RESEARCH

On geodesic strongly *E*-convex sets and geodesic strongly *E*-convex functions

Adem Kılıçman^{*} and Wedad Saleh

*Correspondence: akilic@upm.edu.my Department of Mathematics, University Putra Malaysia, Serdang, Malaysia

Abstract

In this article, geodesic *E*-convex sets and geodesic *E*-convex functions on a Riemannian manifold are extended to the so-called geodesic strongly *E*-convex sets and geodesic strongly *E*-convex functions. Some properties of geodesic strongly *E*-convex sets are also discussed. The results obtained in this article may inspire future research in convex analysis and related optimization fields.

MSC: 52A20; 52A41; 53C20; 53C22

Keywords: geodesic *E*-convex sets; geodesic *E*-convex functions; Riemannian manifolds

1 Introduction

Convexity and its generalizations play an important role in optimization theory, convex analysis, Minkowski space, and fractal mathematics [1–7]. In order to extend the validity of their results to large classes of optimization, these concepts have been generalized and extended in several directions using novel and innovative techniques. Youness [8] defined *E*-convex sets and *E*-convex functions, which have some important applications in various branches of mathematical sciences [9–11]. However, some results given by Youness [8] seem to be incorrect according to Yang [12]. Chen [13] extended *E*-convexity to a semi-*E*-convexity and discussed some of there properties. Also, Youness and Emam [14] discussed a new class functions which is called strongly *E*-convex functions by taking the images of two points x_1 and x_2 under an operator $E: \mathbb{R}^n \to \mathbb{R}^n$ besides the two points themselves. Strong *E*-convexity was extended to a semi-strong *E*-convexity as well as quasi- and pseudo-semi-strong *E*-convexity in [15]. The authors investigated the characterization of efficient solutions for multi-objective programming problems involving semi-strong *E*-convexity [16].

A generalization of convexity on Riemannian manifolds was proposed by Rapcsak [17] and Udriste [18]. Moreover, Iqbal *et al.* [19] introduced geodesic *E*-convex sets and geodesic *E*-convex functions on Riemannian manifolds.

Motivated by earlier research works [18, 20-25] and by the importance of the concepts of convexity and generalized convexity, we discuss a new class of sets on Riemannian manifolds and a new class of functions defined on them, which are called geodesic strongly *E*-convex sets and geodesic strongly *E*-convex functions, and some of their properties are presented.

© 2015 Kiliçman and Saleh. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

2 Preliminaries

In this section, we introduce some definitions and well-known results of Riemannian manifolds, which help us throughout the article. We refer to [18] for the standard material on differential geometry.

Let *N* be a C^{∞} *m*-dimensional Riemannian manifold, and T_zN be the tangent space to *N* at *z*. Also, assume that $\mu_z(x_1, x_2)$ is a positive inner product on the tangent space $T_zN(x_1, x_2 \in T_zN)$, which is given for each point of *N*. Then a C^{∞} map $\mu: z \to \mu_z$, which assigns a positive inner product μ_z to T_zN for each point *z* of *N* is called a Riemannian metric.

The length of a piecewise C^1 curve $\eta : [a_1, a_2] \to N$ which is defined as follows:

$$L(\eta) = \int_{a_1}^{a_2} \left\| \hat{\eta}(x) \right\| dx.$$

We define $d(z_1, z_2) = \inf\{L(\eta): \eta \text{ is a piecewise } C^1 \text{ curve joining } z_1 \text{ to } z_2\}$ for any points $z_1, z_2 \in N$. Then *d* is a distance which induces the original topology on *N*. As we know on every Riemannian manifold there is a unique determined Riemannian connection, called a Levi-Civita connection, denoted by $\nabla_X Y$, for any vector fields $X, Y \in N$. Also, a smooth path η is a geodesic if and only if its tangent vector is a parallel vector field along the path η , *i.e.*, η satisfies the equation $\nabla_{\dot{\eta}(t)}\dot{\eta}(t) = 0$. Any path η joining z_1 and z_2 in *N* such that $L(\eta) = d(z_1, z_2)$ is a geodesic and is called a minimal geodesic.

Finally, assume that (N, η) is a complete *m*-dimensional Riemannian manifold with Riemannian connection \bigtriangledown . Let $x_1, x_2 \in N$ and $\eta: [0,1] \to N$ be a geodesic joining the points x_1 and x_2 , which means that $\eta_{x_1,x_2}(0) = x_2$ and $\eta_{x_1,x_2}(1) = x_1$.

Definition 2.1 [18] A set *B* in a Riemannian manifold *N* is called totally convex if *B* contains every geodesic η_{x_1,x_2} of *N* whose endpoints x_1 and x_2 belong to *B*.

Note the whole of the manifold N is totally convex, and conventionally, so is the empty set. The minimal circle in a hyperboloid is totally convex, but a single point is not. Also, any proper subset of a sphere is not necessarily totally convex.

The following theorem was proved in [18].

Theorem 2.2 [18] *The intersection of any number of a totally convex sets is totally convex.*

Remark 2.3 In general, the union of a totally convex set is not necessarily totally convex.

Definition 2.4 [18] A function $f: B \to \mathbb{R}$ is called a geodesic convex function on a totally convex set $B \subset N$ if for every geodesic η_{x_1,x_2} , then

$$f(\eta_{x_1,x_2}(\gamma)) \le \gamma f(x_1) + (1-\gamma)f(x_2)$$

holds for all $x_1, x_2 \in B$ and $\gamma \in [0, 1]$.

In 2005, strongly *E*-convex sets and strongly *E*-convex functions were introduced by Youness and Emam [14] as follows.

Definition 2.5 [14]

(1) A subset $B \subseteq \mathbb{R}^n$ is called a strongly *E*-convex set if there is a map $E \colon \mathbb{R}^n \to \mathbb{R}^n$ such that

$$\gamma(\alpha b_1 + E(b_1)) + (1 - \gamma)(\alpha b_2 + E(b_2)) \in B$$

for each $b_1, b_2 \in B$, $\alpha \in [0, 1]$ and $\gamma \in [0, 1]$.

(2) A function $f: B \subseteq \mathbb{R}^n \to \mathbb{R}$ is called a strongly *E*-convex function on *N* if there is a map $E: \mathbb{R}^n \to \mathbb{R}^n$ such that *B* is a strongly *E*-convex set and

$$f\left(\gamma\left(\alpha b_1 + E(b_1)\right) + (1 - \gamma)\left(\alpha b_2 + E(b_2)\right)\right) \le \gamma f\left(E(b_1)\right) + (1 - \gamma)f\left(E(b_2)\right)$$

for each $b_1, b_2 \in B$, $\alpha \in [0, 1]$ and $\gamma \in [0, 1]$.

In 2012, the geodesic *E*-convex set and geodesic *E*-convex functions on a Riemannian manifold were introduced by Iqbal *et al.* [19] as follows.

Definition 2.6 [19]

- (1) Assume that $E: N \to N$ is a map. A subset *B* in a Riemannian manifold *N* is called geodesic *E*-convex iff there exists a unique geodesic $\eta_{E(b_1),E(b_2)}(\gamma)$ of length $d(b_1,b_2)$, which belongs to *B*, for each $b_1, b_2 \in B$ and $\gamma \in [0,1]$.
- (2) A function $f: B \subseteq N \to \mathbb{R}$ is called geodesic *E*-convex on a geodesic *E*-convex set *B* if

$$f(\eta_{E(b_1),E(b_2)}(\gamma)) \leq \gamma f(E(b_1)) + (1-\gamma)f(E(b_2))$$

for all $b_1, b_2 \in B$ and $\gamma \in [0, 1]$.

3 Geodesic strongly E-convex sets and geodesic strongly E-convex functions

In this section, we introduce a geodesic strongly *E*-convex (GSEC) set and a geodesic strongly *E*-convex (GSEC) function in a Riemannian manifold *N* and discuss some of their properties.

Definition 3.1 Assume that $E: N \to N$ is a map. A subset *B* in a Riemannian manifold *N* is called GSEC if and only if there is a unique geodesic $\eta_{\alpha b_1+E(b_1),\alpha b_2+E(b_2)}(\gamma)$ of length $d(b_1, b_2)$, which belongs to $B, \forall b_1, b_2 \in B, \alpha \in [0, 1]$, and $\gamma \in [0, 1]$.

Remark 3.2

- (1) Every GSEC set is a GEC set when $\alpha = 0$.
- (2) A GEC set is not necessarily a GSEC set. The following example shows this statement.

Example 3.3 Let N^2 be a 2-dimensional simply complete Riemannian manifold of nonpositive sectional curvature, and $B \subset N^2$ be an open star-shaped. Let $E: N^2 \to N^2$ be a map such that $E(z) = \{y: y \in ker(B), \forall z \in B\}$. Then *B* is GEC; on the other hand it is not GSEC.

Proposition 3.4 *Every convex set* $B \subset N$ *is a GSEC set.*

Proof Let us take a map $E: N \to N$ such as E = I where I is the identity map and $\alpha = 0$, then we have the required result.

Note if we take the mapping $E(x) = (1 - \alpha)x$, $x \in B$, then the definition of a GSE reduces to the definition of a *t*-convex set.

Theorem 3.5 If $B \subset N$ is a GSEC set, then $E(B) \subseteq B$.

Proof Since *B* is a GSEC set, we have for each $b_1, b_2 \in B$, $\alpha \in [0, 1]$, and $\gamma \in [0, 1]$,

 $\eta_{\alpha b_1+E(b_1),\alpha b_2+E(b_2)}(\gamma)\in B.$

For $\gamma = 0$ and $\alpha = 0$, we have $\eta_{E(b_1), E(b_2)}(0) = E(b_2) \in B$, then $E(B) \subseteq B$.

Theorem 3.6 If $\{B_j, j \in I\}$ is an arbitrary family of GSEC subsets of N with respect to the mapping $E: N \to N$, then the intersection $\bigcap_{i \in I} B_j$ is a GSEC subset of N.

Proof If $\bigcap_{j \in I} B_j$ is an empty set, then it is obviously a GSEC subset of *N*. Assume that $b_1, b_2 \in \bigcap_{j \in I} B_j$, then $b_1, b_2 \in B_j$, $\forall j \in I$. By the GSEC of B_j , we get $\eta_{\alpha b_1 + E(b_1), \alpha b_2 + E(b_2)}(\gamma) \in B_j$, $\forall j \in I, \alpha \in [0,1]$, and $\gamma \in [0,1]$. Hence, $\eta_{\alpha b_1 + E(b_1), \alpha b_2 + E(b_2)}(\gamma) \in \bigcap_{j \in I} B_j$, $\forall \alpha \in [0,1]$ and $\gamma \in [0,1]$.

Remark 3.7 The above theorem is not generally true for the union of GSEC subsets of *N*.

Now, we extend the definition of a GEC function on a Riemannian manifold to a GSEC function on a Riemannian manifold.

Definition 3.8 A real-valued function $f : B \subset N \to \mathbb{R}$ is said to be a GSEC function on a GSEC set *B*, if

 $f\left(\eta_{\alpha b_1+E(b_1),\alpha b_2+E(b_2)}(\gamma)\right) \leq \gamma f\left(E(b_1)\right) + (1-\gamma)f\left(E(b_2)\right),$

 $\forall b_1, b_2 \in B, \alpha \in [0, 1]$, and $\gamma \in [0, 1]$. If the above inequality is strict for all $b_1, b_2 \in B, \alpha b_1 + E(b_1) \neq \alpha b_2 + E(b_2), \alpha \in [0, 1]$, and $\gamma \in (0, 1)$, then *f* is called a strictly GSEC function.

Remark 3.9

(1) Every GSEC function is a GEC function when $\alpha = 0$. The following example shows that a GEC function is not necessarily a GSEC function.

Example 3.10 Consider the function $f : \mathbb{R} \to \mathbb{R}$ where f(b) = -|b| and suppose that $E : \mathbb{R} \to \mathbb{R}$ is given as E(b) = -b. We consider the geodesic η such that

$$\begin{split} \eta_{\alpha b_1 + E(b_1), \alpha b_2 + E(b_2)}(\gamma) &= \begin{cases} -[\alpha b_2 + E(b_2) + \gamma(\alpha b_1 + E(b_1) - \alpha b_2 - E(b_2))]; & b_1 b_2 \ge 0, \\ -[\alpha b_2 + E(b_2) + \gamma(\alpha b_2 + E(b_2) - \alpha b_1 - E(b_1))]; & b_1 b_2 < 0 \end{cases} \\ &= \begin{cases} -[(\alpha - 1)b_2 + \gamma((\alpha - 1)b_1 + (1 - \alpha)b_2)]; & b_1 b_2 \ge 0, \\ -[(\alpha - 1)b_2 + \gamma((\alpha - 1)b_2 + (1 - \alpha)b_1)]; & b_1 b_2 < 0. \end{cases} \end{split}$$

If $\alpha = 0$, then

$$\eta_{E(b_1),E(b_2)}(\gamma) = \begin{cases} [b_2 + \gamma(b_1 - b_2)]; & b_1b_2 \ge 0, \\ [b_2 + \gamma(b_2 - b_1)]; & b_1b_2 < 0. \end{cases}$$

If b_1 , $b_2 \ge 0$, then

$$f(\eta_{E(b_1),E(b_2)}(\gamma)) = f(b_2 + \gamma(b_1 - b_2))$$
$$= -[(1 - \gamma)b_2 + \gamma b_1].$$

On the other hand

$$\gamma f\bigl(E(b_1)\bigr) + (1-\gamma)f\bigl(E(b_2)\bigr) = \gamma f(-b_1) + (1-\gamma)f(-b_2) = -\bigl[(1-\gamma)b_2 + \gamma b_1\bigr].$$

Hence, $f(\eta_{E(b_1),E(b_2)}(\gamma)) \leq \gamma f(E(b_1)) + (1 - \gamma)f(E(b_2)), \forall \gamma \in [0,1].$

Similarly, the above inequality holds true when $b_1, b_2 < 0$. Now, let $b_1 < 0, b_2 > 0$, then

$$f(\eta_{E(b_1),E(b_2)}(\gamma)) = f(b_2 + \gamma(b_2 - b_1))$$

= -[(1 + \gamma)b_2 - \gamma b_1].

On the other hand

$$\gamma f(E(b_1)) + (1-\gamma)f(E(b_2)) = \gamma f(-b_1) + (1-\gamma)f(-b_2) = \gamma b_1 - (1-\gamma)b_2.$$

It follows that

$$f(\eta_{E(b_1),E(b_2)}(\gamma)) \leq \gamma f(E(b_1)) + (1-\gamma)f(E(b_2))$$

if and only if

$$-\left[(1+\gamma)b_2-\gamma b_1\right] \leq \gamma b_1 - (1-\gamma)b_2$$

if and only if

 $-2\gamma b_2 \leq 0$,

which is always true for all $\gamma \in [0, 1]$.

Similarly, $f(\eta_{E(b_1),E(b_2)}(\gamma)) \leq \gamma f(E(b_1)) + (1 - \gamma)f(E(b_2)), \forall \gamma \in [0,1]$ also holds for $b_1 > 0$ and $b_2 < 0$.

Thus, *f* is a GEC function on \mathbb{R} , but it is not a GSEC function because if we take $b_1 = 0$, $b_2 = -1$ and $\gamma = \frac{1}{2}$, then

$$f(\eta_{\alpha b_1 + E(b_1), \alpha b_2 + E(b_2)}(\gamma)) = f\left(\frac{1}{2}\alpha - \frac{1}{2}\right)$$
$$= \frac{1}{2}\alpha - \frac{1}{2}$$

$$> \frac{1}{2}f(E(0)) + \frac{1}{2}f(E(-1))$$
$$= \frac{-1}{2}, \quad \forall \alpha \in (0,1].$$

(2) Every *g*-convex function *f* on a convex set *B* is a GSEC function when $\alpha = 0$ and *E* is the identity map.

Proposition 3.11 Assume that $f: B \to \mathbb{R}$ is a GSEC function on a GSEC set $B \subseteq N$, then $f(\alpha b + E(b)) \leq f(E(b)), \forall b \in B \text{ and } \alpha \in [0,1].$

Proof Since $f : B \to \mathbb{R}$ is a GSEC function on a GSEC set $B \subseteq N$, then $\eta_{\alpha b_1 + E(b_1), \alpha b_2 + E(b_2)}(\gamma) \in B$, $\forall b_1, b_2 \in B$, $\alpha \in [0, 1]$, and $\gamma \in [0, 1]$. Also,

$$f(\eta_{\alpha b_1+E(b_1),\alpha b_2+E(b_2)}(\gamma)) \leq \gamma f(E(b_1)) + (1-\gamma)f(E(b_2))$$

thus, for $\gamma = 1$, we get $\eta_{\alpha b_1 + E(b_1), \alpha b_2 + E(b_2)}(\gamma) = \alpha b_1 + E(b_1)$. Then

$$f(\alpha b_1 + E(b_1)) \leq f(E(b_1)). \qquad \Box$$

Theorem 3.12 Consider that $B \subseteq N$ is a GSEC set and $f_1: B \to \mathbb{R}$ is a GSEC function. If $f_2: I \to \mathbb{R}$ is a non-decreasing convex function such that $\operatorname{rang}(f_1) \subset I$, then $f_2 \circ f_1$ is a GSEC function on B.

Proof Since f_1 is a GSEC function, for all $b_1, b_2 \in B$, $\alpha \in [0, 1]$, and $\gamma \in [0, 1]$,

$$f_1(\eta_{\alpha b_1 + E(b_1), \alpha b_2 + E(b_2)}(\gamma)) \le \gamma f_1(E(b_1)) + (1 - \gamma)f_1(E(b_2)).$$

Since f_2 is a non-decreasing convex function,

$$\begin{split} f_{2} \circ f_{2} \left(\eta_{\alpha b_{1}+E(b_{1}),\alpha b_{2}+E(b_{2})}(\gamma) \right) \\ &= f_{2} \left(f_{2} \left(\eta_{\alpha b_{1}+E(b_{1}),\alpha b_{2}+E(b_{2})}(\gamma) \right) \right) \\ &\leq f_{2} \left(\gamma f_{1} \left(E(b_{1}) \right) + (1-\gamma) f_{1} \left(E(b_{2}) \right) \right) \\ &\leq \gamma f_{2} \left(f_{1} \left(E(b_{1}) \right) \right) + (1-\gamma) f_{2} \left(f_{1} \left(E(b_{2}) \right) \right) \\ &= \gamma \left(f_{2} \circ f_{1} \right) \left(E(b_{1}) \right) + (1-\gamma) \left(f_{2} \circ f_{1} \right) \left(E(b_{2}) \right), \end{split}$$

which means that $f_2 \circ f_1$ is a GSEC function on *B*. Similarly, if f_2 is a strictly non-decreasing convex function, then $f_2 \circ f_1$ is a strictly GSEC function.

Theorem 3.13 Assume that $B \subseteq N$ is a GSEC set and $f_j: B \to \mathbb{R}$, j = 1, 2, ..., m are GSEC functions. Then the function

$$f = \sum_{j=1}^{m} n_j f_j$$

is GSEC on B, $\forall n_i \in \mathbb{R}$, $n_i \ge 0$.

Proof Since f_j , j = 1, 2, ..., m are GSEC functions, $\forall b_1, b_2 \in B$, $\alpha \in [0, 1]$, and $\gamma \in [0, 1]$, we have

$$f_j\big(\eta_{\alpha b_1+E(b_1),\alpha b_2+E(b_2)}(\gamma)\big) \leq \gamma f_j\big(E(b_1)\big) + (1-\gamma)f_j\big(E(b_2)\big).$$

It follows that

$$n_{i}f_{j}(\eta_{\alpha b_{1}+E(b_{1}),\alpha b_{2}+E(b_{2})}(\gamma)) \leq \gamma n_{i}f_{j}(E(b_{1})) + (1-\gamma)n_{i}f_{j}(E(b_{2})).$$

Then

$$\sum_{j=1}^{m} n_j f_j (\eta_{\alpha b_1 + E(b_1), \alpha b_2 + E(b_2)}(\gamma))$$

$$\leq \gamma \sum_{j=1}^{m} n_j f_j (E(b_1)) + (1 - \gamma) \sum_{j=1}^{m} n_j f_j (E(b_2))$$

$$= \gamma f (E(b_1)) + (1 - \gamma) f (E(b_2)).$$

Thus, *f* is a GSEC function.

Theorem 3.14 Let $B \subseteq N$ be a GSEC set and $\{f_j, j \in I\}$ be a family of real-valued functions defined on B such that $\sup_{j \in I} f_j(b)$ exists in \mathbb{R} , $\forall b \in B$. If $f_j : B \to \mathbb{R}$, $j \in I$ are GSEC functions on B, then the function $f : B \to \mathbb{R}$, defined by $f(b) = \sup_{i \in I} f_j(b)$, $\forall b \in B$ is GSEC on B.

Proof Since f_j , $j \in I$ are GSEC functions on a GSEC set B, $\forall b_1, b_2 \in B$, $\alpha \in [0,1]$, and $\gamma \in [0,1]$, we have

$$f_j\big(\eta_{\alpha b_1+E(b_1),\alpha b_2+E(b_2)}(\gamma)\big) \leq \gamma f_j\big(E(b_1)\big) + (1-\gamma)f_j\big(E(b_2)\big).$$

Then

$$\begin{split} \sup_{j \in I} & f_j \big(\eta_{\alpha b_1 + E(b_1), \alpha b_2 + E(b_2)}(\gamma) \big) \\ & \leq \sup_{j \in I} \big[\gamma f_j \big(E(b_1) \big) + (1 - \gamma) f_j \big(E(b_2) \big) \big] \\ & = \gamma \sup_{j \in I} f_j \big(E(b_1) \big) + (1 - \gamma) \sup_{j \in I} f_j \big(E(b_2) \big) \\ & = \gamma f \big(E(b_1) \big) + (1 - \gamma) f \big(E(b_2) \big). \end{split}$$

Hence,

$$f\left(\eta_{\alpha b_1+E(b_1),\alpha b_2+E(b_2)}(\gamma)\right) \leq \gamma f\left(E(b_1)\right) + (1-\gamma)f\left(E(b_2)\right),$$

which means that *f* is a GSEC function on *B*.

Proposition 3.15 Assume that $h_j: N \to \mathbb{R}$, j = 1, 2, ..., m are GSEC functions on N, with respect to $E: N \to N$. If $E(B) \subseteq B$, then $B = \{b \in N: h_j(b) \le 0, j = 1, 2, ..., m\}$ is a GSEC set.

Proof Since h_j , j = 1, 2, ..., m are GSEC functions,

$$\begin{split} h_j\big(\eta_{\alpha b_1+E(b_1),\alpha b_2+E(b_2)}(\gamma)\big) &\leq \gamma h_j\big(E(b_1)\big) + (1-\gamma)h_j\big(E(b_2)\big) \\ &\leq 0, \end{split}$$

 $\forall b_1, b_2 \in B, \alpha \in [0,1]$, and $\gamma \in [0,1]$. Since $E(B) \subseteq B$, $\eta_{\alpha b_1 + E(b_1), \alpha b_2 + E(b_2)}(\gamma) \in B$. Hence, *B* is a GSEC set.

4 Epigraphs

Youness and Emam [14] defined a strongly $E \times F$ -convex set where $E: \mathbb{R}^n \to \mathbb{R}^n$ and $F: \mathbb{R} \to \mathbb{R}$ and studied some of its properties. In this section, we generalize a strongly $E \times F$ -convex set to a geodesic strongly $E \times F$ -convex set on Riemannian manifolds and discuss GSEC functions in terms of their epigraphs. Furthermore, some properties of GSE sets are given.

Definition 4.1 Let $B \subset N \times \mathbb{R}$, $E: N \to N$ and $F: \mathbb{R} \to \mathbb{R}$. A set *B* is called geodesic strongly $E \times F$ -convex if $(b_1, \beta_1), (b_2, \beta_2) \in B$ implies

 $\left(\eta_{\alpha b_1+E(b_1),\alpha b_2+E(b_2)}(\gamma), \gamma F(\beta_1)+(1-\gamma)F(\beta_2)\right) \in B$

for all $\alpha \in [0,1]$ and $\gamma \in [0,1]$.

It is not difficult to prove that $B \subseteq N$ is a GSEC set if and only if $B \times \mathbb{R}$ is a geodesic strongly $E \times F$ -convex set.

An epigraph of f is given by

 $\operatorname{epi}(f) = \{(b, a) \colon b \in B, a \in \mathbb{R}, f(b) \le a\}.$

A characterization of a GSEC function in terms of its epi(f) is given by the following theorem.

Theorem 4.2 Let $E: N \to N$ be a map, $B \subseteq N$ be a GSEC set, $f: B \to \mathbb{R}$ be a real-valued function and $F: \mathbb{R} \to \mathbb{R}$ be a map such that F(f(b) + a) = f(E(b)) + a, for each non-negative real number a. Then f is a GSEC function on B if and only if epi(f) is geodesic strongly $E \times F$ -convex on $B \times \mathbb{R}$.

Proof Assume that $(b_1, a_1), (b_2, a_2) \in \operatorname{epi}(f)$. If *B* is a GSEC set, then $\eta_{\alpha b_1 + E(b_1), \alpha b_2 + E(b_2)}(\gamma) \in B$, $\forall \alpha \in [0,1]$ and $\gamma \in [0,1]$. Since $E(b_1) \in B$ for $\alpha = 0$, $\gamma = 1$, also $E(b_2) \in B$ for $\alpha = 0$, $\gamma = 0$, let $F(a_1)$ and $F(a_2)$ be such that $f(E(b_1)) \leq F(a_1)$ and $f(E(b_2)) \leq F(a_2)$. Then $(E(b_1), F(a_1)), (E(b_2), F(a_2)) \in \operatorname{epi}(f)$.

Let f be GSEC on B, then

$$f(\eta_{\alpha b_1+E(b_1),\alpha b_2+E(b_2)}(\gamma)) \leq \gamma f(E(b_1)) + (1-\gamma)f(E(b_2))$$
$$\leq \gamma F(a_1) + (1-\gamma)F(a_2).$$

Thus, $(\eta_{\alpha b_1 + E(b_1), \alpha b_2 + E(b_2)}(\gamma), \gamma F(a_1) + (1 - \gamma)F(a_2)) \in epi(f)$, then epi(f) is geodesic strongly $E \times F$ -convex on $B \times \mathbb{R}$.

Conversely, assume that epi(*f*) is geodesic strongly $E \times F$ -convex on $B \times \mathbb{R}$. Let $b_1, b_2 \in B$, $\alpha \in [0,1]$, and $\gamma \in [0,1]$, then $(b_1, f(b_1)) \in \text{epi}(f)$ and $(b_2, f(b_2)) \in \text{epi}(f)$. Now, since epi(*f*) is geodesic strongly $E \times F$ -convex on $B \times \mathbb{R}$, we obtain $(\eta_{\alpha b_1 + E(b_1), \alpha b_2 + E(b_2)}(\gamma), \gamma F(f(b_1)) + (1 - \gamma)F(f(b_2))) \in \text{epi}(f)$, then

$$f(\eta_{\alpha b_{1}+E(b_{1}),\alpha b_{2}+E(b_{2})}(\gamma)) \leq \gamma F(f(b_{1})) + (1-\gamma)F(f(b_{2}))$$

= $\gamma f(E(b_{1})) + (1-\gamma)f(E(b_{2})).$

This shows that *f* is a GSEC function on *B*.

Theorem 4.3 Assume that $\{B_j, j \in I\}$ is a family of geodesic strongly $E \times F$ -convex sets. Then the intersection $\bigcap_{i \in I} B_i$ is a geodesic strongly $E \times F$ -convex set.

Proof Assume that $(b_1, a_1), (b_2, a_2) \in \bigcap_{j \in I} B_j$, so $\forall j \in I, (b_1, a_1), (b_2, a_2) \in B_j$. Since B_j is the geodesic strongly $E \times F$ -convex sets $\forall j \in I$, we have

$$\left(\eta_{\alpha b_1+E(b_1),\alpha b_2+E(b_2)}(\gamma),\gamma F(a_1)+(1-\gamma)F(a_2)\right)\in B_j,$$

 $\forall \alpha \in [0,1] \text{ and } \gamma \in [0,1].$ Therefore,

$$\left(\eta_{\alpha b_1+E(b_1),\alpha b_2+E(b_2)}(\gamma),\gamma F(a_1)+(1-\gamma)F(a_2)\right)\in\bigcap_{j\in I}B_j,$$

 $\forall \alpha \in [0,1] \text{ and } \gamma \in [0,1].$ Then $\bigcap_{i \in I} B_i$ is a geodesic strongly $E \times F$ -convex set.

Theorem 4.4 Assume that $E: N \to N$ and $F: \mathbb{R} \to \mathbb{R}$ are two maps such that F(f(b) + a) = f(E(b)) + a for each non-negative real number a. Suppose that $\{f_j, j \in I\}$ is a family of realvalued functions defined on a GSEC set $B \subseteq N$ which are bounded from above. If $epi(f_j)$ are geodesic strongly $E \times F$ -convex sets, then the function f which is given by $f(b) = \sup_{j \in I} f_j(b)$, $\forall b \in B$, is a GSEC function on B.

Proof If each f_j , $j \in I$ is a GSEC function on a GSEC geodesic set B, then

$$\operatorname{epi}(f_j) = \left\{ (b, a) \colon b \in B, a \in \mathbb{R}, f_j(b) \le a \right\}$$

are geodesic strongly $E \times F$ -convex on $B \times \mathbb{R}$. Therefore,

$$\bigcap_{j \in I} \operatorname{epi}(f_j) = \{(b,a) \colon b \in B, a \in \mathbb{R}, f_j(b) \le a, j \in I\}$$
$$= \{(b,a) \colon b \in B, a \in \mathbb{R}, f(b) \le a\}$$

is geodesic strongly $E \times F$ -convex set. Then, according to Theorem 4.2 we see that f is a GSEC function on B.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors jointly worked on deriving the results and approved the final manuscript.

Acknowledgements

The authors would like to thank the referees for valuable suggestions and comments, which helped the authors to improve this article substantially.

Received: 1 May 2015 Accepted: 15 September 2015 Published online: 25 September 2015

References

- 1. Kılıçman, A, Saleh, W: A note on starshaped sets in 2-dimensional manifolds without conjugate points. J. Funct. Spaces 2014, Article ID 675735 (2014)
- 2. Boltyanski, V, Martini, H, Soltan, PS: Excursions into Combinatorial Geometry. Springer, Berlin (1997)
- Danzer, L, Grünbaum, B, Klee, V: Helly's theorem and its relatives. In: Klee, V (ed.) Convexity. Proc. Sympos. Pure Math., vol. 7, pp. 101-180 (1963)
- Jiménez, MA, Garzón, GR, Lizana, AR: Optimality Conditions in Vector Optimization. Bentham Science Publishers, Shariah (2010)
- Martini, H, Swanepoel, KJ: Generalized convexity notions and combinatorial geometry. Congr. Numer. 164, 65-93 (2003)
- 6. Martini, H, Swanepoel, KJ: The geometry of Minkowski spaces a survey. Part II. Expo. Math. 22, 14-93 (2004)
- 7. Saleh, W, Kılıçman, A: On generalized s-convex functions on fractal sets. JP J. Geom. Topol. 17(1), 63-82 (2015)
- 8. Youness, EA: *E*-Convex sets, *E*-convex functions and *E*-convex programming. J. Optim. Theory Appl. **102**, 439-450 (1999)
- 9. Abou-Tair, I, Sulaiman, WT: Inequalities via convex functions. Int. J. Math. Math. Sci. 22(3), 543-546 (1999)
- 10. Noor, MA: Fuzzy preinvex functions. Fuzzy Sets Syst. 64, 95-104 (1994)
- 11. Noor, MA, Noor, KI, Awan, MU: Generalized convexity and integral inequalities. Appl. Math. Inf. Sci. 24(8), 1384-1388 (2015)
- 12. Yang, X: On E-convex sets, E-convex functions, and E-convex programming. J. Optim. Theory Appl. 109(3), 699-704 (2001)
- 13. Chen, X: Some properties of semi-E-convex functions. J. Math. Anal. Appl. 275(1), 251-262 (2002)
- 14. Youness, EA, Emam, T: Strongly *E*-convex sets and strongly *E*-convex functions. J. Interdiscip. Math. 8(1), 107-117 (2005)
- 15. Youness, EA, Emam, T: Semi-strongly E-convex functions. J. Math. Stat. 1(1), 51-57 (2005)
- Youness, EA, Emam, T: Characterization of efficient solutions for multi-objective optimization problems involving semi-strong and generalized semi-strong *E*-convexity. Acta Math. Sci., Ser. B Engl. Ed. 28(1), 7-16 (2008)
- Rapcsak, T: Smooth Nonlinear Optimization in Rⁿ. Kluwer Academic, Dordrecht (1997)
 Udrist, C: Convex Functions and Optimization Methods on Riemannian Manifolds. Kluwer Academic, Dordrecht
- (1994)
- Iqbal, A, Ali, S, Ahmad, I: On geodesic E-convex sets, geodesic E-convex functions and E-epigraphs. J. Optim. Theory Appl. 55(1), 239-251 (2012)
- Fulga, C, Preda, V: Nonlinear programming with E-preinvex and local E-preinvex function. Eur. J. Oper. Res. 192, 737-743 (2009)
- Iqbal, A, Ahmad, I, Ali, S: Strong geodesic α-preinvexity and invariant α-monotonicity on Riemannian manifolds. Numer. Funct. Anal. Optim. 31, 1342-1361 (2010)
- Megahed, AEMA, Gomma, HG, Youness, EA, El-Banna, AZH: Optimality conditions of *E*-convex programming for an *E*-differentiable function. J. Inequal. Appl. 2013(1), 246 (2013)
- Mirzapour, F, Mirzapour, A, Meghdadi, M: Generalization of some important theorems to E-midconvex functions. Appl. Math. Lett. 24(8), 1384-1388 (2011)
- 24. Syau, YR, Lee, ES: Some properties of E-convex functions. Appl. Math. Lett. 18, 1074-1080 (2005)
- 25. Yang, XM: On E-convex programming. J. Optim. Theory Appl. 109, 699-704 (2001)

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com