t) ∈ LevD

F (y) for all
t ∈ ], [. Therefore, we get y ∈ F(Hx,x (t)) + D ⊂ F(Hx,x (t)) + D for all t ∈ [, ]. This
shows that

LevD
F (y) =

{
x ∈ S : there is z ∈ F(x) such that y – z ∈ D

}

is arcwise connected, as desired. �

Proposition . If F : S ⊂ X → Y is arcwise connected D-quasiconvex and the ordering
cone D generates the space Y , i.e. D – D = Y , then S is arcwise connected.

Proof Taking x, x ∈ S arbitrary, there exist y ∈ F(x) and y ∈ F(x). Since D generates
the space Y , there exists y ∈ Y such that y ≤D y and y ≤D y. This means

x ∈ LevF (y) and x ∈ LevF (y).

Then we see from the arcwise connected D-quasiconvexity of F that there exists an arc
Hx,x : [, ] → S such that Hx,x () = x, Hx,x () = x, and Hx,x (t) ∈ LevF (y) ⊂ S for all
t ∈ ], [. Hence, S is arcwise connected. �

Proposition . Let F : S ⊂ X → Y be a set-valued mapping. Suppose that f is a selection
of F and F(x) ⊂ f (x) + D for all x ∈ S. If f is arcwise connected D-quasiconvex, then F is
arcwise connected D-quasiconvex.
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Proof In fact, for x, x ∈ X there exists an arc Hx,x : [, ] → S such that Hx,x () = x,
Hx,x () = x, and

(
f (x) + D

) ∩ (
f (x) + D

) ⊂ f
(
Hx,x (t)

)
+ D

for any t ∈ ], [. Hence, it follows that

(
F(x) + D

) ∩ (
F(x) + D

) ⊂ (
f (x) + D + D

) ∩ (
f (x) + D + D

)

⊂ (
f (x) + D

) ∩ (
f (x) + D

)

⊂ f
(
Hx,x (t)

)
+ D

⊂ F
(
Hx,x (t)

)
+ D. �

Proposition . Let F : S ⊂ X → Y be a set-valued mapping. Suppose that f is a selection
of F and F(x) ⊂ f (x) + D for all x ∈ S. If F is arcwise connected D-quasiconvex, then f is
arcwise connected D-quasiconvex.

Proof In fact, for x, x ∈ X and t ∈ [, ] there exists an arc Hx,x : [, ] → S such that
Hx,x () = x, Hx,x () = x, and

(
f (x) + D

) ∩ (
f (x) + D

) ⊂ (
F(x) + D

) ∩ (
F(x) + D

)

⊂ F
(
Hx,x (t)

)
+ D

⊂ f
(
Hx,x (t)

)
+ D + D

⊂ f
(
Hx,x (t)

)
+ D. �

Remark . In fact, the assumption F(x) ⊂ f (x) + D for all x ∈ S had been used in []
by La Torre to derive the similar characterization for arcwise connected cone-convex set-
valued maps; see Theorem  and Theorem  in []. Let us give a simple example, in
which the assumption F(x) ⊂ f (x) + D is satisfied. Let X = Y = R, D = R+, and F : X → Y

be defined by

F(x) :=
{

y ∈ Y : y ≥ x}, for all x ∈ X.

It is obviously that f (x) = x is a selection of F and F(x) ⊂ f (x) + D.

Corollary . shows that an acwise connected cone-quasiconvex set-valued mapping
FS ⊂ X → Y is characterized by a selection f satisfying F(x) ⊂ f (x) + D for all x ∈ S, which
can be obtained directly from Proposition . and Proposition ..

Corollary . Let FS ⊂ X → Y be a set-valued mapping. Suppose that f is a selection
of F satisfying F(x) ⊂ f (x) + D for all x ∈ S. Then F is arcwise connected D-quasiconvex if
and only if f is arcwise connected D-quasiconvex.
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3 Scalarization by means of Gerstewitz’s function
In this section, we assume that the closed convex cone D ⊂ Y is solid, i.e. int D 	= ∅. For
a fixed e ∈ int D, v ∈ Y and any y ∈ Y the set {t ∈ R : y ∈ te + v – D} is nonempty, closed
and bounded from below (see []). The well-known Gerstewitz’s function he,v : Y → R is
defined by

he,v(y) := min{t ∈R : y ∈ te + v – D}, for all y ∈ Y .

We need its following salient property.

Lemma . [] For fixed e ∈ int D, any v ∈ Y and r ∈ R, we have he,v(y) ≤ r ⇔ y ∈ re + v –
D.

Proposition . Let F : S ⊂ X → Y be arcwise connected D-quasiconvex set-valued map-
ping. Then for any v ∈ Y , he,v ◦ F is arcwise connected R+-quasiconvex, where he,v ◦ F(x) :=
he,v(F(x)) =

⋃
y∈F(x) he,v(y), for all x ∈ S.

Proof For any v ∈ Y , we have to check, for any λ ∈R, whether the set

Lev(he,v◦F)(λ) =
{

x ∈ S : there exists λ ∈ he,v
(
F(x)

)
such that λ ≤ λ

}

is arcwise connected set. Without loss of generality, we suppose that Lev(he,v◦F)(λ) 	= ∅,
let x, x be any two points of the level set Lev(he,v◦F)(λ) and t ∈ [, ]. Then there exist
y ∈ F(x) and y ∈ F(x) such that λ = he,v(y) ≤ λ and λ = he,v(y) ≤ λ. Noticing that
D is a closed convex cone, then we get

y ∈ v + λ · e – D and y ∈ v + λ · e – D.

Since λ = he,v(y) ≤ λ and λ = he,v(y) ≤ λ, it follows from Lemma . that

y ∈ v + λ · e – D and y ∈ v + λ · e – D,

which means

y ≤D v + λ · e and y ≤D v + λ · e.

By the arcwise connected D-quasiconvexity of F , there exist an arc Hx,x : [, ] → S and
yt ∈ F(Hx,x (t)) such that

yt ≤D v + λ · e, t ∈ [, ],

that is,

yt ∈ v + λ · e – D, t ∈ [, ].

By Lemma . again, we get

he,v(yt) ≤ λ, t ∈ [, ].
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Therefore, Hx,x (t) ∈ Lev(he,v◦F)(λ), which shows that Lev(he,v◦F)(λ) is an arcwise con-
nected set. �

Proposition . Let F : S ⊂ X → Y be a set-valued mapping. If for any v ∈ Y , he,v ◦ F is
arcwise connected R+-quasiconvex, then F is arcwise connected D-quasiconvex.

Proof We proceed by contradiction. Suppose that F is not arcwise connected D-quasi-
convex, i.e. there exist x, x ∈ X, y ∈ F(x), y ∈ F(x), and y ∈ Y with y ∈ y – D and
y ∈ y – D, and for any arc Hx,x : [, ] → S and t ∈ [, ], there exists yt ∈ F(Hx,x (t))
such that

yt /∈ y – D.

Taking v = y and noticing that y ∈ y – D and y ∈ y – D, we get from Lemma .

he,y(y) ≤  and he,y(y) ≤ .

On the other hand, one finds from yt ∈ F(Hx,x (t)) with yt /∈ y – D and Lemma . that

he,y(yt) > ,

which shows that he,y ◦ F is not arcwise connected R+-quasiconvex. This is a contradic-
tion. �

According to Proposition . and Proposition ., we conclude this section by presenting
Corollary ., which is a characterization of arcwise cone-quasiconvex set-valued maps in
terms of scalar arcwise connected quasiconvexity.

Corollary . Let F : S ⊂ X → Y be a set-valued map and int D 	= ∅. For every e ∈ int D
the following assertions are equivalent:

(I) f is arcwise connected D-quasiconvex.
(II) For every point v ∈ Y the composite mapping he,v ◦ F is arcwise connected

R+-quasiconvex.

Remark . The Gerstewitz scalarizing function plays a very important role in vector
optimization with set-valued mappings. Recently, it has been extended to functions map-
ping from the family of nonempty subsets of Y to R, and whether the extended Gerstewitz
functions can characterize the generalized convex set-valued mappings is also an interest-
ing question; for more details related to the extended Gerstewitz functions, we refer to
[–].

4 Set-valued optimization problems
In this section, we will restrict our attention to the particular case where Y = R

n is the n-
dimensional Euclidean space with n ≥ , partially ordered by the standard ordering cone
D = R

n
+. For any subset A of Rn we denote by

Min A :=
{

y ∈ Y : A ∩ (
y – R

n
+
)

= {y}},

WMin A :=
{

y ∈ Y : A ∩ (
y – intRn

+
)

= ∅}
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the sets of efficient points and weakly efficient points of A, respectively. Let F : S ⊂ X →
R

n , considering the set-valued optimization problem

(SVOP)

⎧
⎨

⎩
min F(x) w.r.t. Rn

+,

s.t. x ∈ S ⊂ X.

The efficient solutions and the weakly efficient solutions of problem (SVOP) are defined
as the following sets, respectively:

Eff(S|F) := F–(Min F(S)
)

and WEff(S|F) := F–(WMin F(S)
)
.

Let In := {, , . . . , n} be the set of indices, for every selection of indices, ∅ 	= I ⊂ In, we
consider the polyhedral cone:

DI :=
{

(y, y, . . . , yn) ∈R
n : yi ≥ ,∀i ∈ I

}
.

For any subset A of Rn, the set of efficient points of A with respect to DI is defined by

MinI A : =
{

y ∈ A : A ∩ (y – DI) ⊂ y + DI
}

=
{

y ∈ A : ∀y′ ∈ A :
(
y′

i ≤ yi,∀i ∈ I
) ⇒ (

y′
i = yi,∀i ∈ I

)}
.

Then the set EffI(S|F) := F–(MinI F(S)) represents the set of efficient solutions of the fol-
lowing set-valued optimization problem associated to (SVOP):

(SVOP)I

⎧
⎨

⎩
min F(x) w.r.t. DI ,

s.t. x ∈ S ⊂ X.

Definition . [] It is said that problem (SVOP) is Pareto reducible if its weakly effi-
cient solutions can be represented as the union of the efficient solutions of all associated
problems of type (SVOP)I , i.e.

WEff(S|F) =
⋃

∅	=I⊂In

EffI(S|F).

In the literature [], for every i ∈ In, the convex cone Ki in R
n, defined by

Ki := R
n
+ ∪ int DIn\{i},

was introduced. Let us recall some basic definitions in vector optimization. A set � ⊂R
n

is called:

◦ upward, if � + R
n
+ = �;

◦ K-radiant, where K is a cone of Rn, if

ray(y, y) := y + R+(y – y) ⊂ � for all y, y ∈ �, y ≤K y.
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Remark . Let K be a cone of Rn, �, � be two subsets of Rn, and � ⊂ �. From the
definition of K-radiant, it is easy to see that if � is K-radiant then � is K-radiant.

Lemma . [] Let f : S → R
n be a function. If f is continuous and arcwise connected

Ki-quasiconvex for every i ∈ In, then WMin(f (S) + R
n
+) is Rn

+-radiant.

Lemma . [] In problem (SVOP), if WMin(F(S) + R
n
+) is Rn

+-radiant, then the problem
(SVOP) is Pareto reducible.

Proposition . Let F : S ⊂ X → R
n be a set-valued mapping. Suppose that f is a contin-

uous selection of F and F(x) ⊂ f (x) +R
n
+. If F is arcwise connected Ki-quasiconvex for every

i ∈ In, then WMin(F(S) + R
n
+) is Rn

+-radiant.

Proof It follows from Proposition . that the continuous function f is arcwise connected
Ki-quasiconvex for every i ∈ In. Then we see from Lemma . that WMin(f (S) + R

n
+) is

R
n
+-radiant. Finally, we see from Remark . that WMin(F(S) + R

n
+) is Rn

+-radiant. �

Proposition . Let F : S ⊂ X → R
n be a set-valued mapping. Suppose that f is a contin-

uous selection of F and F(x) ⊂ f (x) +R
n
+. If F is arcwise connected Ki-quasiconvex for every

i ∈ In, then the problem (SVOP) is Pareto reducible.

Proof It is a straightforward consequence of Lemma . and Proposition .. �

5 Conclusions
In this note, some properties of the arcwise connected cone-quasiconvex set-valued map-
ping have been carried out. We point out that an arcwise connected cone-quasiconvex set-
valued mapping is characterized by a selection satisfying suitable conditions. On the other
hand, we show that the arcwise connected cone-quasiconvex set-valued mappings can also
be characterized by means of Gerstewitz scalarization functions. Finally, in the setting of
finite dimensional Euclidean space, the sufficient condition for the Pareto reducibility for
arcwise connected cone-quasiconvex multicriteria optimization is presented.
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