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Abstract
In this paper we give a new proof for two sharp inequalities involving generalized
normalized δ-Casorati curvatures of a slant submanifold in a quaternionic space form.
These inequalities were recently obtained in Lee and Vîlcu (Taiwan. J. Math.
19(3):691-702, 2015) using an optimization procedure by showing that a quadratic
polynomial in the components of the second fundamental form is parabolic. The new
proof is obtained analyzing a suitable constrained extremum problem on
submanifold.
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1 Introduction
The most powerful tool to find relationships between the main extrinsic invariants and
the main intrinsic invariants of a submanifold is provided by Chen’s invariants []. This
theory was initiated in []: Chen established a sharp inequality for a submanifold in a real
space form using the scalar curvature and the sectional curvature (both being intrinsic in-
variants) and squared mean curvature (the main extrinsic invariant). On the other hand, it
is well known that the Casorati curvature of a submanifold in a Riemannian manifold is an
extrinsic invariant defined as the normalized square of the length of the second fundamen-
tal form and it was preferred by Casorati over the traditional Gauss curvature because cor-
responds better with the common intuition of curvature [–]. Some optimal Chen-like
inequalities involving Casorati curvatures were proved in [–] for several submanifolds
in real, complex and quaternionic space forms. Recently, two sharp inequalities involving
generalized normalized δ-Casorati curvatures of slant submanifolds in quaternionic space
forms were obtained in [] as follows.

Theorem . Let Mn be a θ -slant proper submanifold of a quaternionic space form
Mm(c). Then:

(i) The generalized normalized δ-Casorati curvature δC(r; n – ) satisfies
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ρ ≤ δC(r; n – )
n(n – )

+
c


(
 +


n – 

cos θ

)
()

for any real number r such that  < r < n(n – ).
(ii) The generalized normalized δ-Casorati curvature δ̂C(r; n – ) satisfies

ρ ≤ δ̂C(r; n – )
n(n – )

+
c


(
 +


n – 

cos θ

)
()

for any real number r > n(n – ).
Moreover, the equality sign holds in the inequalities () and () if and only if Mn is an in-

variantly quasi-umbilical submanifold with trivial normal connection in Mm(c), such that
with respect to suitable orthonormal tangent frame {ξ, . . . , ξn} and normal orthonormal
frame {ξn+, . . . , ξm}, the shape operators Ar ≡ Aξr , r ∈ {n + , . . . , m}, take the following
forms:

An+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a   · · ·  
 a  · · ·  
  a · · ·  
...

...
...

. . .
...

...
   · · · a 
   · · ·  n(n–)

r a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, An+ = · · · = Am = . ()

The proof given in [] for these inequalities is based on an optimization procedure by
showing that a quadratic polynomial in the components of the second fundamental form
is parabolic. In this work we give an alternative proof using Oprea’s optimization method
on submanifolds [], namely analyzing a suitable constrained extremum problem (see
also [–]).

2 Preliminaries
This section gives several basic definitions and notations for our framework based mainly
on [, ].

Let Mn be an n-dimensional Riemannian submanifold of a Riemannian manifold (M, g).
Then we denote by g the metric tensor induced on M. Let K(π ) be the sectional curvature
of M associated with a plane section π ⊂ TpM, p ∈ M. If {e, . . . , en} is an orthonormal
basis of the tangent space TpM and {en+, . . . , em} is an orthonormal basis of the normal
space T⊥

p M, then the scalar curvature τ at p is given by

τ (p) =
∑

≤i<j≤n

K(ei ∧ ej)

and the normalized scalar curvature ρ of M is defined as

ρ =
τ

n(n – )
.

We denote by H the mean curvature vector, that is,

H(p) =

n

n∑
i=

h(ei, ei),
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and we also set

hα
ij = g

(
h(ei, ej), eα

)
, i, j ∈ {, . . . , n},α ∈ {n + , . . . , m}.

Then it is well known that the squared mean curvature of the submanifold M in M is
defined by

‖H‖ =


n

m∑
α=n+

( n∑
i=

hα
ii

)

,

and the squared norm of h over dimension n is denoted by C and is called the Casorati
curvature of the submanifold M. Therefore we have

C =

n

m∑
α=n+

n∑
i,j=

(
hα

ij
).

The submanifold M is called invariantly quasi-umbilical if there exist m–n mutually or-
thogonal unit normal vectors ξn+, . . . , ξm such that the shape operators with respect to all
directions ξα have an eigenvalue of multiplicity n –  and that for each ξα the distinguished
eigendirection is the same.

Suppose now that L is an s-dimensional subspace of TpM, s ≥ , and let {e, . . . , es} be an
orthonormal basis of L. Then the scalar curvature τ (L) of the s-plane section L is given by

τ (L) =
∑

≤α<β≤s

K(eα ∧ eβ )

and the Casorati curvature C(L) of the subspace L is defined as

C(L) =

s

m∑
α=n+

s∑
i,j=

(
hα

ij
).

The generalized normalized δ-Casorati curvatures δC(r; n – ) and δ̂C(r; n – ) of the sub-
manifold Mn are defined for any positive real number r 
= n(n – ) as

[
δC(r; n – )

]
p = rCp +

(n – )(n + r)(n – n – r)
rn

inf
{
C(L)|L a hyperplane of TpM

}
,

if  < r < n – n, and

[̂
δC(r; n – )

]
p = rCp –

(n – )(n + r)(r – n + n)
rn

sup
{
C(L)|L a hyperplane of TpM

}
,

if r > n – n.
If ∇ is the Levi-Civita connection on M and ∇ is the covariant differentiation induced

on M, then the Gauss and Weingarten formulas are given by

∇XY = ∇XY + h(X, Y ), ∀X, Y ∈ 
(TM)
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and

∇XN = –AN X + ∇⊥
X N , ∀X ∈ 
(TM),∀N ∈ 


(
TM⊥)

,

where h is the second fundamental form of M, ∇⊥ is the connection on the normal bundle,
and AN is the shape operator of M with respect to N . If we denote by R and R the curvature
tensor fields of ∇ and ∇ , then we have the Gauss equation:

R(X, Y , Z, W ) = R(X, Y , Z, W ) + g
(
h(X, W ), h(Y , Z)

)
– g

(
h(X, Z), h(Y , W )

)
, ()

for all X, Y , Z, W ∈ 
(TM).
Assume now that (M, g) is a smooth manifold such that there is a rank -subbundle σ

of End(TM) with local basis {J, J, J} satisfying for all α ∈ {, , }:

g(Jα·, Jα·) = g(·, ·)

and

J
α = – Id, JαJα+ = –Jα+Jα = Jα+,

where Id denotes the identity tensor field of type (, ) on M and the indices are taken from
{, , } modulo . Then (M,σ , g) is said to be an almost quaternionic Hermitian manifold.
It is easy to see that such a manifold is of dimension m, m ≥ . Moreover, if the bundle σ

is parallel with respect to the Levi-Civita connection ∇ of g, then (M,σ , g) is said to be a
quaternionic Kähler manifold.

Let (M,σ , g) be a quaternionic Kähler manifold and let X be a non-null vector field on M.
Then the -plane spanned by {X, JX, JX, JX}, denoted by Q(X), is called a quaternionic
-plane. Any -plane in Q(X) is called a quaternionic plane. The sectional curvature of
a quaternionic plane is called a quaternionic sectional curvature. A quaternionic Kähler
manifold is a quaternionic space form if its quaternionic sectional curvatures are equal
to a constant, say c. It is well known that a quaternionic Kähler manifold (M,σ , g) is a
quaternionic space form, denoted M(c), if and only if its curvature tensor is given by

R(X, Y )Z =
c


{
g(Z, Y )X – g(X, Z)Y +

∑
α=

[
g(Z, JαY )JαX –

– g(Z, JαX)JαY + g(X, JαY )JαZ
]}

()

for all vector fields X, Y , Z on M and any local basis {J, J, J} of σ .
A submanifold M of a quaternionic Kähler manifold (M,σ , g) is said to be a slant sub-

manifold [] if, for each non-zero vector X tangent to M at p, the angle θ (X) between
Jα(X) and TpM, α ∈ {, , } is constant, i.e. it does not depend on the choice of p ∈ M and
X ∈ TpM. We can easily see that quaternionic submanifolds are slant submanifolds with
θ =  and totally real submanifolds are slant submanifolds with θ = π

 . A slant submanifold



Lee et al. Journal of Inequalities and Applications  (2015) 2015:310 Page 5 of 9

of a quaternionic Kähler manifold is said to be proper (or θ -slant proper) if it is neither
quaternionic nor totally real. We recall that every proper slant submanifold of a quater-
nionic Kähler manifold is of even dimension n = s ≥  and we can choose a canonical
orthonormal local frame, called an adapted slant frame, as follows:

{e, e = sec θPαe, . . . , es–, es = sec θPαes–},

where Pαek– denotes the tangential component of Jαek–, k ∈ {, . . . , s}, and α is ,  or 
(see []).

Let (M, g) be a Riemannian manifold, M be a submanifold of M, g be the induced metric
of g and f : M −→R be a differentiable function. If we consider the constrained extremum
problem

min
x∈M

f (x), ()

then we have the following result.

Lemma . [] If x ∈ M is the solution of the problem (), then
(i) (grad(f ))(x) ∈ T⊥

x M;
(ii) the bilinear form

A : Tx M × Tx M −→R,

A(X, Y ) = Hessf (X, Y ) + g
(
h(X, Y ),

(
grad(f )

)
(x)

)

is positive semi-definite, where h is the second fundamental form of M in M and grad(f ) is
the gradient of f .

3 New proof of Theorem 1.1
Since M is θ -slant, it is well known from [] that

PβPαX = – cos θX, ∀X ∈ 
(TM),α,β ∈ {, , }, ()

where PαX denotes the tangential component of JαX.
From () it follows immediately that

g(PαX, PβY ) = cos θg(X, Y ) ()

for X, Y ∈ 
(TM) and α,β ∈ {, , }.
On the other hand, because Mm(c) is a quaternionic space form, from () and () we

derive

n‖H‖ = τ (p) + ‖h‖ –
n(n – )c


–

c


∑
β=

n∑
i,j=

g(Pβei, ej). ()

Choosing now an adapted slant basis

{e, e = sec θPαe, . . . , es–, es = sec θPαes–}
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of TpM, p ∈ M, where s = n, from () and (), we derive

g(Pβei, ei+) = g(Pβei+, ei) = cos θ , for i = , , . . . , s – , ()

and

g(Pβei, ej) = , for (i, j) /∈ {
(l – , l), (l, l – )|l ∈ {, , . . . , s}}. ()

By using () and () in () we get

τ (p) = n‖H‖ – nC +
c


[
n(n – ) + n cos θ

]
. ()

We consider now the following quadratic polynomial in the components of the second
fundamental form:

P = rC +
(n – )(n + r)(n – n – r)

rn
C(L) – τ (p) +

c


[
n(n – ) + n cos θ

]
,

where L is a hyperplane of TpM. Without loss of generality we can assume that L is spanned
by e, . . . , en–. Then we derive

P =
r
n

m∑
α=n+

n∑
i,j=

(
hα

ij
) +

(n + r)(n – n – r)
rn

m∑
α=n+

n–∑
i,j=

(
hα

ij
)

– τ (p) +
c


[
n(n – ) + n cos θ

]
. ()

From () and (), we obtain

P =
m∑

α=n+

n–∑
i=

[
n + n(r – ) – r

r
(
hα

ii
) +

(n + r)
n

(
hα

in
)

]

+
m∑

α=n+

[
(n + r)(n – )

r

n–∑
i<j=

(
hα

ij
) – 

n∑
i<j=

hα
iih

α
jj +

r
n

(
hα

nn
)

]

≥
m∑

α=n+

[ n–∑
i=

n + n(r – ) – r
r

(
hα

ii
) – 

n∑
i<j=

hα
iih

α
jj +

r
n

(
hα

nn
)

]
. ()

For r = n + , . . . , m, let us consider the quadratic form fα : Rn −→R defined by

fα
(
hα

, . . . , hα
nn

)
=

n–∑
i=

n + n(r – ) – r
r

(
hα

ii
) – 

n∑
i<j=

hα
iih

α
jj +

r
n

(
hα

nn
),

and the constrained extremum problem

min fα

subject to F : hα
 + · · · + hα

nn = cα ,

where cα is a real constant.
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The partial derivatives of fα are

⎧⎨
⎩

∂fα
∂hα

ii
= (n+r)(n–)

r hα
ii – 

∑n
k= hα

kk = ,
∂fα

∂hα
nn

= r
n hα

nn – 
∑n–

k= hα
kk = ,

()

with i ∈ {, . . . , n – }, i 
= j, and α ∈ {n + , . . . , m}.
For an optimal solution (hα

, . . . , hα
nn) of the problem, the vector grad(fα) is normal at F .

That is, it is collinear with the vector (, , . . . , ). From (), it follows that a critical point
of the corresponding problem has the form

⎧⎨
⎩

hα
ii = r

n(n–) tα , i ∈ {, . . . , n – },
hα

nn = tα .
()

Using () and
∑n

i= hα
ii = cα , we derive

⎧⎨
⎩

hα
ii = r

(n+r)(n–) cα , i ∈ {, . . . , n – },
hα

nn = n
n+r cα .

()

We fix an arbitrary point x ∈ F . The -form A : TxF × TxF −→R has the form

A(X, Y ) = Hess(fα)(X, Y ) +
〈
h(X, Y ),

(
grad(f )

)
(x)

〉
,

where h is the second fundamental form of F in R
n and 〈 , 〉 is the standard inner product

on R
n. Moreover, it is easy to see that the Hessian matrix of fα has the form

Hess(fα) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(n+r)(n–)
r –  – · · · – –
– (n+r)(n–)

r –  · · · – –
...

...
. . .

...
...

– – · · · (n+r)(n–)
r –  –

– – · · · – r
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

As F is totally geodesic in R
n, considering a vector X = (X, X, . . . , Xn) tangent to F at the

arbitrary point x on F (that is, verifying the relation
∑n

i= Xi = ), we obtain

A(X, X) =
(n – n + rn – r)

r

n–∑
i=

X
i +

r
n

X
n – 

( n∑
i=

Xi

)

=
(n – n + rn – r)

r

n–∑
i=

X
i +

r
n

X
n

≥ .

Hence the point (hα
, . . . , hα

nn) from () is a global minimum point by Lemma .. More-
over, fα(hα

, . . . , hα
nn) = . Therefore, we have

P ≥ , ()
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and this implies

τ (p) ≤ rC +
(n – )(n + r)(n – n – r)

rn
C(L) +

c


[
n(n – ) + n cos θ

]
.

Therefore we derive

ρ ≤ r
n(n – )

C +
(n + r)(n – n – r)

rn C(L) +
c


(
 +


n – 

cos θ

)
()

for every tangent hyperplane L of M and both inequalities () and () obviously follow
from ().

Moreover, we can easily see now that the equality sign holds in the inequalities () and
() if and only if

hα
ij = , ∀i, j ∈ {, . . . , n}, i 
= j, ()

and

hα
nn =

n(n – )
r

hα
 =

n(n – )
r

hα
 = · · · =

n(n – )
r

hα
n–,n– ()

for all α ∈ {n + , . . . , m}.
Finally, from () and () we deduce that the equality sign holds in () and () if and

only if the submanifold M is invariantly quasi-umbilical with trivial normal connection
in M, such that the shape operators take the forms () with respect to suitable tangent and
normal orthonormal frames.
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Mathematics and Computer Science, Research Center in Geometry, Topology and Algebra, University of Bucharest, Str.
Academiei, Nr. 14, Sector 1, Bucureşti, 70109, Romania.
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