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1 Introduction
Euler introduced a constant, then later this constant was called ‘Euler’s constant’ as the
limit of the sequence

γ (n) :=
n∑

m=


m

– ln n. (.)

It is also known as the Euler-Mascheroni constant. There are many famous unsolved prob-
lems about the nature of this constant (see e.g. Dence and Dence [], Havil [] and Lagarias
[]). For example, it is a long-standing open problem if it is a rational number. A good part
of its mystery comes from the fact that the known algorithms converging to γ are not very
fast, at least, when they are compared to similar algorithms for π and e.

The sequence (γ (n))n∈N converges very slowly toward γ , like (n)–, by Young (see []).
Up to now, many authors are preoccupied to improve its rate of convergence, see e.g.
[, –] and the references therein. We list some main results as follows:

n∑

m=


m

– ln

(
n +




)
= γ + O

(
n–) (DeTemple []),

n∑

m=


m

– ln
n + 

 n + 
 + 



n + n + 


= γ + O
(
n–) (Mortici []),

n∑

m=


m

– ln

(
 +


n

+


n –


n +


,n

)

= γ + O
(
n–) (Chen and Mortici []).
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Recently, Mortici and Chen [] provided a very interesting sequence

ν(n) =
n∑

m=


m

–



ln

(
n + n +




)

–
( – 



(n + n + 
 )

+


,

(n + n + 
 )

+ +


,

(n + n + 
 )

+


,

(n + n + 
 )

)

and proved

lim
n→∞ n(ν(n) – γ

)
= –

,
,,

. (.)

Hence the rate of convergence of the sequence (ν(n))n∈N is n–.
Very recently, by inserting the continued fraction term in (.), Lu [] introduced a class

of sequences (rk(n))n∈N and showed


(n + ) < γ – r(n) <


n , (.)


(n + ) < r(n) – γ <


(n – ) . (.)

It is their works that motivate our study. In this paper, starting from the sequence ν(n),
based one the works of Mortici, Chen and Lu, we provide some new classes of convergent
sequences with faster rate of convergence for the Euler-Mascheroni constant as follows.

Theorem  For the Euler-Mascheroni constant, we have the following convergent sequence:

rk(n) =
n∑

m=


m

–



ln

(
n + n +




)

–
a

(n + 
 ) + b(n + 

 ) + b+
a

(n + 
 ) + k+

. . . ,

where

b =



, b = –

,
,

;

a = –



, a =

,,
,,
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,,,,,
,,,,,
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,,,,,,,,,,,,
,,,,,,,,,,,,

,

a = –
 . . . 
 . . . 

; . . . ,

k =
,,,
,,,

, k =
,,,,,,,,
,,,,,,,,
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,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,
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For  ≤ l ≤ , we have

lim
n→∞ n(r(n) – γ

)
=

,
,,

:= C,

lim
n→∞ n(r(n) – γ

)
=

,,,,
,,,,,

:= C,

lim
n→∞ n(r(n) – γ

)
=

,,,,,,,,,
,,,,,,,,,

:= C,

lim
n→∞ n(r(n) – γ

)
(.)

=
,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,

:= C,

lim
n→∞ n(r(n) – γ

)
=

 . . . 
 . . . 

:= C.

Furthermore, for r(n) and r(n), we also have the following inequalities.

Theorem  Let r(n), r(n), C and C be defined in Theorem , then

C


(n + 
 )

< r(n) – γ < C


n , (.)

C


(n + 
 )

< r(n) – γ < C


n . (.)

Remark  In fact, Theorem  implies that r(n) and r(n) are strictly increasing functions
of n. Certainly, it has similar inequalities for rl(n) ( ≤ k ≤ ), we omit these details. It
should also be noted that (.) cannot deduce the monotony of r(n).

Remark  It is worth pointing out that Theorem  provides sharp bounds and faster rate
of convergence for harmonic sequence, which are superior to Theorems  and  in Mortici
and Chen [].

2 The proof of Theorem 1
The following lemma gives a method for measuring the rate of convergence. This lemma
was first used by Mortici [–] for constructing asymptotic expansions, or to accelerate
some convergences.

Lemma  If the sequence (xn)n∈N is convergent to zero and there exists the limit

lim
n→+∞ ns(xn – xn+) = l ∈ [–∞, +∞] (.)

with s > , then there exists the limit

lim
n→+∞ ns–xn =

l
s – 

. (.)

In the sequel, we always assume n ≥ .
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Based on our previous works [–], we will apply multiple-correction method to study
faster convergence problem for constants of Euler-Mascheroni. In this paper, we always
assume that the following conditions hold.

Condition  The initial-correction function η(n) satisfies

lim
n→∞

(
v(n) – η(n)

)
= ,

lim
n→∞ nl

(
v(n) – v(n + ) – η(n) + η(n + )

)
= C �= ,

with some a positive integer l ≥ .

Condition  The kth correction function ηk(n) has the form of – Ck–
�k (lk–;n) , where

lim
n→∞ nlk–

(
v(n) – v(n + ) –

k–∑

j=

(
ηj(n) – ηj(n + )

)
)

= Ck– �= .

Condition  The function v(x) satisfies v(x) ∈ C∞[, +∞).

Step  (The initial-correction) We choose η(n) = , and let

r(n) :=
n∑

m=


m

–



ln
(
n + bn + c

)
– η(n). (.)

Developing expression (.) into power series expansion in 
n , we obtain

r(n) – r(n + ) =
 – b




n +
b + b – c – 




n + O
(


n

)
. (.)

By Lemma , we have
(i) If b �=  and c �= 

 , then the rate of convergence of (r(n) – γ )n∈N is n– since

lim
n→∞ n

(
r(n) – γ

)
=

 – b


�= .

(ii) If b =  and c = 
 , from (.) we have

r(n) – r(n + ) = –





n + O
(


n

)
.

Hence the rate of convergence of (r(n) – γ )n∈N is n– since

lim
n→∞ n(r(n) – γ

)
= –




.

Step  (The first-correction) We let

η(n) =
a

(n + 
 ) + b(n + 

 ) + b
(.)
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and define

r(n) :=
n∑

m=


m

–



ln

(
n + n +




)
– η(n) – η(n). (.)

By the same method as above, we find a = – 
 , b = 

 , b = – ,
, .

Applying Lemma  again, one has

lim
n→∞ n(r(n) – r(n + )

)
=

,
,,

, (.)

lim
n→∞ n(r(n) – γ

)
=

,
,,

. (.)

Step  (The second-correction) Similarly, we set the second-correction function in the
form of

η(n) =
a

(n + 
 ) + k

(.)

and define

r(n) :=
n∑

m=


m

–



ln

(
n + n +




)

–
a

(n + 
 ) + b(n + 

 ) + b+
a

(n + 
 ) + k

. (.)

By the same method as above, we find a = ,,
,, , k = ,,,

,,, .
Applying Lemma  again, one has

lim
n→∞ n(r(n) – r(n + )

)
=

,,,,
,,,,

, (.)

lim
n→∞ n(r(n) – γ

)
=

,,,,
,,,,,

. (.)

Repeat the above approach to determine a to a step by step. However, the compu-
tations become very difficult to compute al and kl , l > . In this paper we will use the
Mathematica software to manipulate symbolic computations.

This completes the proof of Theorem .

3 The proof of Theorem 2
The following lemma plays an important role in the proof of our inequalities, which is a
direct consequence of the Hermite-Hadamard inequality.

Lemma  Let f ′′(x) be a continuous function. If f ′′(x) > , then

∫ a+

a
f (x) dx > f (a + /). (.)

In the sequel, the notation Pk(x) means a polynomial of degree k in x with all of its non-
zero coefficients positive, which may be different at each occurrence.
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Let us begin to prove Theorem . Note r(∞) = γ , it is easy to see

r(n) – γ =
∞∑

m=n

(
r(m) – r(m + )

)
=

∞∑

m=n
f (m), (.)

where

f (m) = –


m + 
+




ln
(m + ) + (m + ) + 



m + m + 


+
a

(m + 
 ) + b(m + 

 ) + b+
a

(m + 
 ) + k

–
a

(m + 
 ) + b(m + 

 ) + b+
a

(m + 
 ) + k

.

Let D = ,,,,
,,,, . By using the Mathematica software, we have

f ′(x) + D


(x + 
 )

= –
P(x)

,,,( + x)( + x)( + x + x)( + x + x)P()



(x)P()



(x)

> 

and

f ′(x) + D


(x + 
 )

=
P(x)

,,,( + x)( + x)( + x + x)( + x + x)P()



(x)P()



(x)

> .

Hence, we get the following inequalities for x ≥ :

D


(x + 
 )

< –f ′(x) < D


(x + 
 )

. (.)

Applying f (∞) = , (.) and Lemma , we get

f (m) = –
∫ ∞

m
f ′(x) dx ≤ D

∫ ∞

m

(
x +




)–

dx

=
D



(
m +




)–

≤ D



∫ m+

m
x– dx. (.)

From (.) and (.) we obtain

r(n) – γ ≤
∞∑

m=n

D



∫ m+

m
x– dx

=
D



∫ ∞

n
x– dx =

D




n = C


n . (.)
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Similarly, we also have

f (m) = –
∫ ∞

m
f ′(x) dx ≥ D

∫ ∞

m

(
x +




)–

dx

=
D



(
m +




)–

≥ D



∫ m+ 


m+ 


x– dx

and

r(n) – γ ≥
∞∑

m=n

D



∫ m+ 


m+ 


x– dx

=
D



∫ ∞

n+ 


x– dx =
D




(n + 
 )

= C


(n + 
 )

. (.)

Combining (.) and (.) completes the proof of (.).
Note r(∞) = γ , it is easy to see

r(n) – γ =
∞∑

m=n

(
r(m) – r(m + )

)
=

∞∑

m=n
g(m), (.)

where

g(m) =


m + 
–




ln
(m + ) + (m + ) + 



m + m + 


–
a

(m + 
 ) + b(m + 

 ) + b+
a

(m + 
 ) + k+

a

(m + 
 ) + k

+
a

(m + 
 ) + b(m + 

 ) + b+
a

(m + 
 ) + k+

a

(m + 
 ) + k

.

Let D = ,,,,,,,,,
,,,,,,,, . By using the Mathematica software, we have

g ′(x) + D


(x + 
 )

= –
P(x)

 . . . ( + x)( + x)( + x + x)( + x + x)P()



(x)P()



(x)

< 

and

g ′(x) + D


(x + 
 )

=
P(x)

 . . . ( + x)( + x)( + x + x)( + x + x)P()



(x)P()



(x)

> .

Hence, we get the following inequalities for x ≥ :

D


(x + 
 )

< –g ′(x) < D


(x + 
 )

. (.)
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Applying g(∞) = , (.) and Lemma , we get

g(m) = –
∫ ∞

m
g ′(x) dx ≤ D

∫ ∞

m

(
x +




)–

dx

=
D



(
m +




)–

≤ D



∫ m+

m
x– dx. (.)

From (.) and (.) we obtain

r(n) – γ ≤
∞∑

m=n

D



∫ m+

m
x– dx

=
D



∫ ∞

n
x– dx =

D




n = C


n . (.)

Similarly, we also have

g(m) = –
∫ ∞

m
g ′(x) dx ≥ D

∫ ∞

m

(
x +




)–

dx

=
D



(
m +




)–

≥ D



∫ m+ 


m+ 


x– dx

and

r(n) – γ ≥
∞∑

m=n

D



∫ m+ 


m+ 


x– dx

=
D



∫ ∞

n+ 


x– dx =
D




(n + 
 )

= C


(n + 
 )

. (.)

Combining (.) and (.) completes the proof of (.).
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