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Abstract
In this article, geodesic E-convex sets and geodesic E-convex functions on a
Riemannian manifold are extended to the so-called geodesic strongly E-convex sets
and geodesic strongly E-convex functions. Some properties of geodesic strongly
E-convex sets are also discussed. The results obtained in this article may inspire future
research in convex analysis and related optimization fields.
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1 Introduction
Convexity and its generalizations play an important role in optimization theory, convex
analysis, Minkowski space, and fractal mathematics [–]. In order to extend the valid-
ity of their results to large classes of optimization, these concepts have been general-
ized and extended in several directions using novel and innovative techniques. Youness
[] defined E-convex sets and E-convex functions, which have some important applica-
tions in various branches of mathematical sciences [–]. However, some results given by
Youness [] seem to be incorrect according to Yang []. Chen [] extended E-convexity
to a semi-E-convexity and discussed some of there properties. Also, Youness and Emam
[] discussed a new class functions which is called strongly E-convex functions by tak-
ing the images of two points x and x under an operator E : Rn → R

n besides the two
points themselves. Strong E-convexity was extended to a semi-strong E-convexity as well
as quasi- and pseudo-semi-strong E-convexity in []. The authors investigated the char-
acterization of efficient solutions for multi-objective programming problems involving
semi-strong E-convexity [].

A generalization of convexity on Riemannian manifolds was proposed by Rapcsak
[] and Udriste []. Moreover, Iqbal et al. [] introduced geodesic E-convex sets and
geodesic E-convex functions on Riemannian manifolds.

Motivated by earlier research works [, –] and by the importance of the concepts
of convexity and generalized convexity, we discuss a new class of sets on Riemannian man-
ifolds and a new class of functions defined on them, which are called geodesic strongly
E-convex sets and geodesic strongly E-convex functions, and some of their properties are
presented.
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2 Preliminaries
In this section, we introduce some definitions and well-known results of Riemannian man-
ifolds, which help us throughout the article. We refer to [] for the standard material on
differential geometry.

Let N be a C∞ m-dimensional Riemannian manifold, and TzN be the tangent space to
N at z. Also, assume that μz(x, x) is a positive inner product on the tangent space TzN
(x, x ∈ TzN ), which is given for each point of N . Then a C∞ map μ : z → μz , which
assigns a positive inner product μz to TzN for each point z of N is called a Riemannian
metric.

The length of a piecewise C curve η : [a, a] → N which is defined as follows:

L(η) =
∫ a

a

∥∥ή(x)
∥∥dx.

We define d(z, z) = inf{L(η) : η is a piecewise C curve joining z to z} for any points
z, z ∈ N . Then d is a distance which induces the original topology on N . As we know on
every Riemannian manifold there is a unique determined Riemannian connection, called
a Levi-Civita connection, denoted by �XY , for any vector fields X, Y ∈ N . Also, a smooth
path η is a geodesic if and only if its tangent vector is a parallel vector field along the path
η, i.e., η satisfies the equation �ή(t)ή(t) = . Any path η joining z and z in N such that
L(η) = d(z, z) is a geodesic and is called a minimal geodesic.

Finally, assume that (N ,η) is a complete m-dimensional Riemannian manifold with Rie-
mannian connection �. Let x, x ∈ N and η : [, ] → N be a geodesic joining the points
x and x, which means that ηx,x () = x and ηx,x () = x.

Definition . [] A set B in a Riemannian manifold N is called totally convex if B con-
tains every geodesic ηx,x of N whose endpoints x and x belong to B.

Note the whole of the manifold N is totally convex, and conventionally, so is the empty
set. The minimal circle in a hyperboloid is totally convex, but a single point is not. Also,
any proper subset of a sphere is not necessarily totally convex.

The following theorem was proved in [].

Theorem . [] The intersection of any number of a totally convex sets is totally con-
vex.

Remark . In general, the union of a totally convex set is not necessarily totally con-
vex.

Definition . [] A function f : B →R is called a geodesic convex function on a totally
convex set B ⊂ N if for every geodesic ηx,x , then

f
(
ηx,x (γ )

) ≤ γ f (x) + ( – γ )f (x)

holds for all x, x ∈ B and γ ∈ [, ].

In , strongly E-convex sets and strongly E-convex functions were introduced by
Youness and Emam [] as follows.



Kılıçman and Saleh Journal of Inequalities and Applications  (2015) 2015:297 Page 3 of 10

Definition . []
() A subset B ⊆R

n is called a strongly E-convex set if there is a map E : Rn → R
n such

that

γ
(
αb + E(b)

)
+ ( – γ )

(
αb + E(b)

) ∈ B

for each b, b ∈ B, α ∈ [, ] and γ ∈ [, ].
() A function f : B ⊆R

n →R is called a strongly E-convex function on N if there is a
map E : Rn → R

n such that B is a strongly E-convex set and

f
(
γ
(
αb + E(b)

)
+ ( – γ )

(
αb + E(b)

)) ≤ γ f
(
E(b)

)
+ ( – γ )f

(
E(b)

)

for each b, b ∈ B, α ∈ [, ] and γ ∈ [, ].

In , the geodesic E-convex set and geodesic E-convex functions on a Riemannian
manifold were introduced by Iqbal et al. [] as follows.

Definition . []
() Assume that E : N → N is a map. A subset B in a Riemannian manifold N is called

geodesic E-convex iff there exists a unique geodesic ηE(b),E(b)(γ ) of length d(b, b),
which belongs to B, for each b, b ∈ B and γ ∈ [, ].

() A function f : B ⊆ N →R is called geodesic E-convex on a geodesic E-convex set B
if

f
(
ηE(b),E(b)(γ )

) ≤ γ f
(
E(b)

)
+ ( – γ )f

(
E(b)

)

for all b, b ∈ B and γ ∈ [, ].

3 Geodesic strongly E-convex sets and geodesic strongly E-convex functions
In this section, we introduce a geodesic strongly E-convex (GSEC) set and a geodesic
strongly E-convex (GSEC) function in a Riemannian manifold N and discuss some of their
properties.

Definition . Assume that E : N → N is a map. A subset B in a Riemannian manifold
N is called GSEC if and only if there is a unique geodesic ηαb+E(b),αb+E(b)(γ ) of length
d(b, b), which belongs to B, ∀b, b ∈ B, α ∈ [, ], and γ ∈ [, ].

Remark .
() Every GSEC set is a GEC set when α = .
() A GEC set is not necessarily a GSEC set. The following example shows this

statement.

Example . Let N be a -dimensional simply complete Riemannian manifold of non-
positive sectional curvature, and B ⊂ N be an open star-shaped. Let E : N → N be a
map such that E(z) = {y : y ∈ ker(B),∀z ∈ B}. Then B is GEC; on the other hand it is not
GSEC.
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Proposition . Every convex set B ⊂ N is a GSEC set.

Proof Let us take a map E : N → N such as E = I where I is the identity map and α = ,
then we have the required result. �

Note if we take the mapping E(x) = ( – α)x, x ∈ B, then the definition of a GSE reduces
to the definition of a t-convex set.

Theorem . If B ⊂ N is a GSEC set, then E(B) ⊆ B.

Proof Since B is a GSEC set, we have for each b, b ∈ B, α ∈ [, ], and γ ∈ [, ],

ηαb+E(b),αb+E(b)(γ ) ∈ B.

For γ =  and α = , we have ηE(b),E(b)() = E(b) ∈ B, then E(B) ⊆ B. �

Theorem . If {Bj, j ∈ I} is an arbitrary family of GSEC subsets of N with respect to the
mapping E : N → N , then the intersection

⋂
j∈I Bj is a GSEC subset of N .

Proof If
⋂

j∈I Bj is an empty set, then it is obviously a GSEC subset of N . Assume that
b, b ∈ ⋂

j∈I Bj, then b, b ∈ Bj, ∀j ∈ I . By the GSEC of Bj, we get ηαb+E(b),αb+E(b)(γ ) ∈ Bj,
∀j ∈ I , α ∈ [, ], and γ ∈ [, ]. Hence, ηαb+E(b),αb+E(b)(γ ) ∈ ⋂

j∈I Bj, ∀α ∈ [, ] and γ ∈
[, ]. �

Remark . The above theorem is not generally true for the union of GSEC subsets of N .

Now, we extend the definition of a GEC function on a Riemannian manifold to a GSEC
function on a Riemannian manifold.

Definition . A real-valued function f : B ⊂ N → R is said to be a GSEC function on a
GSEC set B, if

f
(
ηαb+E(b),αb+E(b)(γ )

) ≤ γ f
(
E(b)

)
+ ( – γ )f

(
E(b)

)
,

∀b, b ∈ B, α ∈ [, ], and γ ∈ [, ]. If the above inequality is strict for all b, b ∈ B, αb +
E(b) 
= αb + E(b), α ∈ [, ], and γ ∈ (, ), then f is called a strictly GSEC function.

Remark .
() Every GSEC function is a GEC function when α = . The following example shows

that a GEC function is not necessarily a GSEC function.

Example . Consider the function f : R → R where f (b) = –|b| and suppose that
E : R→R is given as E(b) = –b. We consider the geodesic η such that

ηαb+E(b),αb+E(b)(γ ) =

⎧⎨
⎩

–[αb + E(b) + γ (αb + E(b) – αb – E(b))]; bb ≥ ,

–[αb + E(b) + γ (αb + E(b) – αb – E(b))]; bb < 

=

⎧⎨
⎩

–[(α – )b + γ ((α – )b + ( – α)b)]; bb ≥ ,

–[(α – )b + γ ((α – )b + ( – α)b)]; bb < .
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If α = , then

ηE(b),E(b)(γ ) =

⎧⎨
⎩

[b + γ (b – b)]; bb ≥ ,

[b + γ (b – b)]; bb < .

If b, b ≥ , then

f
(
ηE(b),E(b)(γ )

)
= f

(
b + γ (b – b)

)

= –
[
( – γ )b + γ b

]
.

On the other hand

γ f
(
E(b)

)
+ ( – γ )f

(
E(b)

)
= γ f (–b) + ( – γ )f (–b) = –

[
( – γ )b + γ b

]
.

Hence, f (ηE(b),E(b)(γ )) ≤ γ f (E(b)) + ( – γ )f (E(b)), ∀γ ∈ [, ].
Similarly, the above inequality holds true when b, b < .
Now, let b < , b > , then

f
(
ηE(b),E(b)(γ )

)
= f

(
b + γ (b – b)

)

= –
[
( + γ )b – γ b

]
.

On the other hand

γ f
(
E(b)

)
+ ( – γ )f

(
E(b)

)
= γ f (–b) + ( – γ )f (–b) = γ b – ( – γ )b.

It follows that

f
(
ηE(b),E(b)(γ )

) ≤ γ f
(
E(b)

)
+ ( – γ )f

(
E(b)

)

if and only if

–
[
( + γ )b – γ b

] ≤ γ b – ( – γ )b

if and only if

–γ b ≤ ,

which is always true for all γ ∈ [, ].
Similarly, f (ηE(b),E(b)(γ )) ≤ γ f (E(b)) + ( – γ )f (E(b)), ∀γ ∈ [, ] also holds for b > 

and b < .
Thus, f is a GEC function on R, but it is not a GSEC function because if we take b = ,

b = – and γ = 
 , then

f
(
ηαb+E(b),αb+E(b)(γ )

)
= f

(


α –




)

=


α –
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>



f
(
E()

)
+




f
(
E(–)

)

=
–


, ∀α ∈ (, ].

() Every g-convex function f on a convex set B is a GSEC function when α =  and E is
the identity map.

Proposition . Assume that f : B → R is a GSEC function on a GSEC set B ⊆ N , then
f (αb + E(b)) ≤ f (E(b)), ∀b ∈ B and α ∈ [, ].

Proof Since f : B →R is a GSEC function on a GSEC set B ⊆ N , then ηαb+E(b),αb+E(b)(γ ) ∈
B, ∀b, b ∈ B, α ∈ [, ], and γ ∈ [, ]. Also,

f
(
ηαb+E(b),αb+E(b)(γ )

) ≤ γ f
(
E(b)

)
+ ( – γ )f

(
E(b)

)

thus, for γ = , we get ηαb+E(b),αb+E(b)(γ ) = αb + E(b). Then

f
(
αb + E(b)

) ≤ f
(
E(b)

)
. �

Theorem . Consider that B ⊆ N is a GSEC set and f : B → R is a GSEC function. If
f : I →R is a non-decreasing convex function such that rang(f) ⊂ I , then f ◦ f is a GSEC
function on B.

Proof Since f is a GSEC function, for all b, b ∈ B, α ∈ [, ], and γ ∈ [, ],

f
(
ηαb+E(b),αb+E(b)(γ )

) ≤ γ f
(
E(b)

)
+ ( – γ )f

(
E(b)

)
.

Since f is a non-decreasing convex function,

f ◦ f
(
ηαb+E(b),αb+E(b)(γ )

)

= f
(
f

(
ηαb+E(b),αb+E(b)(γ )

))

≤ f
(
γ f

(
E(b)

)
+ ( – γ )f

(
E(b)

))

≤ γ f
(
f
(
E(b)

))
+ ( – γ )f

(
f
(
E(b)

))

= γ (f ◦ f)
(
E(b)

)
+ ( – γ )(f ◦ f)

(
E(b)

)
,

which means that f ◦ f is a GSEC function on B. Similarly, if f is a strictly non-decreasing
convex function, then f ◦ f is a strictly GSEC function. �

Theorem . Assume that B ⊆ N is a GSEC set and fj : B → R, j = , , . . . , m are GSEC
functions. Then the function

f =
m∑
j=

njfj

is GSEC on B, ∀nj ∈R, nj ≥ .
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Proof Since fj, j = , , . . . , m are GSEC functions, ∀b, b ∈ B, α ∈ [, ], and γ ∈ [, ], we
have

fj
(
ηαb+E(b),αb+E(b)(γ )

) ≤ γ fj
(
E(b)

)
+ ( – γ )fj

(
E(b)

)
.

It follows that

njfj
(
ηαb+E(b),αb+E(b)(γ )

) ≤ γ njfj
(
E(b)

)
+ ( – γ )njfj

(
E(b)

)
.

Then

m∑
j=

njfj
(
ηαb+E(b),αb+E(b)(γ )

)

≤ γ

m∑
j=

njfj
(
E(b)

)
+ ( – γ )

m∑
j=

njfj
(
E(b)

)

= γ f
(
E(b)

)
+ ( – γ )f

(
E(b)

)
.

Thus, f is a GSEC function. �

Theorem . Let B ⊆ N be a GSEC set and {fj, j ∈ I} be a family of real-valued functions
defined on B such that supj∈I fj(b) exists in R, ∀b ∈ B. If fj : B →R, j ∈ I are GSEC functions
on B, then the function f : B → R, defined by f (b) = supj∈I fj(b), ∀b ∈ B is GSEC on B.

Proof Since fj, j ∈ I are GSEC functions on a GSEC set B, ∀b, b ∈ B, α ∈ [, ], and γ ∈
[, ], we have

fj
(
ηαb+E(b),αb+E(b)(γ )

) ≤ γ fj
(
E(b)

)
+ ( – γ )fj

(
E(b)

)
.

Then

sup
j∈I

fj
(
ηαb+E(b),αb+E(b)(γ )

)

≤ sup
j∈I

[
γ fj

(
E(b)

)
+ ( – γ )fj

(
E(b)

)]

= γ sup
j∈I

fj
(
E(b)

)
+ ( – γ ) sup

j∈I
fj
(
E(b)

)

= γ f
(
E(b)

)
+ ( – γ )f

(
E(b)

)
.

Hence,

f
(
ηαb+E(b),αb+E(b)(γ )

) ≤ γ f
(
E(b)

)
+ ( – γ )f

(
E(b)

)
,

which means that f is a GSEC function on B. �

Proposition . Assume that hj : N → R, j = , , . . . , m are GSEC functions on N , with
respect to E : N → N . If E(B) ⊆ B, then B = {b ∈ N : hj(b) ≤ , j = , , . . . , m} is a GSEC set.
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Proof Since hj, j = , , . . . m are GSEC functions,

hj
(
ηαb+E(b),αb+E(b)(γ )

) ≤ γ hj
(
E(b)

)
+ ( – γ )hj

(
E(b)

)

≤ ,

∀b, b ∈ B, α ∈ [, ], and γ ∈ [, ]. Since E(B) ⊆ B, ηαb+E(b),αb+E(b)(γ ) ∈ B. Hence, B is
a GSEC set. �

4 Epigraphs
Youness and Emam [] defined a strongly E × F-convex set where E : Rn → R

n and
F : R → R and studied some of its properties. In this section, we generalize a strongly
E × F-convex set to a geodesic strongly E × F-convex set on Riemannian manifolds and
discuss GSEC functions in terms of their epigraphs. Furthermore, some properties of GSE
sets are given.

Definition . Let B ⊂ N × R, E : N → N and F : R → R. A set B is called geodesic
strongly E × F-convex if (b,β), (b,β) ∈ B implies

(
ηαb+E(b),αb+E(b)(γ ),γ F(β) + ( – γ )F(β)

) ∈ B

for all α ∈ [, ] and γ ∈ [, ].

It is not difficult to prove that B ⊆ N is a GSEC set if and only if B × R is a geodesic
strongly E × F-convex set.

An epigraph of f is given by

epi(f ) =
{

(b, a) : b ∈ B, a ∈R, f (b) ≤ a
}

.

A characterization of a GSEC function in terms of its epi(f ) is given by the following the-
orem.

Theorem . Let E : N → N be a map, B ⊆ N be a GSEC set, f : B → R be a real-valued
function and F : R→ R be a map such that F(f (b) + a) = f (E(b)) + a, for each non-negative
real number a. Then f is a GSEC function on B if and only if epi(f ) is geodesic strongly
E × F-convex on B ×R.

Proof Assume that (b, a), (b, a) ∈ epi(f ). If B is a GSEC set, then ηαb+E(b),αb+E(b)(γ ) ∈
B, ∀α ∈ [, ] and γ ∈ [, ]. Since E(b) ∈ B for α = , γ = , also E(b) ∈ B for α = ,
γ = , let F(a) and F(a) be such that f (E(b)) ≤ F(a) and f (E(b)) ≤ F(a). Then
(E(b), F(a)), (E(b), F(a)) ∈ epi(f ).

Let f be GSEC on B, then

f
(
ηαb+E(b),αb+E(b)(γ )

) ≤ γ f
(
E(b)

)
+ ( – γ )f

(
E(b)

)

≤ γ F(a) + ( – γ )F(a).

Thus, (ηαb+E(b),αb+E(b)(γ ),γ F(a) + ( –γ )F(a)) ∈ epi(f ), then epi(f ) is geodesic strongly
E × F-convex on B ×R.
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Conversely, assume that epi(f ) is geodesic strongly E×F-convex on B×R. Let b, b ∈ B,
α ∈ [, ], and γ ∈ [, ], then (b, f (b)) ∈ epi(f ) and (b, f (b)) ∈ epi(f ). Now, since epi(f )
is geodesic strongly E × F-convex on B × R, we obtain (ηαb+E(b),αb+E(b)(γ ),γ F(f (b)) +
( – γ )F(f (b))) ∈ epi(f ), then

f
(
ηαb+E(b),αb+E(b)(γ )

) ≤ γ F
(
f (b)

)
+ ( – γ )F

(
f (b)

)

= γ f
(
E(b)

)
+ ( – γ )f

(
E(b)

)
.

This shows that f is a GSEC function on B. �

Theorem . Assume that {Bj, j ∈ I} is a family of geodesic strongly E × F-convex sets.
Then the intersection

⋂
j∈I Bj is a geodesic strongly E × F-convex set.

Proof Assume that (b, a), (b, a) ∈ ⋂
j∈I Bj, so ∀j ∈ I , (b, a), (b, a) ∈ Bj. Since Bj is the

geodesic strongly E × F-convex sets ∀j ∈ I , we have

(
ηαb+E(b),αb+E(b)(γ ),γ F(a) + ( – γ )F(a)

) ∈ Bj,

∀α ∈ [, ] and γ ∈ [, ]. Therefore,

(
ηαb+E(b),αb+E(b)(γ ),γ F(a) + ( – γ )F(a)

) ∈
⋂
j∈I

Bj,

∀α ∈ [, ] and γ ∈ [, ]. Then
⋂

j∈I Bj is a geodesic strongly E × F-convex set. �

Theorem . Assume that E : N → N and F : R →R are two maps such that F(f (b)+a) =
f (E(b)) + a for each non-negative real number a. Suppose that {fj, j ∈ I} is a family of real-
valued functions defined on a GSEC set B ⊆ N which are bounded from above. If epi(fj) are
geodesic strongly E × F-convex sets, then the function f which is given by f (b) = supj∈I fj(b),
∀b ∈ B, is a GSEC function on B.

Proof If each fj, j ∈ I is a GSEC function on a GSEC geodesic set B, then

epi(fj) =
{

(b, a) : b ∈ B, a ∈R, fj(b) ≤ a
}

are geodesic strongly E × F-convex on B ×R. Therefore,

⋂
j∈I

epi(fj) =
{

(b, a) : b ∈ B, a ∈R, fj(b) ≤ a, j ∈ I
}

=
{

(b, a) : b ∈ B, a ∈R, f (b) ≤ a
}

is geodesic strongly E × F-convex set. Then, according to Theorem . we see that f is a
GSEC function on B. �
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