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1 Introduction and preliminaries
One of the interesting extensions of the notion of a metric space is the dislocated space,
introduced by Hitzler []. This notion was rediscovered by Amini-Harandi [] and given
the name of a metric-like space.

Definition . On a nonempty set X we define a function σ : X × X → [,∞) such that
for all x, y, z ∈ X:

(σ ) if σ (x, y) =  then x = y;
(σ) σ (x, y) = σ (y, x);
(σ) σ (x, y) ≤ σ (x, z) + σ (z, y);

and the pair (X,σ ) is called a dislocated (metric-like) space.

Throughout this paper, we suppose that N = N ∪ {} where N denotes the set of all
positive integers. Further, the symbols R+ and R

+
 denotes the set of positive reals and the

set of non-negative reals. First, we recall some basic concepts and notations.
The concept of a b-metric was introduced by Czerwik [] as a generalization of the met-

ric (see also Bakhtin [] and Bourbaki []) to extend the celebrated Banach contraction
mapping principle. Following this initial paper of Czerwik [], a number of researchers
in nonlinear analysis investigated the topology of the paper and proved several fixed
point theorems in the context of complete b-metric spaces (see e.g. [–] and references
therein).

Definition . [] Let X be a nonempty set and s ≥  be a given real number. A mapping
d : X × X → [,∞) is said to be a b-metric if for all x, y, z ∈ X the following conditions are
satisfied:

(bM) d(x, y) =  if and only if x = y;
(bM) d(x, y) = d(y, x);
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(bM) d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X, d) is called a b-metric space (with constant s).

In what follows, we recall the notion of b-metric-like space which is an interesting gen-
eralization of both b-metric space and metric-like space.

Definition . [] Let X be a nonempty set and s ≥  be a given real number. A mapping
d : X × X → [,∞) is said to be b-metric-like if for all x, y, z ∈ X the following conditions
are satisfied:

(bML) if d(x, y) =  then x = y;
(bML) d(x, y) = d(y, x);
(bML) d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X, d) is called a b-metric-like space (with constant s).

Example . Let X = C([, T]) be the set of all real continuous functions on the closed
interval [, T]. Let d : X × X →R

+
 be defined

d(f , g) = max
(∣∣f (t) – g(t)

∣
∣)p + a,

for all f , g ∈ X, a ∈ R
+
, and p > . It is easy to see that (X, d) is a complete b-metric-like

space with s = p–. For more examples, see e.g. [].

Remark . Let (X, d) be a b-metric-like space with constant s ≥ . Then it is clear that
ds(x, y) = |d(x, y) – d(x, x) – d(y, y)| satisfies the following:

(S) ds(x, x) =  for all x ∈ X .

Definition . [] Let (X, d) be a b-metric-like space. Then:
() a sequence {xn} in X is called convergent to x ∈ X if and only if

limn→∞ d(xn, x) = d(x, x);
() a sequence {xn} in X is called Cauchy sequence if and only if limn,m→∞ d(xn, xm)

exists and finite;
() (X, d) is complete if and only if every Cauchy sequence {xn} in X converges to x ∈ X

so that

lim
n→∞ d(xn, x) = d(x, x) = lim

m,n→∞ d(xn, xm).

Proposition . [] Let (X, d) be a b-metric-like space with constant s and let {xn} be a
sequence in X such that limn→∞ d(xn, x) = . Then:

() x is unique.
() 

s d(x, y) ≤ limn→∞ d(xn, y) ≤ sd(x, y) for all y ∈ X .

Lemma . [] Let (X, d) be a b-metric-like space with constant s and {xn} a sequence in
X such that

d(xn+, xn+) ≤ kd(xn, xn+), n = , , . . . ,

where  ≤ k and sk < . Then {xn} is a Cauchy sequence in X and limn,m→∞ d(xn, xm) = .
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Lemma . [] Let (X, d) be a b-metric-like space with constant s and assume that {xn}
and {yn} are sequences in X converging to x and y, respectively. Then


s d(x, y) –


s

d(x, x) – d(y, y) ≤ lim inf
n→∞ d(xn, yn) ≤ lim sup

n→∞
d(xn, yn)

≤ sd(x, x) + sd(y, y) + sd(x, y).

In particular, if d(x, y) =  then limn→∞ d(xn, yn) = .
Moreover, for each z ∈ X we have


s

d(x, z) – d(x, x) ≤ lim inf
n→∞ d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ sd(x, z) + sd(x, x). ()

In particular, if d(x, x) = , then


s

d(x, z) ≤ lim inf
n→∞ d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ sd(x, z).

Notice that, in general, a b-metric-like mapping does not need to be continuous.
The notion of α-admissible and triangular α-admissible mappings were introduced by

Samet et al. [] and Karapınar et al. [], respectively.

Definition . Let T : X → X be a mapping and α : X × X → [,∞) be a function. We
say that T is an α-admissible mapping if

x, y ∈ X, α(x, y) ≥  ⇒ α(Tx, Ty) ≥ .

Moreover, a self-mapping T is called triangular α-admissible if T is α-admissible and

x, y, z ∈ X, α(x, z) ≥  and α(z, y) ≥  ⇒ α(x, y) ≥ .

For more details on α-admissible and triangular α-admissible mappings, see e.g. [–].
Very recently, Popescu [] refined the notion of triangular α-orbital admissible as fol-

lows.

Definition . [] Let T : X → X be a mapping and α : X × X → [,∞) be a function.
We say that T is α-orbital admissible if

α(x, Tx) ≥  ⇒ α
(
Tx, Tx

) ≥ .

Furthermore, T is called triangular α-orbital admissible if T is α-orbital admissible and

α(x, y) ≥  and α(y, Ty) ≥  ⇒ α(x, Ty) ≥ .

As mentioned in [] each α-admissible (respectively, triangular α-admissible) mapping
is an α-orbital admissible (respectively, triangular α-orbital admissible) mapping. In the
following example we shall show that the converse is not true.
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Example . Let X = {a, b, c, d, e, f , g, h}. We define a self-mapping T : X → X such that
Tx = x, for x = a, d and

Tx = y for (x, y) ∈ {
(b, c), (c, b), (e, f ), (f , e), (g, h), (h, g)

}
.

Moreover, we define α : X × X →R
+
, such that

α(x, y) =

{
 if (x, y) ∈ {(a, b), (a, c), (b, b), (c, c), (b, c), (c, b), (b, d), (c, d), (d, e)},
 otherwise.

Note that T is α-orbital admissible, since α(b, Tb) = α(b, c) =  and α(c, Tc) = α(c, b) = .
On the other hand, we have α(d, e) = , but α(Td, Te) = α(d, f ) = . Hence, T is not α-
admissible.

Lemma . [] Let T : X → X be a triangular α-orbital admissible mapping. Assume
that there exists x ∈ X such that α(x, Tx) ≥ . Define a sequence {xn} by xn+ = Txn for
each n ∈N. Then we have α(xn, xm) ≥  for all m, n ∈N with n < m.

Lemma . Let T : X → X be a triangular α-orbital admissible mapping. Assume that
there exists x ∈ X such that α(Tx, x) ≥ . Define a sequence {xn} by xn+ = Txn for each
n ∈N. Then we have α(xm, xn) ≥  for all m, n ∈N with n < m.

We characterize the notion of α-regular in the setting of a b-metric-like space.

Definition . (cf. []) Let (X, d) be a b-metric-like space, X is said to be α-regular, if
for every sequence {xn} in X such that α(xn, xn+) ≥  (respectively, α(xn+, xn) ≥ ) for all n
and xn → x ∈ X as n → ∞, there exists a subsequence {xnk } of {xn} such that α(xnk , x) ≥ 
(respectively, α(x, xnk ) ≥ ) for all k.

In this paper, we shall prove the existence and uniqueness of a fixed point for certain
operators in the setting of b-metric-like spaces. The presented results improve, extend,
and unify a number of existing results in the literature.

2 Main result for b-metric-like spaces
In this section, we shall state and prove our main results. First, we recall the following
classes of auxiliary functions. Let � be the set of all increasing and continuous functions
ψ : [,∞) → [,∞) with ψ–({}) = {}. Let Fs be the family of all functions β : [,∞) →
[, 

s ) which satisfy the condition

lim
n→∞β(tn) =


s

implies lim
n→∞ tn = , ()

for some s ≥ .

Definition . Let (X, d) be a b-metric-like space with constant s ≥ , and T : X → X be
a map. We say that T is a generalized almost α-ψ-φ-Geraghty contractive type mapping
if there exist a function α : X × X → [,∞), ψ ,φ ∈ � , β ∈Fs, and some L ≥  such that

α(x, y)ψ
(
sd(Tx, Ty)

) ≤ β
(
ψ

(
M(x, y)

))
ψ

(
M(x, y)

)
+ Lφ

(
N(x, y)

)
, ()
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for all x, y ∈ X, where

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)
s

}
and ()

N(x, y) = min
{

ds(x, Ty), ds(y, Tx), d(x, Tx), d(y, Ty)
}

. ()

Remark . Since the functions belonging to Fs are strictly smaller than 
s , for some s ≥ ,

the expression β(ψ(M(x, y))) in () can be estimated from above as follows:

β
(
ψ

(
M(x, y)

))
<


s

for any x, y ∈ X.

Theorem . Let (X, d) be a complete b-metric-like space with constant s ≥  and T :
X → X be a generalized almost α-ψ-φ-Geraghty contractive type mapping. We suppose
also that

(i) T is triangular α-orbital admissible;
(ii) there exists x ∈ X such that α(x, Tx) ≥ ;

(iii) T is continuous.
Then T has a fixed point, u ∈ X with d(u, u) = .

Proof By (ii) there exists x ∈ X such that α(x, Tx) ≥ . Define a sequence {xn} ⊂ X by
xn+ = Txn for all n ∈ N. As T is triangular α-orbital admissible, by Lemma . we have
α(xn, xn+) ≥  for all n ∈ N. Throughout the proof, we suppose that xn 
= xn+ for all n ∈
N. Indeed, if there exists n such that xn = xn+, then xn becomes the fixed point of T ,
which completes the proof.

Since T is a generalized almost α-ψ-φ-Geraghty contractive type mapping we have

ψ
(
sd(xn+, xn+)

) ≤ α(xn, xn+)ψ
(
sd(Txn, Txn+)

)

≤ β
(
ψ

(
M(xn, xn+)

))
ψ

(
M(xn, xn+)

)
+ Lφ

(
N(xn, xn+)

)
. ()

Thus, we have

ψ
(
sd(xn+, xn+)

)
<


s
ψ

(
M(xn, xn+)

)
+ Lφ

(
N(xn, xn+)

)
, ()

where N(xn, xn+) = min{ds(xn, xn+), ds(xn+, xn+), d(xn, xn+), d(xn+, xn+)} = , and

M(xn, xn+) = max

{
d(xn, xn+), d(xn, xn+), d(xn+, xn+),

d(xn, xn+) + d(xn+, xn+)
s

}
.

Note that

d(xn, xn+) + d(xn+, xn+)
s

≤ s[d(xn, xn+) + d(xn+, xn+)]
s

=
[d(xn, xn+) + d(xn+, xn+)]



≤ max
{

d(xn, xn+), d(xn+, xn+)
}

.
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Consequently, we have

M(xn, xn+) = max
{

d(xn, xn+), d(xn+, xn+)
}

.

If M(xn, xn+) = d(xn+, xn+), then from () we have

ψ
(
sd(xn+, xn+)

)
<


s
ψ

(
d(xn+, xn+)

) ≤ ψ
(
d(xn+, xn+)

)
.

Since ψ is increasing, we derive that sd(xn+, xn+) < d(xn+, xn+), which is a contradiction
as s ≥ . Thus, M(xn, xn+) = d(xn, xn+). Again by (), we find

ψ
(
sd(xn+, xn+)

)
<


s
ψ

(
d(xn, xn+)

) ≤ ψ
(
d(xn, xn+)

)
.

Hence, we get

sd(xn+, xn+) ≤ d(xn, xn+) equivalently d(xn+, xn+) ≤ 
s d(xn, xn+). ()

Case (i): s > . Since 
s >  and s 

s = 
s < , by Lemma ., the sequence {xn} is Cauchy

and

lim
n,m→∞ d(xn, xm) = . ()

Case (ii): s = . From (), we have d(xn+, xn+) ≤ d(xn, xn+) for all n. Thus, we conclude
that

lim
n→∞ d(xn, xn+) = r, ()

for some r ≥ . We shall prove that r = . Suppose, on the contrary, that r > . Note that,
for s = , the inequality () turns into

ψ
(
d(xn+, xn+)

)
< β

(
ψ

(
M(xn, xn+)

))
ψ

(
M(xn, xn+)

)
+ Lφ

(
N(xn, xn+)

)
, ()

where N(xn, xn+) =  and M(xn, xn+) = d(xn, xn+) as evaluated above. Thus, () yields

ψ(d(xn+, xn+))
ψ(d(xn, xn+))

≤ β
(
ψ

(
d(xn, xn+)

))
< . ()

By taking the limit as n → ∞ in () and regarding the continuity of ψ , we get

lim
n→∞β

(
ψ

(
d(xn, xn+)

))
= .

Hence, we have

lim
n→∞ψ

(
d(xn, xn+)

)
=  and so lim

n→∞ d(xn, xn+) = .
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Consequently r = . In what follows, we shall prove that {xn} is a Cauchy sequence. Indeed
we will prove that limm,n→∞ d(xn, xm) = . Suppose, on the contrary, that there exist ε > 
and corresponding subsequences {nk} and {mk} of N satisfying nk > mk > k for which

d(xmk , xnk ) ≥ ε, ()

where nk , mk are chosen as the smallest integers satisfying (), that is,

d(xmk , xnk –) < ε. ()

By (), (), and the triangle inequality, we easily derive that

ε ≤ d(xmk , xnk ) ≤ d(xmk , xnk –) + d(xnk –, xnk ) < ε + d(xnk –, xnk ). ()

Using () and the squeeze theorem we get

lim
k→∞

d(xmk , xnk ) = ε. ()

In a similar way, we can prove that limk→∞ d(xmk , xnk +) = , limk→∞ d(xnk , xmk +) = .
Regarding that T is a generalized almost α-ψ-φ-Geraghty contractive type mapping, we

have

ψ
(
d(xmk +, xnk +)

) ≤ α(xmk , xnk )ψ
(
d(Txmk , Txnk )

)

≤ β
(
ψ

(
M(xmk , xnk )

))
ψ

(
M(xmk , xnk )

)
+ Lφ

(
N(xmk , xnk )

)
, ()

for all x, y ∈ X, where

M(xmk , xnk ) = max

{
d(xmk , xnk ), d(xmk , xmk +), d(xnk , xnk +),

d(xmk , xnk +) + d(xnk , xmk +)


}
, ()

and

N(xmk , xnk ) = min
{

ds(xmk , xnk +), ds(xnk , xmk +), d(xmk , xmk+), d(xnk , xnk +)
}

.

By taking the limit as k → ∞ in () and taking (), () into account, we get

ψ(ε) ≤ lim
k→∞

β
(
ψ

(
M(xmk , xnk )

))
ψ(ε). ()

Since β is a Geraghty function, we derive that ψ(M(xmk , xnk )) → . Consequently, we have
d(xmk , xnk ) → , which is a contradiction. Hence, we conclude that limm,n→∞ d(xn, xm) = ,
and the sequence {xn} is Cauchy for any s ≥ .

By completeness of (X, d), there exists u ∈ X such that

lim
n→∞ d(xn, u) = lim

n,m→∞ d(xn, xm) = d(u, u) = .
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Since T is continuous,

Tu = T
(

lim
n→∞ xn

)
= lim

n→∞ Txn = lim
n→∞ xn+ = u,

and u is a fixed point for T . �

In what follows, we replace the condition of continuity of the operator by the condition
of α-regularity of the space.

Theorem . Let (X, d) be a complete b-metric-like space with constant s ≥  and T :
X → X be a generalized almost α-ψ-φ-Geraghty contractive type mapping. We suppose
also that:

(i) T is triangular α-orbital admissible;
(ii) there exists x ∈ X such that α(x, Tx) ≥ ;

(iii) X is α-regular and d is continuous.
Then T has a fixed point, u ∈ X with d(u, u) = .

Proof Following the lines of the proof of Theorem ., we conclude that there exists u ∈ X
such that

lim
n→∞ d(xn, u) = lim

n,m→∞ d(xn, xm) = d(u, u) = .

Since X is α-regular, α(xn, xn+) ≥  for all n. Due to the fact that limn→∞ xn = u, there
exists a subsequence {xnk } of {xn} such that α(xnk , u) ≥  for all k. To prove that u is a fixed
point for T , suppose on the contrary that d(u, Tu) > .

Now, by using the properties of ψ and as T is a generalized almost α-ψ-φ-Geraghty
contractive type mapping we have

ψ
(
d(xnk +, Tu)

) ≤ α(xnk , u)ψ
(
sd(Txnk , Tu)

)

≤ β
(
ψ

(
M(xnk , u)

))
ψ

(
M(xnk , u)

)
+ Lφ

(
N(xnk , u)

)
.

Thus we have

ψ
(
d(xnk+ , Tu)

)
<


s
ψ

(
M(xnk , u)

)
+ Lφ

(
N(xnk , u)

)
, ()

where N(xnk , u) = min{ds(xnk , Tu), ds(u, xnk +), d(xnk , xnk +), d(u, Tu)}, and note that
limk→∞ N(xnk , u) = . Moreover,

M(xnk , u) = max

{
d(xnk , u), d(xnk , xnk +), d(u, Tu),

d(xnk , Tu) + d(u, xnk +)
s

}

≤ max

{
d(xnk , u), d(xnk , xnk +), d(u, Tu),

d(xnk , u) + d(u, Tu) + d(u, xnk ) + d(xnk , xnk +)


}
.
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Hence

lim
k→∞

M(xnk , u) ≤ max

{
, d(u, Tu),

d(u, Tu)


}
= d(u, Tu),

and by the definition of M(xnk , u) we have limk→∞ M(xnk , u) = d(u, Tu).
By the continuity of ψ and the b-metric-like d, taking the limit as k goes to ∞ on both

sides of () we have

ψ
(
d(u, Tu)

) ≤ 
s
ψ

(
d(u, Tu)

)
.

Thus  = ψ(d(u,Tu))
ψ(d(u,Tu)) ≤ 

s , which is a contradiction in the case s > . Hence d(u, Tu) = ;
therefore Tu = u. In the case s =  we take the limit as k goes to ∞ on both sides of

ψ
(
d(xnk +, Tu)

) ≤ β
(
ψ

(
M(xnk , u)

))
ψ

(
M(xnk , u)

)

and get limk→∞ β(ψ(M(xnk , u))) =  and as β ∈ F so we have limk→∞ ψ(M(xnk , u)) = .
Thus we have d(u, Tu) = ; therefore Tu = u. �

For the uniqueness of a fixed point of a generalized α-ψ-φ contractive mapping, we will
consider the following hypothesis.

(H) For all x, y ∈ Fix(T), either α(x, y) ≥  or α(y, x) ≥ .
Here, Fix(T) denotes the set of fixed points of T .

Theorem . Adding condition (H) to the hypotheses of Theorem . (or Theorem .), we
obtain the uniqueness of the fixed point of T .

Proof Suppose that x∗ and y∗ are two fixed points of T . Then it is obvious that M(x∗, y∗) =
d(x∗, y∗) and N(x∗, y∗) = . So, we have

ψ
(
d
(
x∗, y∗)) ≤ ψ

(
sd

(
Tx∗, Ty∗))

≤ α
(
x∗, y∗)ψ

(
sd

(
Tx∗, Ty∗))

≤ β
(
ψ

(
d
(
x∗, y∗)))ψ

(
d
(
x∗, y∗))

<

s
ψ

(
d
(
x∗, y∗)),

which is a contradiction. �

Definition . Let (X, d) be a b-metric-like space with constant s ≥ , T : X → X be a
map, we say that T is a generalized rational α-ψ-φ-Geraghty contractive mapping of type
(I) if there exist a function α : X ×X → [,∞), ψ ,φ ∈ � , β ∈Fs, and some L ≥  such that

α(x, y)ψ
(
sd(Tx, Ty)

) ≤ β
(
ψ

(
K(x, y)

))
ψ

(
K(x, y)

)
+ Lφ

(
N(x, y)

)
, ()

for all x, y ∈ X, where N(x, y) is defined as in () and

K(x, y) = max

{
d(x, y),

d(x, Tx)d(y, Ty)
 + d(x, y)

,
d(x, Tx)d(y, Ty)

 + d(Tx, Ty)

}
. ()
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Definition . Let (X, d) be a b-metric-like space with constant s ≥ , T : X → X be a map,
we say that T is a generalized rational α-ψ-φ-Geraghty contractive of type (II) mapping
if there exist a function α : X × X → [,∞), ψ ,φ ∈ � , β ∈Fs and some L ≥  such that

α(x, y)ψ
(
sd(Tx, Ty)

) ≤ β
(
ψ

(
Q(x, y)

))
ψ

(
Q(x, y)

)
+ Lφ

(
N(x, y)

)
, ()

for all x, y ∈ X, where N(x, y) is defined as in () and

Q(x, y) = max

{
d(x, y),

d(x, Tx)d(y, Ty) + ds(x, Ty)ds(y, Tx)
 + s(d(x, Tx) + d(y, Ty))

}
. ()

Theorem . Let (X, d) be a complete b-metric-like space with constant s ≥  and T : X →
X be a generalized rational α-ψ-φ-Geraghty contractive mapping of type (I) such that:

(i) T is triangular α-orbital admissible;
(ii) there exists x ∈ X such that α(x, Tx) ≥ ;

(iii) T is continuous.
Then T has a fixed point, u ∈ X with d(u, u) = .

Proof We shall use the same techniques as in the proof of Theorem .. First of all, we shall
construct a sequence {xn} ⊂ X where xn+ = Txn for which α(xn, xn+) ≥  and xn 
= xn+ for
all n ∈N.

Since T is generalized rational α-ψ-φ-Geraghty contractive of type (I) we have

ψ
(
sd(xn+, xn+)

) ≤ α(xn, xn+)ψ
(
sd(Txn, Txn+)

)

≤ β
(
ψ

(
K(xn, xn+)

))
ψ

(
K(xn, xn+)

)
+ Lφ

(
N(xn, xn+)

)
. ()

Since N(xn, xn+) = , the above inequality implies that

ψ
(
sd(xn+, xn+)

) ≤ β
(
ψ

(
K(xn, xn+)

))
ψ

(
K(xn, xn+)

)
, ()

where

K(xn, xn+) = max

{
d(xn, xn+),

d(xn, xn+)d(xn+, xn+)
 + d(xn, xn+)

,
d(xn, xn+)d(xn+, xn+)

 + d(xn+, xn+)

}
.

On the other hand, we have

d(xn, xn+)d(xn+, xn+)
 + d(xn+, xn+)

≤ d(xn, xn+)d(xn+, xn+)
d(xn+, xn+)

= d(xn, xn+)

and

d(xn, xn+)d(xn+, xn+)
 + d(xn, xn+)

≤ d(xn, xn+)d(xn+, xn+)
d(xn, xn+)

= d(xn+, xn+).

Consequently, we get K(xn, xn+) ≤ max{d(xn, xn+), d(xn+, xn+)}.
If max{d(xn, xn+), d(xn+, xn+)} = d(xn+, xn+), then from () together with Remark .,

we have

ψ
(
sd(xn+, xn+)

)
<


s
ψ

(
d(xn+, xn+)

)
.
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This is a contradiction since ψ is increasing. Thus, we have max{d(xn, xn+), d(xn+, xn+)} =
d(xn, xn+) and by the definition of K(xn, xn+) we shall have K(xn, xn+) = d(xn, xn+). Con-
sequently, the inequality () turns into

ψ
(
d(xn+, xn+)

) ≤ ψ
(
sd(xn+, xn+)

) ≤ β
(
ψ

(
K(xn, xn+)

))
ψ

(
d(xn, xn+)

)
. ()

By Remark ., we get

ψ
(
sd(xn+, xn+)

)
< ψ

(
d(xn, xn+)

)
and hence, d(xn+, xn+) <


s d(xn, xn+). ()

Case (i): s > . Since 
s >  and s 

s = 
s < , by Lemma ., the sequence {xn} is Cauchy

and

lim
n,m→∞ d(xn, xm) = . ()

Case (ii): s = . Since {d(xn, xn+)} is a decreasing sequence, there exists r ≥  such that

lim
n→∞ d(xn, xn+) = r, ()

for some r ≥ . We shall prove that r = . Suppose, on the contrary, that r > . By letting
n → ∞ in () we find

ψ(r) ≤ lim
n→∞β

(
ψ

(
K(xn, xn+)

))
ψ(r).

It yields  = limn→∞ β(ψ(K(xn, xn+))). Since β ∈F, we get ψ(K(xn, xn+)) → , which im-
plies that d(xn, xn+) → , that is, r = .

In what follows, we shall prove that {xn} is a Cauchy sequence. Indeed we will prove that
limm,n→∞ d(xn, xm) = . Suppose, on the contrary, that there exist ε >  and corresponding
subsequences {nk} and {mk} of N satisfying nk > mk > k for which

d(xmk , xnk ) ≥ ε, ()

where nk , mk are chosen as the smallest integers satisfying (), that is,

d(xmk , xnk –) < ε. ()

By (), (), and the triangle inequality, we easily derive that

ε ≤ d(xmk , xnk ) ≤ d(xmk , xnk –) + d(xnk –, xnk )

< ε + d(xnk –, xnk ). ()

Using () and the squeeze theorem we get

lim
k→∞

d(xmk , xnk ) = ε. ()
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Regarding that T is generalized rational α-ψ-φ-Geraghty contractive mapping of
type (I), we have

ψ
(
d(xmk +, xnk +)

) ≤ α(xmk , xnk )ψ
(
d(Txmk , Txnk )

)

≤ β
(
ψ

(
K(xmk , xnk )

))
ψ

(
K(xmk , xnk )

)
+ Lφ

(
N(xmk , xnk )

)
, ()

for all x, y ∈ X, where

K(xmk , xnk ) = max

{
d(xmk , xnk ),

d(xmk , xmk +)d(xnk , xnk +)
 + d(xmk , xnk )

,

d(xmk , xmk +)d(xnk , xnk +)
 + d(xmk +, xnk +)

}
()

and

N(xmk , xnk ) = min
{

ds(xmk , xnk +), ds(xnk , xmk +), d(xmk , xmk+), d(xnk , xnk +)
}

.

It is clear that

lim
k→∞

K(xmk , xnk ) = ε and lim
k→∞

N(xmk , xnk ) = .

By taking the limit as k → ∞ in () and taking (), () into account, we get

ψ(ε) ≤ lim
k→∞

β
(
ψ

(
K(xmk , xnk )

))
lim

k→∞
ψ

(
K(xmk , xnk )

)

≤ lim
k→∞

β
(
ψ

(
K(xmk , xnk )

))
ψ(ε). ()

Since β is a Geraghty function, we derive that ψ(K(xmk , xnk )) → . Consequently, we have
d(xmk , xnk ) → , which is a contradiction. Hence limm,n→∞ d(xn, xm) = , and the sequence
{xn} is Cauchy for any s ≥ .

By completeness of (X, d), there exists u ∈ X such that

lim
n→∞ d(xn, u) = d(u, u) = lim

n,m→∞ d(xn, xm) = .

Now, if T is continuous, then

Tu = T
(

lim
n→∞ xn

)
= lim

n→∞ Txn = lim
n→∞ xn+ = u,

and u is a fixed point for T . �

Theorem . Let (X, d) be a complete b-metric-like space with constant s ≥  and T : X →
X be a generalized rational α-ψ-φ-Geraghty contractive of mapping type (I) such that:

(i) T is triangular α-orbital admissible;
(ii) there exists x ∈ X such that α(x, Tx) ≥ ;

(iii) X is α-regular and d is continuous.
Then T has a fixed point, u ∈ X with d(u, u) = .
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Proof Verbatim of the proof of Theorem ., we conclude that the iterative sequence {xn}
is Cauchy and converges to u ∈ X. Since X is α-regular, then, as in the proof of Theo-
rem ., there exists a subsequence {xnk } of {xn} such that

ψ
(
d(xnk +, Tu)

)
<


s
ψ

(
K(xnk , u)

)
+ Lφ

(
N(xnk , u)

)
, ()

where K(xnk , u) = max{d(xnk , u), d(xnk ,xnk +)d(u,Tu)
+d(xnk ,u) , d(xnk ,xnk +)d(u,Tu)

+d(xnk +,Tu) }.
Hence limk→∞ K(xnk , u) =  and as in the proof of Theorem . limk→∞ N(xnk , u) = .
Thus taking the limit as k → ∞ on both sides of () and keeping in mind that ψ and d

are continuous we have ψ(d(u, Tu)) ≤ . Hence d(u, Tu) = ; therefore Tu = u. �

Theorem . Adding condition (H) to the hypotheses of Theorem . (or Theorem .),
we obtain uniqueness of the fixed point of T .

Proof As in the proof of Theorem ., we suppose that x∗ and y∗ are two fixed points of T .
Then, clearly, we have K(x∗, y∗) = d(x∗, y∗) and N(x∗, y∗) = . So, we have

ψ
(
d
(
x∗, y∗)) ≤ ψ

(
sd

(
Tx∗, Ty∗))

≤ α
(
x∗, y∗)ψ

(
sd

(
Tx∗, Ty∗))

≤ β
(
ψ

(
d
(
x∗, y∗)))ψ

(
d
(
x∗, y∗))

<

s
ψ

(
d
(
x∗, y∗)),

which is a contradiction. �

Theorem . Let (X, d) be a complete b-metric-like space with constant s ≥  and T :
X → X be a generalized rational α-ψ-φ-Geraghty contractive mapping of type (II) such
that:

(i) T is triangular α-orbital admissible;
(ii) there exists x ∈ X such that α(x, Tx) ≥ ;

(iii) T is continuous.
Then T has a fixed point, u ∈ X with d(u, u) = .

Proof Verbatim of the lines in the proof of Theorem ., we construct a sequence {xn} ⊂ X
where xn+ = Txn for which α(xn, xn+) ≥  and xn 
= xn+ for all n ∈N. Moreover, by using
the fact that T is a generalized rational α-ψ-φ-Geraghty contractive mapping of type (II)
and the property of ψ we have

ψ
(
sd(xn+, xn+)

) ≤ α(xn, xn+)ψ
(
sd(Txn, Txn+)

)

≤ β
(
ψ

(
Q(xn, xn+)

))
ψ

(
Q(xn, xn+)

)
+ Lφ

(
N(xn, xn+)

)
. ()

By using the same arguments as in the proof of Theorem ., we derive that

ψ
(
sd(xn+, xn+)

)
<


s
ψ

(
Q(xn, xn+)

)
, ()
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where

Q(xn, xn+) = max

{
d(xn, xn+),

d(xn, xn+)d(xn+, xn+) + ds(xn, xn+)ds(xn+, xn+)
 + s[d(xn, xn+) + d(xn+, xn+)]

}
.

Since d(xn, xn+) ≤ s[d(xn, xn+) + d(xn+, xn+)], we have

d(xn, xn+) ≥ d(xn, xn+)d(xn, xn+)
 + d(xn, xn+)

≥ d(xn, xn+)d(xn, xn+)
 + s[d(xn, xn+) + d(xn+, xn+)]

.

Hence, we get Q(xn, xn+) = d(xn, xn+).
By using () we get ψ(sd(xn+, xn+)) ≤ ψ(d(xn, xn+)). Since ψ is increasing we

have d(xn+, xn+) < 
s d(xn, xn+). If s >  then, as in the proof of Theorem ., by using

Lemma ., we conclude that {xn} is a Cauchy sequence and limn,m→∞ d(xn, xm) = . If
s = , by verbatim of the proof of Theorem ., we deduce that {xn} is a Cauchy sequence.

Since (X, d) is complete, there exists u ∈ X such that  = limn,m→∞ d(xn, xm) =
limn→∞ d(xn, u) = d(u, u). Now, since T is continuous, Tu = T(limn→∞ xn) = limn→∞ Txn =
limn→∞ xn+ = u and u is a fixed point for T . �

Theorem . Let (X, d) be a complete b-metric-like space with constant s ≥  and T :
X → X be a generalized rational α-ψ-φ-Geraghty contractive mapping of type (II) such
that:

(i) T is triangular α-orbital admissible;
(ii) there exists x ∈ X such that α(x, Tx) ≥ ;

(iii) X is α-regular and d is continuous.
Then T has a fixed point, u ∈ X with d(u, u) = .

Proof By following the proof of Theorem . line by line, we see that {xn} converges to
u ∈ X. Due to the fact that X is α-regular and by following the lines of the proof of Theo-
rem . there exists a subsequence {xnk } of {xn} such that

ψ
(
d(xnk +, Tu)

)
<


s
ψ

(
Q(xnk , u)

)
+ Lφ

(
N(xnk , u)

)
, ()

where

Q(xnk , u) = max

{
d(xnk , u),

d(xnk , xnk +)d(u, Tu) + ds(xnk , Tu)ds(u, xnk +)
 + s[d(xnk , xnk +) + d(u, Tu)]

}
.

Note that limk→∞ Q(xnk , u) =  and limk→∞ N(xnk , u) = . Thus taking the limit as n →
∞ on both sides of () and keeping in mind that ψ and d are continuous we have
ψ(d(u, Tu)) = , and so d(u, Tu) = . Thus u = Tu. �

Theorem . Let (X, d) be a complete b-metric-like space with constant s ≥  and T :
X → X be a mapping. Suppose that there exist a function α : X × X → [,∞), ψ ∈ � ,
β ∈Fs such that

α(x, y)ψ
(
sd(Tx, Ty)

) ≤ β
(
ψ

(
d(x, y)

))
ψ

(
d(x, y)

)
, ()
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for all x, y ∈ X. Suppose also that:
(i) T is triangular α-orbital admissible;

(ii) there exists x ∈ X such that α(x, Tx) ≥ ;
(iii) T is continuous.

Then T has a fixed point, u ∈ X with d(u, u) = .

Proof By (ii) there exists x ∈ X such that α(x, Tx) ≥ . Define a sequence {xn} ⊂ X by
xn+ = Txn for all n ∈ N. As T is triangular α-orbital admissible, by Lemma . we have
α(xn, xn+) ≥  for all n ∈ N. Notice that if there exists a natural number n such that
xn = xn+, then the proof is complete. To avoid this trivial case, from now on, we assume
that xn 
= xn+ for all n ∈N.

Since T satisfies () we have

ψ
(
sd(xn+, xn+)

) ≤ α(xn, xn+)ψ
(
sd(Txn, Txn+)

)

≤ β
(
ψ

(
d(xn, xn+)

))
ψ

(
d(xn, xn+)

)
.

Thus, we have

ψ
(
sd(xn+, xn+)

)
<


s
ψ

(
d(xn, xn+)

)
< ψ

(
d(xn, xn+)

)
. ()

Since ψ is increasing, we have d(xn+, xn+) < 
s d(xn, xn+).

Case (i): If s > , then, since 
s >  and s 

s = 
s < , by Lemma ., {xn} is a Cauchy se-

quence and limn,m→∞ d(xn, xm) = .
Case (ii): If s = , then as d(xn+, xn+) < d(xn, xn+), there exists r ≥  such that

limn→∞ d(xn, xn+) = r. If r >  then taking the limit as n → ∞ on both sides of

ψ
(
d(xn+, xn+)

) ≤ β
(
ψ

(
d(xn, xn+)

))
ψ

(
d(xn, xn+)

)

we get limn→∞ β(ψ(d(xn, xn+))) =  and as β is a Geraghty function, we derive that

lim
n→∞ d(xn, xn+) = . ()

That is, r = . In what follows we shall prove that {xn} is a Cauchy sequence. Indeed we
will prove that limm,n→∞ d(xn, xm) = . Suppose, on the contrary, that there exist ε >  and
corresponding subsequences {nk} and {mk} of N satisfying nk > mk > k for which

d(xmk , xnk ) ≥ ε, ()

where nk , mk are chosen as the smallest integers satisfying (), that is,

d(xmk , xnk –) < ε. ()

By (), (), and the triangle inequality, we easily derive that

ε ≤ d(xmk , xnk ) ≤ d(xmk , xnk –) + d(xnk –, xnk ) < ε + d(xnk –, xnk ). ()
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Using () and the squeeze theorem we get

lim
k→∞

d(xmk , xnk ) = ε. ()

As T satisfies (), we have

ψ
(
d(xmk +, xnk +)

) ≤ α(xmk , xnk )ψ
(
d(Txmk , Txnk )

)

≤ β
(
ψ

(
d(xmk , xnk )

))
ψ

(
d(xmk , xnk )

)
. ()

Taking the limit as k → ∞ for () we get limk→∞ β(ψ(d(xmk , xnk ))) = . Thus

lim
k→∞

d(xmk , xnk ) = .

Therefore, {xn} is a Cauchy sequence for s ≥ . By completeness of (X, d), there exists u ∈ X
such that  = limn,m→∞ d(xn, xm) = limn→∞ d(xn, u) = d(u, u).

Since T is continuous, Tu = T(limn→∞ xn) = limn→∞ Txn = limn→∞ xn+ = u and u is a
fixed point for T . �

Theorem . Let (X, d) be a complete b-metric-like space with constant s ≥  and T :
X → X be a mapping. Suppose that there exist a function α : X × X → [,∞), ψ ∈ � , and
β ∈Fs such that

α(x, y)ψ
(
sd(Tx, Ty)

) ≤ β
(
ψ

(
d(x, y)

))
ψ

(
d(x, y)

)
, ()

for all x, y ∈ X. Suppose also that:
(i) T is triangular α-orbital admissible;

(ii) there exists x ∈ X such that α(x, Tx) ≥ ;
(iii) X is α-regular and d is continuous.

Then T has a fixed point, u ∈ X with d(u, u) = .

Theorem . Adding condition (H) to the hypotheses of Theorem . (or Theorem .),
we obtain the uniqueness of the fixed point of T .

Remark . Notice that we get several corollaries by replacing the auxiliary functions
ψ and β in a proper way. In particular, by taking ψ(t) = t we find the extended version of
several existing results.

3 Expected consequences
In this section, we shall consider some immediate consequences of our main results.

The following result is obtained by letting L =  in Theorem . or ..

Corollary . Let (X, d) be a complete b-metric-like space with constant s ≥  and T : X →
X be a mapping. Suppose that there exist α : X × X → [,∞), ψ ∈ � , β ∈Fs such that

α(x, y)ψ
(
sd(Tx, Ty)

) ≤ β
(
ψ

(
M(x, y)

))
ψ

(
M(x, y)

)
, ()



Karapınar et al. Journal of Inequalities and Applications  (2015) 2015:303 Page 17 of 22

for all x, y ∈ X, where

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)
s

}
. ()

Suppose also that:
(i) T is triangular α-orbital admissible;

(ii) there exists x ∈ X such that α(x, Tx) ≥ ;
(iii) T is continuous or (iii)′ X is α-regular and d is continuous.

Then T has a fixed point.

Adding condition (H) to the hypothesis of Corollary ., we guarantee the uniqueness
of the fixed point.

Again by letting L =  in Theorem . and Theorem . we get two more corollaries as
Corollary .. We skip the details regarding the volume of the paper.

Corollary . Let (X, d) be a complete b-metric-like space with constant s ≥ , T : X → X
be a map and α : X × X → [,∞) be a function. Suppose that T satisfies at least one of the
following conditions:

(a) α(x, y)d(Tx, Ty) ≤ 
s M(x, y);

(b) α(x, y)d(Tx, Ty) ≤ 
s K(x, y);

where M(x, y), K(x, y) are defined as in (), (). Suppose also that:
(i) T is triangular α-orbital admissible;

(ii) there exists x ∈ X such that α(x, Tx) ≥ ;
(iii) T is continuous or (iii)′ X is α-regular and d is continuous.

Then T has a unique fixed point u ∈ X with d(u, u) = .

Proof It is sufficient to take L = , ψ(t) = t, and β(t) = 
s in Theorem . and Theorem .

(and thus, Theorem . or Theorem ., Theorem . or Theorem ., respectively). �

Adding condition (H) to the hypothesis of Corollary ., we guarantee the uniqueness
of the fixed point.

Corollary . Let (X, d) be a complete b-metric-like space with constant s ≥ , T : X → X
be a map, and α : X × X → [,∞) be a function. Suppose that T satisfies at least one of the
following conditions:

(c) α(x, y)d(Tx, Ty) ≤ 
s Q(x, y),

where M(x, y), K(x, y), Q(x, y) are defined as in (). Suppose also that:
(i) T is triangular α-orbital admissible;

(ii) there exists x ∈ X such that α(x, Tx) ≥ ;
(iii) T is continuous or (iii)′ X is α-regular and d is continuous.

Then T has a fixed point u ∈ X with d(u, u) = .

Proof It is sufficient to take L = , ψ(t) = t, and β(t) = 
s in Theorem . or Theorem .,

respectively. �
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3.1 For standard b-metric-like spaces
If we set α(x, y) =  for all x, y ∈ X in Theorem ., then we derive the following results.

Corollary . Let (X, d) be a complete b-metric-like space with constant s ≥  such that d
is continuous and T : X → X be a mapping. Suppose that there exist ψ ,φ ∈ � , β ∈Fs, and
some L ≥  such that

ψ
(
sd(Tx, Ty)

) ≤ β
(
ψ

(
M(x, y)

))
ψ

(
M(x, y)

)
+ Lφ

(
N(x, y)

)
, ()

for all x, y ∈ X, where

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)
s

}
and ()

N(x, y) = min
{

ds(x, Ty), ds(y, Tx), d(x, Tx), d(y, Ty)
}

. ()

Then T has a unique fixed point u ∈ X with d(u, u) = .

If we set α(x, y) =  for all x, y ∈ X in Theorem ., then we derive the following results.

Corollary . Let (X, d) be a complete b-metric-like space with constant s ≥  such that d
is continuous and T : X → X be a mapping. Suppose that there exist ψ ,φ ∈ � , β ∈Fs, and
some L ≥  such that

ψ
(
sd(Tx, Ty)

) ≤ β
(
ψ

(
K(x, y)

))
ψ

(
K(x, y)

)
+ Lφ

(
N(x, y)

)
, ()

for all x, y ∈ X, where

K(x, y) = max

{
d(x, y),

d(x, Tx)d(y, Ty)
 + d(x, y)

,
d(x, Tx)d(y, Ty)

 + d(Tx, Ty)

}
and ()

N(x, y) = min
{

ds(x, Ty), ds(y, Tx), d(x, Tx), d(y, Ty)
}

. ()

Then T has a unique fixed point u ∈ X with d(u, u) = .

If we set α(x, y) =  for all x, y ∈ X in Theorem ., then we derive the following results.

Corollary . Let (X, d) be a complete b-metric-like space with constant s ≥  such that d
is continuous and T : X → X be a mapping. Suppose that there exist ψ ,φ ∈ � , β ∈Fs, and
some L ≥  such that

ψ
(
sd(Tx, Ty)

) ≤ β
(
ψ

(
Q(x, y)

))
ψ

(
Q(x, y)

)
+ Lφ

(
N(x, y)

)
, ()

for all x, y ∈ X, where

Q(x, y) = max

{
d(x, y),

d(x, Tx)d(y, Ty) + ds(x, Ty)ds(y, Tx)
 + s(d(x, Tx) + d(y, Ty))

}
and ()

N(x, y) = min
{

ds(x, Ty), ds(y, Tx), d(x, Tx), d(y, Ty)
}

. ()

Then T has a fixed point u ∈ X with d(u, u) = .
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If take L =  in Corollaries .-., we get three more consequences. Regarding the vol-
ume of the paper, we skip the details.

Corollary . Let (X, d) be a complete b-metric-like space with constant s ≥  such that d
is continuous and T : X → X be mapping. Suppose that there exist ψ ∈ � and β ∈Fs such
that

ψ
(
sd(Tx, Ty)

) ≤ β
(
ψ

(
d(x, y)

))
ψ

(
d(x, y)

)
, ()

for all x, y ∈ X. Then T has a unique fixed point u ∈ X with d(u, u) = .

Proof It follows from Theorem . by α(x, y) =  for all x, y ∈ X. �

3.2 For b-metric-like spaces endowed with a partial order
In this section, from our main results, we shall derive easily various fixed point results on
a b-metric-like space endowed with a partial order. We, first, recall some notions.

Definition . Let (X,) be a partially ordered set and T : X → X be a given mapping.
We say that T is nondecreasing with respect to  if

x, y ∈ X, x  y �⇒ Tx  Ty.

Definition . Let (X,) be a partially ordered set. A sequence {xn} ⊂ X is said to be
nondecreasing (respectively, nonincreasing) with respect to  if xn  xn+ (respectively,
xn+  xn for all n).

Definition . Let (X,) be a partially ordered set and d be a b-metric-like on X. We say
that (X,, d) is regular if for every nondecreasing (respectively, nonincreasing) sequence
{xn} ⊂ X such that xn → x ∈ X as n → ∞, there exists a subsequence {xnk } of {xn} such
that xnk  x (respectively, xnk � x) for all k.

We have the following result.

Corollary . Let (X,) be a partially ordered set (which does not contain an infinite
totally unordered subset) and d be a b-metric-like on X with constant s ≥  such that (X, d)
is complete. Let T : X → X be a nondecreasing mapping with respect to . Suppose that
there exist ψ ∈ � , β ∈Fs such that

ψ
(
sd(Tx, Ty)

) ≤ β
(
ψ

(
M(x, y)

))
ψ

(
M(x, y)

)
, ()

for all x, y ∈ X with x � y or y � x where M(x, y) is defined as in (). Suppose also that the
following conditions hold:

(i) there exists x ∈ X such that x  Tx;
(ii) T is continuous or (ii)′ (X,, d) is regular and d is continuous.

Then T has a fixed point u ∈ X with d(u, u) = .
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Proof Define the mapping α : X × X → [,∞) by

α(x, y) =

{
 if x  y or x � y,
 otherwise.

Clearly, T satisfies (), that is,

α(x, y)ψ
(
sd(Tx, Ty)

) ≤ β
(
ψ

(
M(x, y)

))
ψ

(
M(x, y)

)
,

for all x, y ∈ X. From condition (i), we have α(x, Tx) ≥ . Moreover, for all x, y ∈ X, from
the monotone property of T , we have

α(x, y) ≥  �⇒ x � y or x  y �⇒ Tx � Ty or Tx  Ty �⇒ α(Tx, Ty) ≥ .

Hence, the self-mapping T is α-admissible. Similarly, we can prove that T is triangular α-
admissible and so triangular α-orbital admissible. Now, if T is continuous, the existence
of a fixed point follows from Corollary .. Suppose now that (X,, d) is regular. Let {xn}
be a sequence in X such that α(xn, xn+) ≥  for all n and xn → x ∈ X as n → ∞. From the
regularity hypothesis and as X does not contain an infinite totally unordered subset, there
exists a subsequence {xnk } of {xn} such that xnk  x or x  xnk for all k. This implies from
the definition of α that α(xnk , x) ≥  for all k. In this case, the existence of a fixed point
follows again from Corollary .. �

In an analogous way, we derive the following results from Theorem . and Theo-
rem ., respectively.

Corollary . Let (X,) be a partially ordered set (which does not contain an infinite
totally unordered subset) and d be a b-metric-like on X with constant s ≥  such that (X, d)
is complete. Let T : X → X be a nondecreasing mapping with respect to . Suppose that
there exist ψ ∈ � , β ∈Fs such that

ψ
(
sd(Tx, Ty)

) ≤ β
(
ψ

(
K(x, y)

))
ψ

(
K(x, y)

)
, ()

for all x, y ∈ X with x � y or y � x where M(x, y) is defined as in (). Suppose also that the
following conditions hold:

(i) there exists x ∈ X such that x  Tx;
(ii) T is continuous or (ii)′ (X,, d) is regular and d is continuous.

Then T has a fixed point u ∈ X with d(u, u) = .

Corollary . Let (X,) be a partially ordered set (which does not contain an infinite
totally unordered subset) and d be a b-metric-like on X with constant s ≥  such that (X, d)
is complete. Let T : X → X be a nondecreasing mapping with respect to . Suppose that
there exist ψ ∈ � , β ∈Fs such that

ψ
(
sd(Tx, Ty)

) ≤ β
(
ψ

(
Q(x, y)

))
ψ

(
Q(x, y)

)
, ()

for all x, y ∈ X with x � y or y � x where M(x, y) is defined as in (). Suppose also that the
following conditions hold:
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(i) there exists x ∈ X such that x  Tx;
(ii) T is continuous or (ii)′ (X,, d) is regular and d is continuous.

Then T has a fixed point u ∈ X with d(u, u) = .

Corollary . Let (X,) be a partially ordered set (which does not contain an infinite
totally unordered subset) and d be b-metric-like on X with constant s ≥  such that (X, d)
is complete. Let T : X → X be a nondecreasing mapping with respect to . Suppose that
there exist ψ ∈ � , β ∈Fs such that

ψ
(
sd(Tx, Ty)

) ≤ β
(
ψ

(
d(x, y)

))
ψ

(
d(x, y)

)
, ()

for all x, y ∈ X with x � y or y � x. Suppose also that the following conditions hold:
(i) there exists x ∈ X such that x  Tx;

(ii) T is continuous or (ii)′ (X,, d) is regular and d is continuous.
Then T has a fixed point u ∈ X with d(u, u) = .

Example . Let X = [,∞) define d : X × X → [,∞) by d(x, y) = |x – y|. Then (X, d)
is complete b-metric (so b-metric-like) space with constant s = . Define T : X → X and
α(x, y) : X × X → [,∞) as follows:

Tx =

{
x
 if x ∈ [, ],
x

x+ if x ∈ (,∞),

and

α(x, y) =

{
 if x, y ∈ [, ],
 otherwise.

It is clear that T is triangular α-orbital admissible and we have α(, T) ≥ . Moreover, X
is α-regular and d is continuous.

Let ψ(t) = t, β(t) = 
 then clearly ψ ∈ � and β ∈ F. Moreover, T satisfies () for the

following reason: if x, y ∈ [, ], then

α(x, y)ψ
(
d(Tx, Ty)

)
= 

(
x


–
y


)

=
(x – y)


= β

(
ψ

(
d(x, y)

))
ψ(d(x, y).

Otherwise,

α(x, y)ψ
(
d(Tx, Ty)

)
=  ≤ β

(
ψ

(
d(x, y)

))
ψ(d(x, y).

Therefore, by Theorem ., T has a fixed point x = .

Example . Let X = {, , } define d : X × X → [,∞) by d(x, y) = (max{x, y}) 
 . Then

(X, d) is complete b-metric-like space with constant s =  
 – =  

 such that d is continu-
ous. Define T : X → X by T = {(, ), (, ), (, )}.

Let ψ(t) = t, β(t) = 





e–t or β(t) = 



 +t

, then clearly ψ ∈ � and β ∈ F





. Note that

K(, ) = , K(, ) = K(, ) =  
 , and clearly T satisfies () with L =  Therefore, by

Corollary ., T has a fixed point x = .
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4 Conclusion
It is clear that we can list several more results by replacing the b-metric-like space, with
some other abstract space, such as a b-metric space, a metric space, a metric-like space,
a partial metric space, and so on.
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