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Abstract

The purpose of this paper is to generalize some integral inequalities in two
independent variables with delay which can be used as handy tools in the study of
certain partial differential equations and integral equations with delay. An application
is given to illustrate the usefulness of our results.
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1 Introduction
The integral inequalities which provide explicit bounds on unknown functions play an im-
portant role in the development of the theory of differential and integral equations. The
Gronwall-Bellman inequality and its various linear and nonlinear generalizations are cru-
cial in the discussion of the existence, uniqueness, continuation, boundedness, oscillation
and stability, and other qualitative properties of solutions of differential and integral equa-
tions. The literature on such inequalities and their applications is vast; see [1-7] and the
references given therein.

In [8] Ferreira and Torres, have discussed the following useful nonlinear retarded inte-
gral inequality:

a(t)
¢ (u(t)) < c(t) + /(; [f @ s)n(u(s)) w(uls)) + g(t, ) (u(s))] ds.

Motivated by the results obtained in [8, 9] and [10] we establish a general two indepen-
dent variables retarded version which can be used as a tool to study the boundedness of
solutions of differential and integral equations.

2 Main results

In what follows, R denotes the set of real numbers, R, = [0, +00), ; = [0,M], I, = [0,N]
are the given subsets of R, and A = I; x I,. C'(4, B) denotes the class of all i times contin-
uously differentiable functions defined on a set A with range in the set B (i =1,2,...) and
C%A,B)=C(A,B).

Lemma 2.1 Let u(x,),f(x,9),0(x,y) € C(A,R,) and a(x,y) € C(A,R,) be nondecreasing
with respect to (x,y) € A, let a € CY(I;, I), B € C (I, L) be nondecreasing with a(x) < x on
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L, B(y) < yonl,. Furtherlet ,w € C(R,,R,) be nondecreasing functions with {, w}(u) > 0
for u >0, and lim,_, , ¥ (u) = +00. If u(x, y) satisfies

alx)  rBY)
¥ (ulx,y)) <alxy) + /0 /0 o (s, O)f (s, ) (uls, ) de ds (2.1)

for (x,y) € A, then

alx) rBY)
u(x,y) < ¢! { G! |:G(a(x,y)) + /0 /0 o(s t)f (s, t)dt ds] } (2.2)

for0 <x <wx;,0 <y <y, where

v ds +00 ds
G(”’=/VO oy VEN0 G(+°°)=/VO SIS R @3)

and (x1,y1) € A is chosen so that (G(a(x,y)) + f:(x) Oﬂ(y) o1(s, t)f (s, t) dt ds) € Dom(G™).

Theorem 2.2 Let u, a, f, o, and B be as in Lemma 2.1. Let 01(x,),02(x,y) € C(A,R,).
Further y,w,n € C(R,,R,) be nondecreasing functions with {y,w,n}(u) > 0 for u > 0, and
limy,_, ;00 ¥ (u) = +00.

(A1) If u(x,y) satisfies

ax)  rBY)
¥ (u(x,9)) < alx,y) + / f o1(s, t) [f(s, Do (u(s,t))
0 0
+ /S o (T, t)a)(u(r, t)) dt] dtds (2.4)
0
for (x,y) € A, then

alx) rBWY)
u(x,y) < w_l { G! (p(x, y) + /0 /0 o1(s, t)f (s, t) dt ds) } (2.5)

for0 <x <x,0 <y <y, where G is defined by (2.3) and

alx) rBO) s
plxy) = G(a(x,y)) + /(; /0 o1(s, t) (/0 05(T,t) d‘l,') dtds (2.6)

and (x1,y1) € A is chosen so that (p(x,y) + foa(x al(s, t)f (s, t) dt ds) € Dom(G™).
(A2) If u(x,y) satisfies

a@) BO)
¥ (u(x,y)) < alx,y) + / / o1(s,t) [f(s, Do (uls, £))n (uls, 1))
0 0
+ /Soz(t,t)w(u(r, 1) dr:| dtds (2.7)
0

for (x,y) € A, then

u(x,y)sw‘1{6—< [p(x, / / al(s,ty(s,t)dtdsD} (2.8)
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for0 <x <x,0 <y <y, where G and p are as in (A;), and

F(v) = /0 m V=550,  F(+00) = +00, (2.9)

and (x1,y1) € A is chosen so that [F(p(x,y)) + f(;’(x) 0’30') 01(s, £)f (s, £) dt ds] € Dom(F).
(A3) If u(x, y)satisfies

@) BO)
¥ (uxy) < alwy) + / / 015, 1) [f(s, oo s, ) (u(s, 1))
0 0
+ fs oz(t,t)a)(u(r, t))n(u(r,t)) dr:| dtds (2.10)
0

for (x,y) € A, then

alx) rpOY)
u(x,y) < wl{Gl <F1 [po(x,y) + /0 /0 o1(s, t)f (s, t) dtds]) } (2.11)

for 0 <x <wux;,0 <y <y, where

alx) rBY) s
Polx,y) = F(G(a(x,y))) + /0 /0 o1(s, t) </0 05(7,t) dr) dtds

and (x1,y1) € A is chosen so that [po(x,y) + (;X(x) Oﬁ(y) o1(s, t)f (s, t) dt ds] € Dom(F ).

The proof of the theorem will be given in the next section.
Remark 2.3 If we take 0, (x,y) = 0, then Theorem 2.2(A;) reduces to Lemma 2.1.

Corollary 2.4 Let the functions u, f, 01, 03, a, o, and 8 be as in Theorem 2.2. Further
q > p > 0 are constants.

(By) If u(x,y) satisfies
alx) rBY)
» »

u(x,y) < alx,y) + /; /0 o1(s, t) |:f(s, HuP (s, t)

+ /saz(t,t)up(r,t) dr] dtds (2.12)

0
for (x,y) € A, then
1 alx)  rBO) s

u(x,y) < (a(x,y))l_’ exp(é/(; /0 o1(s, t) |:f(s, t) +/0 05(7,t) dr] dtds). (2.13)

(By) If u(x, y) satisfies

ax) BB
ul(x,y) < alx,y) + 1 / / o1(s, t) |:f (s, )P (s, t)
qg—pPJo 0

+ /S oy (1, ) (1,¢) d{| dtds (2.14)
0
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for (x,y) € A, then

a) ppY) =
u(x,y) < {p(x,y)+/ / o1(s, t)f (s, t)dtds} , (2.15)
0 0
where

q-r al) rBW) s
pxy) = (alx,y) 7 + /0 /(; oi(s,2) (/0 o5(1,t) dr) dt ds.

Corollary 2.5 Let the functions u, a, f, 01, 02, &, and B be as in Theorem 2.2. Further q, p,
and r are constants withp >0,r>0and g>p +r.
(C1) If ulx,y) satisfies

ax) rBWY)
Wi(x,9) < alxy) + / / (s, ) [f(s, (5, 0 (5, 1)
0 0
+ /S oo (T, ) (1,¢) dri| dtds (2.16)
0

for (x,y) € A, then

s g-p-r [0 [P0 }
M(x»y)f{[p(x,y)] + p /0 /0 o1(s, 1) (s, ) dt ds , (2.17)
where
- ax) BB s
() TP
px,y) = (alx,y) 7 + p, /0 /0 al(s,t)(/o az(r,t)dt>dtds.
(Cy) If ulx, y) satisfies

alx) rBWY)
Wi(x,9) < alxy) + / / 01(5,2) [f(s, (5,0 (5, 1)
0 0
+ /S oo (T, )l (r,8)u’ (7,1) dr:| dtds (2.18)
0

for (x,y) € A, then

g-p—r [“@ [PO) =
u(x,y) < {po(x,y) + 7/ / o1(s, t)f (s, t) dtds} , (2.19)
q 0 0
where
o pal®) BO) s
po(y) = (alxy) T + LT / / o1(s, 1) ( / oy (1, 1) dr) dtds.
q 0 0 0

Theorem 2.6 Let u, f, 01, 02, a, &, B, ¥, w, and n be as in Theorem 2.2. If u(x, y) satisfies

o) BO)
¥ (u(x,9)) < alx,y) + /O /0 o1(s, ) (uls, )

X |:f(s, t)a)(u(s, t)) + /OS oy(1,1) dr] dtds (2.20)
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for (x,y) € A, then

alx) ppOB)
ulx,y) < ¢! { G (Ffl [Fl (p1(x,9)) + /(; /0 o1(s, t)f (s, t) dt ds]) } (2.21)

for0 <x <x,,0 <y <y,, where

V.o ds oo ds
Gl(V) = \/VO m, v>v9>0, G1(+OO) = \/VO m = +0Q, (222)
v ds
FI(V) = /vo m, V=V > 0, F1(+OO) =400, (223)
al®  BW) s
iy =Gy (a(x,y)) + ./o /(; o1(s, t) (/0 05(1,t) dr) dtds, (2.24)

and (x3,y,) € A is chosen so that [F)(p1(x,)) + fg(x) Oﬁ(y) 01(s,0)f (s, t) dt ds] € Dom(F;?).

Theorem 2.7 Letu,f, 01,05, a,«, B, ¥, and o be as in Theorem 2.2, and p > 0 a constant.
If u(x, y) satisfies

alx) rBW)
P
¥ (u(x,y)) < alx,y) + /0 /o o1(s, t)u? (s, t)
X |:f(s, Do (u(s, 1)) + /S oy(7,t) dr] dtds (2.25)
0

for (x,y) € A, then

alx) rBY)
u(x,y) < wl{Gll <F11 [F1 (pl(x,y)) + /(; /0 o1(s, t)f (s, t) dtds])} (2.26)

for0 <x <xp,0 <y <y,, where

Gi(v) = / L v>v >0, Gi(+00) = / ds +00 (2.27)

s NSO

and Fy, py are as in Theorem 2.6 and (x3,y2) € A is chosen so that

alx)  rBO)
|:F1 (p1(x,9)) + /0 /0 o1(s, 1)f (s,1) dtds] € Dom(F;").

Remark 2.8 The inequality established in Theorem 2.7 generalizes Theorem 1 of [10]
(with p =1, a(x, y) = b(x) + c(x), o1(s, £)f (s, £) = h(s, £), and oy (s, t)(fos oa2(t,t)dt) = g(s, t)).

Corollary 2.9 Let u, f, 01, 02, a, @, 8, and w be as in Theorem 2.2 and q > p > 0 be con-
stants. If u(x,y) satisfies

P [e@ PO
ul(x,y) < alx,y) + —— / / oi(s, )uf (s, t)
pP—4q9Jo 0

X |:f(s, t)a)(u(s, t)) + /S oy(1,1t) dr] dtds (2.28)

0

Page 5 of 14
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for (x,y) € A, then

1
q-r

alx) rBO)
ulx,y) < {Fll |:F1 (p1(x,9) + /0 /(; o1(s, t)f (s, t) dt ds] } (2.29)

for0 <x <uxy,0 <y <y,, where

q-p alx) BWY) s
pixy) =[alxy)] © +/ / o1(s, L‘)(/ 02(7, 1) dT> dtds
o Jo 0

and F) is defined in Theorem 2.6.

Remark 2.10 Setting a(x,y) = b(x) + c(x), o1(s, t)f (s, £) = h(s, £), and o1(s, t)(fos oy(1,t)dt) =
g(s,t) in Corollary 2.9 we obtain Theorem 1 of [11].

Remark 2.11 Settinga(x,y) = cl’%@, o1(s, t)f (s, £) = h(t), and oy (s, t)(fos oo(t,t)dt) = g(t) and
keeping y fixed in Corollary 2.9, we obtain Theorem 2.1 of [12].

3 Proof of theorems

Proof of Lemma 2.1 First we assume that a(x,y) > 0. Fixing an arbitrary (xo,y0) € A, we
define a positive and nondecreasing function z(x, y) by

ax) ,BY)
z(x, ) = a(xo,y0) + / / o(s, t)f (s, t)a)(u(s, t)) dtds
0 0
for 0 <x <xp <x1,0 <y <y, <y, then z(0,y) = z(x,0) = a(xo, ) and
ux,y) < ¥ (z(x.9)), (3.1)

and then we have

»
9z(x,9) = a/(x)/ﬂ o (or(x), £)f (er(x), ) (ue(x (), £)) dlt
ox 0

BY)
<a'(x) /0 o (a(x), t)f(oe(x), t)a)(l//_1 (z(ot(x), t))) dt

BY)
< 0¥ (2(@), B6))))er () fo o (er(@), £)f (o), £) dt

or

9z(x,y)

ox ,( ) BY) .t o.0)a
T |
o(P1(z(x,9))) Sl /O o (a(x),t)f (a(x),t)

Keeping y fixed, setting x = s, integrating the last inequality with respect to s from 0 to x,
and making the change of variable s = a(x) we get

alx) rBB)
G(z(x,y)) < G(z(O,y)) + ./o /0 o (s, t)f(s,t)dtds

alx) rBY)
< G(a(x0,0)) +/0 /0 o (s, t)f (s, t) dt ds.
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Since (xg,0) € A is chosen arbitrary,

ax)  rBY)
Z(x,y)EGl[G(a(x,y))+ /0 fo a(s,t)f(s,t)dtds].

So from the last inequality and (3.1) we obtain (2.2). If a(x, y) = 0, we carry out the above
procedure with € > 0 instead of a(x, y) and subsequently let € — 0. O

Proofof Theorem 2.2 (A1) By the same steps of the proof of Lemma 2.1 we can obtain (2.5),
with suitable changes.

(Ay) Assume that a(x,y) > 0. Fixing an arbitrary (xo,y0) € A, we define a positive and
nondecreasing function z(x, y) by

alx) [B0)
2(%,y) = a(xo,¥0) + / / cn(s,t)[f(s, Do (u(s, £))n (uls, 1))
0 0
+ /soz(r,t)a)(u(r,t)) dt] dtds
0

for 0 <x < <x1,0 <y <yo <, then 2(0,y) = z(x,0) = a(xo,yo) and

u(x,y) < ¥ (2(x,9)), (3.2)
BG»)
az(aa;,y) ) /O o1 (), ) [f(a(x),t)w(u(a(x),t))n(u(a(x),t))

alx)
oy (1, t)w ,t))dt |d
+/0 2 (T, 1) (u(t t)) T] t
BY)
<o (x) /o o1 (a(x), t) |:f(a(x), t)a)(lﬁ_l (z(a(x), t)))n(l/f_l (z(a(x), t)))

a(x)
+/0 gz(r,t)a)(lpfl(z(t,t))) dt] dt
<) 0¥ (z(xx), ()
£0)
X/o ol(a(x),t)[f(a(x),t)n(llf‘l(Z(Ol(x)’t)))+/0

alx)

oy(1,1) dr] dt

then
Z(
ST ("’/

+/0 oy (1, t)dr] dt.

Keeping y fixed, setting x = s integrating the last inequality with respect to s from 0 to x,

o) a9, (0 ee.9)

and making the change of variable s = a(x) we get

alx) rBY)
G(z(x,y)) < G(z(O,y)) + /0 /(; o1(s, t) |:f(s, t)n(lp’l(z(s, t)))

+ / 05(T,t) dr] dtds
0
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ax) rBY)
< Glalrory0)) + / [ o1(5,1) [f(s, 0 (z(s. 1))
0 0
,0dt | dtds.
+/(; oy(1,1) r] tds

Since (xg,0) € A is chosen arbitrarily, the last inequality can be rewritten as

alx) ppOB)
G(z(x9) <px.y) + /0 /o o1(s, t)f (s, ) (v~ (2(s,2))) dt ds. (3.3)

Since p(x,y) is a nondecreasing function, an application of Lemma 2.1 to (3.3) gives us

alx) rBY)
z(x,y) < G <F‘1 |:F(p(x,y)) + /(; /o o1(s, t)f (s, t) dt ds]). (3.4)

From (3.2) and (3.4) we obtain the desired inequality (2.8).

Now we take the case a(x, y) = 0 for some (x,y) € A. Leta.(x,y) = a(x, y) + €, forall (x,7) €
A, where € > 0 is arbitrary, then a.(x,y) > 0 and a.(x,y) € C(A, R, ) be nondecreasing with
respect to (x,7) € A. We carry out the above procedure with a.(x,y) > 0 instead of a(x, y),
and we get

alx) rBO)
u(x,y) < ¢! { Gt (Fl [F(pe (x,9)) + /0 /0 o1(s, £)f (s, £) dt ds]) },

where

al® BW) s
pe(x,y) = G(ac(x,y)) + / / o1(s,t) (f 0o(T, 1) dr) dt ds.
o Jo 0

Letting ¢ — 0%, we obtain (2.8).
(Az) Assume that a(x,y) > 0. Fixing an arbitrary (xo,y0) € A, we define a positive and
nondecreasing function z(x, y) by

alx) rBWY)
z(x%,y) = a(xo,0) + / / o1(s, ) |:f(s, Do (u(s, £))n(uls, 1)
0 0
+ /saz(r,t)w(u(t,t))n(u(r,t)) dri| dtds
0

for 0 <x <xp <x1,0 <y <y <y, then z(0,y) = z(x,0) = a(xo, y0), and

u(x,y) < ¥ (2(x,9)). (3.5)
By the same steps as the proof of Theorem 2.2(A;), we obtain

alx) rBY)
z(x,y) < G1 { G(a(xo,y0)) + / / 01(s, 1) [f(s, (v (a5 1))
0 0

+ /S az(r,t)n(w_l(z(r, t))) dr] dtds}.
0
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We define a nonnegative and nondecreasing function v(x,y) by

v(x,y) = G(alxo,y0)) / / [f(s (v (z(s,1)))]
+/ ag(r,t)n(w (z(r,t)))dr:| dt ds;
0
then v(0,y) = v(x,0) = G(a(xo, y0)),

z(x,) < G ' [v(x9)], (3.6)

and then
av(x, o (x )/ ot(x) t) [ (O‘(x)’t)”(lﬂfl(G’l(v(a(x),y))))
+f0°‘ oa (T, (v (G (V(T,y))))df] ”

)
Sa’(x)-n(l/f‘l(G‘l(V(a(x),ﬂ(y)))))/0 al(a(x),t)[f(a(x),t)

o(x)
+/ oy (7, 1) dt] dt
0

or

B <o (x) j o1(a(x),t) [ (a(x),2)

n(y G (v(x
dt |d
+/0 o5(1,t) ri| t.

Fixing y and integrating the last inequality with respect to s = x from 0 to x and using a
change of variables yield the inequality

alx) rBO) s
F(V(x,y)) < F(V(O,y)) + /0 /0 o1(s, t) |:f(s, )+ /0 o5(t1,t) dri| dtds

or

ax)  rBW)
v(x,y) < F‘l{F(G(a(xo,yo))) +/; /0 o1(s, £)

X |:f(s, t) + /Sag(r,t) dr:| dtds}. (3.7)
0

From (3.5)-(3.7), and since (xg, y0) € A is chosen arbitrarily, we obtain the desired inequal-
ity (2.11). If a(x, y) = 0, we carry out the above procedure with € > 0 instead of a(x, y) and
subsequently let € — 0. O

Proof of Corollary 2.4 (B;) In Theorem 2.2(A;), by letting ¥ (1) = w(u) = u”, we obtain

v ds Vds 1%
o= / o) / R
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and hence
Gl(v) =voexp(v), v=vy>0.

From equation (2.6), we obtain the inequality (2.13).
(B3) In Theorem 2.2(A;), by letting ¥ () = u?, w(u) = u” we have

v ds Vds q e LE
G(V):'/‘iz — = via —v, 1), v>vy>0
o= Rl Wb o) ’

and
q-p L
P’ — q-r
Gl(v) = {Voq +17P pv}
q
we obtain the inequality (2.15). O

Proof of Corollary 2.5 (Cy) An application of Theorem 2.2(A;) with ¥ () = u?, w(u) = u?,
and n(u#) = u” yields the desired inequality (2.21).

(C3) An application of Theorem 2.2(A3) with ¥ (x) = u4, w(u) = u”, and n(u) = u” yields
the desired inequality (2.15). O

Proof of Theorem 2.6 Suppose that a(x, y) > 0. Fixing an arbitrary (x9,yo) € A, we define a
positive and nondecreasing function z(x, y) by

alx) rBO) s
o) =atioya) s [ [ ot om(uts) [f(s, (uts.0) + [ oate,n dr} deds
0 0 0
for 0 <x <y <, 0 <y =<yo <9, then 2(0,y) = z(x,0) = a(xo, o),

u(x,y) < ¥ (2(x,)) (3.8)

and
dz(x,y) PO -1 B
Dt [ ool et )] et oy el )
a(x)
,0)dt |d
+/(‘) o3(t,t) T:| t
< a/(x)n[lﬂ_l(Z(a(x)rﬂ(y)))]/0

a(x)
+ / o5(t,t) dr:| dt,
0

BY)
o), ot oy o1,

then

9z(x,)

ox <o £) -1
e /0 al(a(x),t)l:f(a(x),t)w(l/f (z(a(x), 1))

nly—(z(x,y)
o(x)
’ d d .
+/0 oy(t,t) ‘L':| t
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Keeping y fixed, setting x = s and integrating the last inequality with respect to s from 0 to
x and making the change of variable, we obtain

Gi(z(x,9)) < Gi(2(0,%)) / / |: fls,Do(v(2(s,1)))
,t)dt | dtds;
+/o oy(1,1) 1'] tds
then
alx) rBO)
G (z(x,y)) <G (a(xo,yo)) +/ / o1(s,¢) |:f(s, L‘)a)(w‘l (z(s, t)))
0 0
' ,t)dt | dtds.
+/(; oy(1,1) r] tds

Since (xg,0) € A is chosen arbitrary, the last inequality can be restated as

alx)  rBO)
Gi(z(x,9)) < p1(x,y) + ‘/0 /0 o1(s, )f (s, t)a)(l/f_l (z(s,1))) dt ds. (3.9)

It is easy to observe that p;(x,y) is positive and nondecreasing function for all (x,y) € A,
then an application of Lemma 2.1 to (3.9) yields the inequality

alx) RO
z(x,y) < Gy < |:F1 (71(x,%)) / / o1(s,8)f (s, t) dt ds:|> (3.10)

From (3.10) and (3.8) we get the desired inequality (2.21).
If a(x,y) = 0, we carry out the above procedure with € > 0 instead of a(x, y) and subse-
quently let ¢ — 0. O

Proof of Theorem 2.7 An application of Theorem 2.6, with 1(u) = u yields the desired
inequality (2.26). O

Proof of Corollary 2.9 An application of Theorem 2.7 with v (u(x, y)) = # to (2.28) yields
the inequality (2.29); to save space we omit the details. O

4 An application

In this section, we present an application of our results to the qualitative analysis of so-
lutions to the retarded integro differential equations. We study the boundedness of the
solutions of the initial boundary value problem for partial delay integro differential equa-
tions of the form

DiD,Z(x,y) = A <x,y,z(x —-mx),y—hy (y)), / B(s,y,z(s - hl(s),y)) ds), (4.1)
0
z(x,0) = a1 (x), 2(0,y) = aa2(y), a1(0) = a»(0) =0

for (x,y) € A, where z,b € C(A,R,), A € C(A x R, R), B€ C(A x R,R) and h; € C*(I},R,),
hy € CY(I, R,) are nondecreasing functions such that /;(x) < x on I, #;(y) < y on I, and
Hi(x) <1, hy(y) < 1.
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Theorem 4.1 Assume that the functions b, A, B in (4.1) satisfy the conditions

|a1(%) + ax(y)| < alx,y), (4.2)
’A(s, t,z, u)| < f o1(s, t)D’(s, )|zl + |u|], (4.3)
|B(r,t,2)| < 0a(z,8)I2I7, (4.4)

where a(x,y), 01(s,t), f(s,t), and o,(t,t) are as in Theorem 2.2, g > p > 0 are constants. If
z(x,y) satisfies (4.1), then

1

o) B0) _ &
|2(x,y)| < {p(x,y) + MMy / / o1(s, )f (s, ) dtdS} : (4.5)
0 0

where

q-

<
R

px,y) = (a(x,y))

al)  rBY) s
+M1M2/ / EI(S, t) <M1 / Ez(f,t) dT) dtds
0 0 0

and

1

M, = Max ———
! yeb 1— H,(y)

Max ——, M, =
xeh 1— h(x) 2

and G\(y,€) = ou(y + m(s),§ + ha(t)), T2(1,§) = 0210, + o)), f(y,§) = f(y + u(s),§ +
h(2)).

Proof If z(x,y) is any solution of (4.1), then
Z1(x,y) = a1(x) + ax(y),
x py s
/ / A <s, t,z(s — Iy (s), t - hz(t)),/ B(t, t,z(t —In(7), t)) dt) dt ds. (4.6)
0o Jo 0

Using the conditions (4.2)-(4.4) in (4.6) we obtain

q a-pv [* (7 _ _ »
|lz(x,9)|" < a(x,y) + . /Ofool(s,t)[f(s,t)|z(s hi(s),t -y (2))|
+ / Soz(r,t)|z(r,t)|pdt]dtds. (4.7)
0

Now making a change of variables on the right side of (4.7), s — hy(s) = y, t — hy(£) = &,
x—h(x) =alx) forx € I, y — hy(y) = B(y) for y € I, we obtain the inequality

q-p a(x) ﬂ(y)_ |:_ »
L i fo /0 1, 6)| 70, 8|, 8)|

q

|20, 9)|* < a(x,y) +

Y
+ M, /0 a2, &)z, )| du} dédy. (4.8)
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We can rewrite the inequality (4.8) as follows:

alx) rBW)
q q-p — - p
et )|" < ate) + Lot /0 fo 51(5,1) [f(s, 0)]2(s,)|
+ My /sﬁg(r,t)|z(t,t)}p dr] dtds. (4.9)
0

As an application of Corollary 2.4(B,) to (4.9) with u(x, y) = |z(x, y)| we obtain the desired
inequality (4.5). d

Corollary 4.2 If z(x,y) satisfies the equation

D1DyZ(x,9) = A (x,y, z(x - h(x),y— hz(y)), /0 B(s,y,z(s - hl(s),y)) ds) , (4.10)
z(x,O) = 611(96), Z(O:y) = 612()/); al(o) = ﬂ2(0) =0

and we suppose that the conditions (4.2)-(4.4) are satisfied, then we have the inequality

» alx) rBO) _ _ »
|2(x,9)|" < a(x,y) + MyM, a1(s,2)| f(s,1)|z(s, 1)
0 0
+ M / saz(f, t)|z(z,8)[" dr:| dtds, (4.11)
0

then we obtain

| 1 o) rBO)
|2(x,9)| < (a(x,y)) eXp<I;M1Mz /0 /0 o1(s,2)
X |:]_’(s, t) + M /Sﬁz(t,t) d‘L':| dtds), (4.12)
0

where &1, f, 02, My, and M, are as in Theorem 4.1.

Proof By an application of Corollary 2.4(B;) to (4.11) we obtain the desired inequality
(4.12). 0
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