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Abstract
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1 Introduction
The following theorem was proved in [] () by Hardy and Littlewood (see also [],
Theorem ..).

Theorem A Suppose that a function x(t) is defined for t >  and its second derivative x′′(t)
exists for t > . Let f (t) and g(t) be positive functions (both decreasing or both increasing).
Then (as t → +∞) the following statements hold:

. If x(t) = O(f (t)), x′′(t) = O(g(t)), then

x′(t) = O
(√

f (t)g(t)
)
.

. If x(t) = o(f (t)), x′′(t) = O(g(t)), then

x′(t) = o
(√

f (t)g(t)
)
.

. If x(t) = O(f (t)), x′′(t) = o(g(t)), then

x′(t) = o
(√

f (t)g(t)
)
.

This theorem had a great impact on formation of the whole field of problems connected
with inequalities between derivatives. To confirm this, it is sufficient to note that funda-
mental possibility of inequalities for upper bounds of derivatives of functions defined on
the whole real line or half-line can be easily derived from this theorem (see [], p.).

In  Mordell [] (see also [], Theorem ..) proved the following refinement of
Theorem A for non-increasing functions.
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Theorem B Let f (t) and g(t) be positive non-increasing on the half-line R+ functions. If a
function x(t) is defined on the half-line R+ and for all t >  there exists x′′(t) such that

∣∣x(t)
∣∣ ≤ f (t),

∣∣x′′(t)
∣∣ ≤ g(t),

then for all t > 

∣
∣x′(t)

∣
∣ ≤ 

√
f (t)g(t).

Let I be a finite interval, the whole real line R, or a positive half-line R+. Denote by Cm(I)
(m ∈ Z+) the set of all m-times continuously differentiable (continuous in the case m = )
functions x : I → R; by L∞(I) we denote the space of all measurable functions x : I → R

with finite norms

‖x‖∞ := ess sup
{∣∣x(t)

∣∣ : t ∈ I
}

.

Suppose that X is C(I) or L∞(I), f ∈ C(I) is a positive non-increasing function. For x ∈ X,
set

‖x‖X,f :=
∥∥
∥∥

x(·)
f (·)

∥∥
∥∥

X
.

For positive functions f , g ∈ C(I) and natural r, set

Lr
f ,g(I) :=

{
x ∈ C(I) : ‖x‖C(I),f < ∞, x(r–) ∈ ACloc,

∥∥x(r)∥∥
L∞(I),g < ∞}

,

W r
f ,g(I) :=

{
x ∈ Lr

f ,g(I) :
∥
∥x(r)∥∥

L∞(I),g ≤ 
}

.

In the case when f ≡  and g ≡ , we write Lr∞,∞(I) instead of Lr
f ,g(I).

Using above notations, the result of Theorem B can be rewritten in the following way:

∥∥x′∥∥
C(R+),

√
fg ≤ ‖x‖ 


C(R+),f

∥∥x′′∥∥ 

L∞(R+),g . ()

In the case when f (t) ≡  and g(t) ≡ , from () one can obtain Landau’s inequality []
established in :

∥
∥x′∥∥

C(R+) ≤ ‖x‖ 

C(R+)

∥
∥x′′∥∥ 


L∞(R+). ()

Similar to (), sharp inequalities for functions defined on the whole real line are also, in
fact, contained in [] (see [], Section .).

Later inequalities of type () for functions defined onR andR+ were generalized in many
directions by many mathematicians. One of the brightest and the most important results
in the whole field is Kolmogorov’s inequality [–] for functions defined on the real line R.
After this result inequalities of type () are called Kolmogorov type inequalities. In articles
[–] and monographs [, ], one can find a detailed overview of classical results about
sharp inequalities for derivatives and further references. Articles [] and [] are devoted
to inequalities between derivatives on classes with non-constant restrictions on the higher
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derivatives; in [] and [] inequalities for derivatives on classes of functions defined on a
finite interval are considered; in [] discrete analogues of inequalities are considered; in
[] and [] one can find results connected to inequalities for fractional derivatives and
further references.

We discuss some of the results for functions defined on the half-line in a more detailed
way.

Let Tr(t) := cos r arccos t, t ∈ [–, ], be Chebyshev polynomials of the first kind. Matorin
in  proved the following theorem (see []).

Theorem C Let k, r ∈N, k < r. For arbitrary function x ∈ Lr∞,∞(R+), the following inequal-
ity holds:

∥∥x(k)∥∥∞ ≤ T (k)
r ()

[T (r)
r ()] k

r
‖x‖– k

r∞
∥∥x(r)∥∥

k
r
∞. ()

In the cases r =  and r = , the inequality above is sharp.

For r > , inequality () is not sharp. Sharp inequality that estimates ‖x(k)‖C(R+) using
‖x‖C(R+) and ‖x(r)‖L∞(R+) for functions x ∈ Lr∞,∞(R+) was received by Schoenberg and
Cavaretta (see [, ]) in  (see also [], Section .).

The function

ω(δ) = ω
(
Dk , δ

)
:= sup

x∈W r
f ,g (I),‖x‖C(I),f ≤δ

∥∥x(k)∥∥
C(I), δ ≥ , ()

is called modulus of continuity of kth order differentiation operator on the class W r
f ,g(I)

(k = , , . . . , r – ), where, as before, I denotes a finite interval, the whole real line R, or a
positive half-line R+.

Note that in the case r =  Theorem B gives an estimate for the modulus of continuity
ω(D, δ) ≤ δ


 , δ > .

The result by Schoenberg and Cavaretta gives a sharp Kolmogorov type inequality for
arbitrary orders of derivatives k < r. The exact constant C(k, r) in this inequality is given
implicitly in terms of a limit of a perfect splines sequence. In the case when f = g ≡ , the
sharp Kolmogorov type inequality is equivalent to the equality ω(Dk , δ) = C(k, r)δ– k

r , δ > .
So we can think that in the case of constant f and g this result gives the value of ω(Dk , δ)
for all δ ≥  (although rather implicitly). Theorem C gives ω(Dk , δ), δ ≥  for r ≤  (with
explicit constant).

Information about the connection between modulus of continuity of differentiation op-
erator and Kolmogorov type inequalities and further references can be found in [], Sec-
tion  and Chapter .

The aim of this article is to study the function ω(Dk , δ) for arbitrary k, r ∈ N, k < r and
non-increasing continuous positive functions f and g .

The article is organized in the following way. In Section  some auxiliary statements and
in Section  main statements are given. Sections  and  are devoted to proofs.

2 Auxiliary results
Let a positive function g ∈ C[a, b] be given. A function G ∈ Cr–[a, b] is called a perfect
g-spline of order r with knots a < t < · · · < tn < b if the following conditions hold:
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(a) the derivative G(r) exists for all t ∈ (ti, ti+), i = , , . . . , n, where t := a and tn+ := b;
(b) there exists ε ∈ {, –} such that G(r)(t)

g(t) ≡ ε · (–)i for t ∈ (ti, ti+), i = , , . . . , n.
Denote by �r

n,g[, a] the set of all perfect g-splines G defined on [, a] of order r with not
more than n knots.

Below f and g will denote continuous positive non-increasing on [,∞) functions.
The next theorem proves existence and some properties of the perfect g-spline Gr,n,f ,a ∈

�r
n,g[, a] that least deviates from zero in ‖ · ‖C[,a],f norm.

Theorem  Let numbers a > , r ∈N, n ∈ Z+ be given. Then there exists a perfect g-spline
Gr,n,f ,a ∈ �r

n,g[, a] that has n + r +  oscillation points, i.e., such that there exist n + r + 
points  ≤ t < t < · · · < tn+r+ = a such that

Gr,n,f ,a(ti) = (–)i+r+‖Gr,n,f ,a‖C[,a],f · f (ti), i = , , . . . , n + r + . ()

For a > , set ϕr,n,f (a) := ‖Gr,n,f ,a‖C[,a],f . Then ϕr,n,f (a) is a continuous and non-decreasing
function of a ∈ (,∞).

Remark We do not prove the uniqueness of the spline Gr,n,f ,a ∈ �r
n,g[, a] satisfying ().

However, from arguments similar to the ones used in the proof of Theorem , it follows
that if two splines G, G ∈ �r

n,g[, a] satisfy (), then G(k)
 () = G(k)

 () for all k = , . . . , r – .

The role of perfect g-splines becomes clearer due to the following theorem.

Theorem  Let r ∈ N, n ∈ Z+ and δ >  be such that ϕr,n,f (a) = δ for some a > . Then, for
k = , , . . . , r – ,

ω
(
Dk , δ

) ≤ ∥∥G(k)
r,n,f ,a

∥∥
C[,a].

3 Main results
If f (t) ≡  and g(t) ≡ , then ϕr,n,f (∞) := lima→+∞ ϕr,n,f (a) = ∞ for all r ∈ N, n ∈ Z+. In
the case when f , g are arbitrary positive non-increasing continuous functions, this is not
always true.

Set gk(t) :=
∫ t

 gk–(s) ds, k = , , . . . , r, where g := g . The following theorem holds.

Theorem  Let numbers n ∈ Z+ and r ∈ N be given. ϕr,n,f (∞) < ∞ if and only if the fol-
lowing conditions hold:

A :=
∫ ∞


g(t) dt < ∞,

Ak :=
∫ ∞



[ k–∑

s=

(–)k–s–As

(k – s – )!
tk–s– + (–)kgk(t)

]

dt < ∞, k = , . . . , r – 
()

and

sup
t∈[,∞)

|∑r–
s=

(–)r–s–As
(r–s–)! tr–s– + (–)rgr(t)|

f (t)
< ∞. ()
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Remark From Theorem  it follows that for all r ∈ N, n ∈ Z+, ϕr,n,f (∞) < ∞ if and only if
ϕr,,f (∞) < ∞.

In the case when conditions () hold, set

Pk(t) :=
k–∑

s=

(–)s+As

(k – s – )!
tk–s– + gk(t), k = , , . . . , r. ()

The functions Pk have the following properties. Pk is kth primitive of the function g , which
does not change sign on [,∞) (positive for even k and negative for odd k), k = , , . . . , r;
P′

k = Pk–, k = , . . . , r; Pk() = (–)kAk–, k = , . . . , r.
If ϕr,,f (∞) = ∞, then, in virtue of Theorems  and , for all r ∈N, n ∈ Z+ and δ > , there

exists a number δr,n = δr,n(δ) >  such that ‖Gr,n,f ,δr,n‖C[,δr,n],f = δ (if such number δr,n is not
unique, we can take the minimal value). In this case, for all δ > , the function ω(Dk , δ) is
characterized by the following theorem.

Theorem  Let r ∈ N and ϕr,,f (∞) = ∞. Then, for all δ >  and k = , , . . . , r – ,

ω
(
Dk , δ

)
= lim

n→∞
∣
∣G(k)

r,n,f ,δr,n
()

∣
∣.

Information about the function ω(Dk , δ) in the case when ϕr,,f (∞) < ∞ is given by the
following theorem.

Theorem  Let r ∈N, n ∈ Z+ and ϕr,,f (∞) < ∞. Then, for all k = , , . . . , r – ,

ω
(
Dk ,ϕr,n,f (∞)

)
= lim

a→∞
∣
∣G(k)

r,n,f ,a()
∣
∣.

In the case when ϕr,,f (∞) < ∞, information about asymptotic behavior of the function
ϕr,n,f (∞) as n → ∞ and fixed r is given by the following theorem.

Theorem  Let r ∈ N and ϕr,,f (∞) < ∞. limn→∞ ϕr,n,f (∞) >  if and only if limt→∞
f (t)

|Pr(t)| <
∞, where the function Pr(t) is defined in ().

4 Proofs of the auxiliary results
4.1 Proof of Theorem 1
Proof of existence and uniqueness of the perfect g-spline Gr,n,f ,a uses ideas that were used
to prove Theorem .. in monograph [].

In the space R
n+
 consider the sphere Sn with radius a, i.e.,

Sn =

{

ξ = (ξ, ξ, . . . , ξn+) :
n+∑

i=

|ξi| = a

}

.

For each ξ ∈ Sn, consider the partition of the segment [, a] by points

ξ := , |ξ|, |ξ| + |ξ|, . . . ,
n∑

i=

|ξi|,
n+∑

i=

|ξi| = a.
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Set Ik := (
∑k–

i= |ξi|,∑k
i= |ξi|), k = , , . . . , n+. For each of the partitions, consider the func-

tion

Ga
ξ (t) :=


(r – )!

∫ a


(t – u)r–

+ ga
ξ (u) du,

where ga
ξ (t) = g(t) sgn ξk on each segment Ik , k = , , . . . , n + .

Then we have (Ga
ξ )(r) = ga

ξ and hence Ga
ξ is a g-spline with knots at the points of partition.

Let Qξ ,a
n+r–(t) =

∑n+r–
i= ai(ξ )ti be the polynomial on which infQn+r– ‖Ga

ξ –Qn+r–‖C[,a],f over
all polynomials of degree less than or equal to n + r –  is attained. Consider the mapping
φ : Sn →R

n, φ(ξ ) := (ar(ξ ), . . . , an+r–(ξ )). From the definition of φ and properties of poly-
nomials of the best approximation, it follows that φ is continuous and odd. Hence from
Borsuk’s theorem it follows that there exists ξ ∈ Sn such that φ(ξ) = . This means that
the polynomial Qξ,a

n+r– has order less than or equal to r – . Therefore, for the function
Gr,n,f ,a := Gξ – Qξ,a

n+r–, we have G(r)
r,n,f ,a = gξ . Due to the generalization of Chebyshev’s the-

orem about oscillation (see, for example, [, ], Chapter , Section ) Gr,n,f ,a has n + r + 
oscillation points  ≤ t < t < · · · < tn+r+ ≤ a and hence at least n + r sign changes. Thus,
in view of Rolle’s theorem, G(r)

r,n,f ,a has at least n sign changes (and hence exactly n sign
changes due to construction). This means that Gr,n,f ,a is a perfect g-spline with exactly n
nodes, in particular, Gr,n,f ,a ∈ �r

n,g[, a].
Let us prove that tn+r+ = a. Assume the converse. Since f is non-increasing, we get that

G′
r,n,f ,a has n + r sign changes and hence G(r)

r,n,f ,a has n +  sign changes. However, this is
impossible. Multiplying, if needed, the function Gr,n,f ,a by –, we get a perfect g-spline for
which equalities () hold.

The fact that for fixed r ∈N and n ∈ Z+ the function ϕr,n,f is non-decreasing follows from
its definition. The continuity of the function ϕr,n,f follows from the continuity of functions
f and g . The theorem is proved.

4.2 Proof of Theorem 2
We need the following lemma.

Lemma  Let r ∈ N, n ∈ Z+, a >  and x ∈ Lr∞,∞[, a] be given. Assume that a function x
has at least n + r sign changes, x(r) has not more than n sign changes and x(r) is non-zero
almost everywhere. Then, for all s = , , . . . , r – ,

sgn x(s)() = – sgn x(s+)(). ()

Remark Notation sgn x(r)() = ± means that there exists ε >  such that sgn x(r)(t) = ±
almost everywhere in the interval (, ε).

From conditions of the lemma it follows that the function x(s) has exactly n + r – s sign
changes, s = , , . . . , r. Hence the function x(s) changes sign on each of its monotonicity
intervals, s = , , . . . , r – . This implies that x(s)() �= , s = , , . . . , r – , and that equalities
() hold. The lemma is proved.

Let us return to the proof of the theorem. Assume the converse, let a function x ∈
W r

f ,g(R+) be such that ‖x‖C[,∞),f ≤ δ and ‖x(k)‖C[,∞) > ‖G(k)
r,n,f ,a‖C[,a). We can assume that

∣∣x(k)()
∣∣ >

∣∣G(k)
r,n,f ,a()

∣∣ ()
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(if this is not true, then there exists a point t >  such that |x(k)(t)| > ‖G(k)
r,n,f ,a‖C[,a)

and instead of x(t) we can consider the function y(t) := x(t + t)); then y ∈ W r
f ,g(R+) and

‖y‖C[,∞),f ≤ δ; moreover, we can assume that ‖x‖C(,∞),f < δ and ‖x(r)‖L∞(,∞),g < ; other-
wise we can consider the function ( –ε)x instead of the function x with ε >  so small that
inequality () remains true. Further, multiplying, if needed, functions x and Gr,n,f ,a by –,
we can suppose that

x(k)() > G(k)
r,n,f ,a() > . ()

Set 
(t) := x(t) – Gr,n,f ,a(t). Note that in view of construction for g-splines Gr,n,f ,a(t),
functions 
(t) and Gr,n,f ,a(t) have not less than n+r sign changes (Gr,n,f ,a(t) has exactly n+r
sign changes); functions 
(r)(t) and G(r)

r,n,f ,a(t) can have sign changes only in the knots of
the g-spline Gr,n,f ,a(t), and hence not more than n sign changes. From assumptions above
it follows that the function 
(r)(t) is non-zero almost everywhere. From Lemma  and ()
we get

(–)kGr,n,f ,a() > . ()

Due to (), (–)kGr,n,f ,a(t) > , where t is the first oscillation point of Gr,n,f ,a. This
means that (–)k
(t) < . Since all sign changes of the function 
 are located inside the
interval (t, a), we get (–)k
() < , and hence, in virtue of Lemma , we get 
(k)() < .
But this contradicts (). The theorem is proved.

5 Proofs of the main results
5.1 Proof of Theorem 3
We prove first that the statement of the theorem is true in the case n = . In the case n = ,
we write ϕr,f instead of ϕr,,f and Gr,f ,M instead of Gr,,f ,M . To prove the theorem, we need
the following lemma.

Lemma  Let conditions () hold. Suppose M >  and hm(t) is the mth primitive of the
function g(t) on the interval [, M] that has m zeroes ( ≤ m ≤ r). Denote by αm the first
zero of the function hm(t). Then the following inequalities hold:

∣∣hm(t)
∣∣ <

∣∣Pm(t)
∣∣, t ∈ [,αm]

and

∣
∣Pm(t) – Pm() + hm()

∣
∣ ≤ ∣

∣hm(t)
∣
∣, t ∈ [,γm],

where γm is the unique zero of the function Pm(t) – Pm() + hm().

We will proceed using induction on m in order to prove the first inequality.
Let m = . P(t) = –A + g(t). Since conditions () hold and P() = –A, we have

P(∞) = . Since the function h(t) = g(t) + C has one zero, C ∈ (–A, ]. This means that
|h(t)| < |P(t)| for all t ∈ [,α].

Let the statement of the lemma hold in the case m = k ≤ r – . We will show that it holds
in the case m = k +  too.
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To be definite, assume that the number k +  is even. Then Pk+() > , and in view of
Lemma ,

hk+() > . ()

Assume the converse, let a point t ∈ [,αk+) such that hk+(t) ≥ Pk+(t) exist. Since
the function hk+(t) has k +  zeroes, the function h(k+)

k+ (t) = g(t) does not have zeroes, we
have that the function h′

k+(t) has k zeroes, and hence, in virtue of induction assumption
and P′

k+(t) = Pk(t), we get that |h′
k+(t)| < |Pk(t)| ∀t ∈ [,β], where β is the first zero of the

function h′
k+(t). Hence, due to () for all t ∈ [,β], the following inequality holds:

 ≥ h′
k+(t) > Pk(t). ()

In view of Rolle’s theorem, β > αk . This means that inequality () holds for all t ∈ [,αk].
Since hk+(αk+) =  < Pk+(αk+), we have Pk+(t) – Pk+(αk+) < hk+(t) – hk+(αk+); on the
other hand, inequality () holds, and hence

Pk+(t) – Pk+(αk+) = –
∫ αk+

t

Pk(t) dt > –
∫ αk+

t

h′
k+(t) dt

= hk+(t) – hk+(αk+).

Contradiction. The first inequality is proved.
From Lemma  it follows that sgn hm() = sgn Pm(). From the proved part of the lemma

it now follows that the function Pm(t) – Pm() + hm() has exactly one zero. The second
inequality in the statement of the lemma can be proved using arguments similar to the
ones used in the proof of the first inequality. The lemma is proved.

Let us return to the proof of the theorem in the case when n = .
Let conditions () and () hold. Set Kr := supt∈[,∞)

|Pr(t)|
f (t) . Assume the converse, let

ϕr,f (∞) = ∞. This means that there exists M >  such that ϕr,f (M) > Kr . Due to Lemma 
the inequality |Gr,f ,M(t)| < |Pr(t)| holds on the interval [,αM

r ]. Moreover, |Pr(t)| ≤ Krf (t) <
ϕr,f (M)f (t). Thus, on the interval [,αM

r ], the inequality |Gr,f ,M(t)| < ϕr,f (M)f (t) holds.
However, in this case Gr,f ,M(t) has not more than r oscillating points. Contradiction. Suf-
ficiency is proved.

Let now ϕr,f (∞) < ∞. This means that for all a ≥ , t ∈ [, a] we have |Gr,f ,a(t)| ≤
ϕr,f (∞)f (t) ≤ ϕr,f (∞)f (). Passing to the limit as a → ∞, we get existence of bounded
on [,∞) primitive Qr of order r of the function g(t). Really, for each a > , we have
Gr,f ,a(t) = gr(t) +

∑r–
k= ck(a)tk , where ck are real functions, k = , . . . , r – , and gr is some

(fixed) primitive of order r of the function g . For a, t ≥ , set R(a; t) :=
∑r–

k= ck(a)tk . From
Markov’s inequality for polynomials we get that for k = , . . . , r –  there exists a constant
Nk independent of a such that

∣
∣ck(a)

∣
∣ =

∣
∣R(k)(a; )

∣
∣ ≤ max

t∈[,]

∣
∣R(k)(a; t)

∣
∣ ≤ Nk max

t∈[,]

∣
∣R(a; t)

∣
∣

≤ Nk

[
max
t∈[,]

∣∣gr(t)
∣∣ + ϕr,f (∞)f ()

]
.

Hence the functions ck are bounded, k = , . . . , r – . This means that there exists a se-
quence {an}∞n=, limn→∞ an = ∞ such that all the sequences ck(an) have finite limits ck :=
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limn→∞ ck(an), k = , . . . , r – . For the function Qr(t) := gr(t) +
∑r–

k= cktk , fixed t ≥  and
all natural n such that an > t, we have

∣∣Qr(t)
∣∣ =

∣
∣∣
∣∣
gr(t) +

r–∑

k=

ck(an)tk +
r–∑

k=

cktk –
r–∑

k=

ck(an)tk

∣
∣∣
∣∣

≤
∣∣
∣∣
∣
gr(t) +

r–∑

k=

ck(an)tk

∣∣
∣∣
∣

+

∣∣
∣∣
∣

r–∑

k=

(
ck – ck(an)

)
tk

∣∣
∣∣
∣

=
∣
∣Gr,f ,an (t)

∣
∣ +

∣
∣∣
∣∣

r–∑

k=

(
ck – ck(an)

)
tk

∣
∣∣
∣∣
.

Since n can be arbitrarily large and all the functions Gr,n,f ,a, a >  are bounded on [, a], by
an absolute constant ϕr,f (∞)f (), we get that Qr is a bounded on [,∞) primitive of order
r of the function g .

Since functions f (t) and g(t) are bounded, we get that all functions Q(k)
r (t), k = , . . . , r –

, are also bounded on [,∞). Note that the only bounded on [,∞) primitives of the
function g(t) of order k ∈ N are functions Pk(t) + Ck , where Ck ∈ R, and only in the case
when corresponding conditions () hold. This means that conditions () hold. Necessity
of conditions () are proved.

Note that from arguments above it follows that the following lemma holds.

Lemma  Let r ∈N, r ≥  and ϕr,f (∞) < ∞. Then |G(r–k–)
r,f ,M ()| → Ak and αM

k+ → ∞ when
M → ∞, where αM

k+ is the first zero of the function G(r–k–)
r,f ,M , k = , , . . . , r – .

We will prove that condition () also holds. If f (∞) > , then condition () holds always
when conditions () hold. Below we will assume that

f (∞) = . ()

From Lemma  we get

∣∣
∣∣

∫ αM
r–


Pr–(t) dt

∣∣
∣∣ ≥ ∣

∣Gr,f ,M() – Gr,f ,M
(
αM

r–
)∣∣

≥
∣
∣∣∣

∫ γM



[
Pr–(t) – Pr–() + G′

r,f ,M()
]

dt
∣
∣∣∣,

where γM is zero of the function Pr–(t) – Pr–() + G′
r,f ,M().

In view of Lemma  (with k = r – , M → ∞) we get

∣∣∣
∣

∫ αM
r–


Pr–(t) dt

∣∣∣
∣ →

∣∣∣
∣

∫ ∞


Pr–(t) dt

∣∣∣
∣ = Ar–; –Pr–() + G′

r,f ,M() → ,

hence

γM → ∞ and
∣∣
∣∣

∫ γM



[
Pr–(t) – Pr–() + G′

r,f ,M()
]

dt
∣∣
∣∣ → Ar–.
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From Lemma  and equality () we get Gr,f ,M(αM
r–) →  and hence

∣∣Gr,f ,M()
∣∣ → Ar–, M → ∞. ()

We will show that ϕr,f (∞) ≥ supt∈[,∞)
Pr(t)
f (t) . Assume the converse. Suppose that a point

t such that |Pr(t)| > ϕr,f (∞)f (t) exists. We can choose ε >  in such a way that

∣∣Pr(t) – ε sgn
[
Pr()

]∣∣ > ϕr,f (∞)f (t). ()

In virtue of () and Lemma , we can choose M >  big enough, so that

∣
∣Pr(t) – ε sgn

[
Pr()

]∣∣ <
∣
∣Gr,f ,M(t)

∣
∣ <

∣
∣Pr(t)

∣
∣ ∀t ∈ [,γ ],

where γ is zero of the function Pr(t) – ε sgn[Pr()]. Since inequality () holds, we have
γ > t, and hence |Gr,f ,M(t)| > ϕr,f (∞)f (t). Contradiction. Thus condition () is proved.
The theorem is proved in the case when n = .

Let n be an arbitrary natural number now.
We will prove that for all r, n ∈N, ϕr,n,f (∞) < ∞ if and only if ϕr,f (∞) < ∞.
It is clear that ϕr,f (M) ≥ ϕr,n,f (M) for all M > , and hence ϕr,f (∞) < ∞ implies

ϕr,n,f (∞) < ∞.
Assume that ϕr,n,f (∞) < ∞. Denote by tM

n,k the kth knot of the g-spline Gr,n,f ,M(t), k =
, , . . . , n. Set tM

n, := , tM
n,n+ := M. Let  ≤ k ≤ n +  be the smallest number of the knots

of the g-spline Gr,n,f ,M(t) for which the set {tM
n,k : M > } is unbounded. We can choose an

increasing sequence {Ml}∞l=, Ml → ∞ as l → ∞ such that tMl
n,s → tn,s < ∞, s ≤ k –  and

tMl
n,k → ∞ as l → ∞.

Denote by GK
r,f ,M(t) the primitive of order r of the function g that least deviates from

zero in norm ‖ · ‖C[K ,K+M],f . Set

ϕK
r,f (M) :=

∥∥GK
r,f ,M

∥∥
C[K ,K+M],f .

Then, for all l, ‖Gr,n,f ,Ml‖C[tMl
n,k–,tMl

n,k ],f
≥ ϕ

tn,k–
r,f (tMl

n,k – tMl
n,k–). Passing to the limit as l → ∞,

we get ϕ
tn,k–
r,f (∞) ≤ ϕr,n,f (∞) < ∞. Note that from the case when n =  proved above, it

follows that for all K > , ϕK
r,f (∞) < ∞ if and only if ϕr,f (∞) < ∞. The theorem is proved.

Remark In the case when f ≡ , for all natural r, ϕr,f (∞) < ∞ implies ϕr–,f (∞) < ∞. At
the same time not for all functions f , ϕr,f (∞) < ∞ implies ϕr–,f (∞) < ∞. In particular this
implies that for non-constant functions f ,

sup
x∈W r

f ,g (R+),‖x‖C(R+),f ≤δ

∥∥x(k)∥∥
C(R+),f

may be infinite for all δ > .

Really, in the case when f ≡ , condition () holds always when conditions () hold. If

g(t) =
[
– + (t +

√
)]e– (t+

√
)
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and

f (t) = e– (t+
√

)
 ,

then

P(t) = –
[
(t +

√
)

]
e– (t+

√
)

 ,

P(t) = e– (t+
√

)
 ,

and condition () holds when r =  and does not hold when r = .

5.2 Proof of Theorem 4
To prove Theorem , it is sufficient to prove that for all δ >  there exists a g-spline Gr,δ =
Gr,δ(·, f , g) of order r defined on [,∞) with infinite number of knots yk (k = , , . . .),  =
y < y < · · · < yk < · · · , yk → ∞ (k → ∞), with the following properties:

. ‖Gr,δ‖C[,∞),f = δ and either G(r)
r,δ ≡ g or G(r)

r,δ ≡ –g on the intervals (yk , yk+)
(k = , , , . . .).

. For all c > , the sequences {G(k)
r,n,f ,δr,n

}∞n= (k = , , . . . , r – ) (whose elements are
defined on [, c] for big enough n) converge to G(k)

r,δ uniformly on [, c].
Really, from Theorem  it will follow that ω(Dk , δ) = |G(k)

r,δ ()|, and from condition  it
will follow that

lim
n→∞

∣∣G(k)
r,n,f ,δr,n

()
∣∣ =

∣∣G(k)
r,δ ()

∣∣.

{δr,n}∞n= is a non-decreasing sequence. Moreover, this sequence is unbounded because
otherwise we would get a perfect g-spline G with arbitrarily close oscillating points; this
is impossible because the functions G and G(r) (and hence G′) are bounded.

Denote by tn,k (k = , . . . , n, n = , , . . .) the knots of the g-spline Gr,n,f ,δr,n . We can choose
a sequence ns (ns → ∞ as s → ∞) such that every sequence {tns ,k}∞ns≥k (k = , , . . .) has a
(finite or infinite) limit.

Let  ≤ y < y < · · · be all distinct finite limits of these sequences, ordered in an ascend-
ing way. The number of the nodes yk is infinite since from the statement of the theorem,
we have ϕr,n,f (∞) = ∞ for all n ∈ N.

For all i ∈ N and for all small enough ε > , there exists N = N(i, ε) such that for every
n > N(i, ε), G(r)

r,n,f ,δr,n
≡ g or G(r)

r,n,f ,δr,n
≡ –g on Ii(ε) := (yi– +ε, yi –ε). In other words, for each

i ∈ N starting with some n = N(i, ε), the restriction of the g-spline Gr,n,f ,δr,n to the interval
Ii(ε) is a primitive of order r of g or –g . Since ε >  is arbitrary, on each interval (yi–, yi)
we get existence of point-wise limit limn→∞ Gr,n,f ,δr,n =: Gr,δ ; moreover, on the intervals
(yi, yi+), G(r)

r,δ ≡ g or G(r)
r,δ ≡ –g (i = , , . . .). It is clear that ‖Gr,δ‖C[,∞),f = δ. Using arguments

similar to the ones used to prove that limn→∞ δr,n = +∞, we can prove that yk → ∞ (k →
∞).

Let us fix some c > . Starting with some n, all g-splines Gr,n,f ,δr,n are defined on [, c].
From ‖Gr,n,f ,δr,n‖C[,δr,n],f = δ and the fact that f is non-increasing (and hence is bounded) it
follows that the sequence {Gr,n,f ,δr,n}∞n= is uniformly bounded on [, c]; from |G(r)

r,n,f ,δr,n
(t)| ≤

g(t) almost everywhere on [,∞) and the fact that g is non-increasing (and hence is
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bounded) it follows that sequences {G(k)
r,n,f ,δr,n

}∞n=, k = , . . . , r –, are uniformly bounded on
[, c] and equicontinuous. The later implies uniform convergence on [, c] of the sequence
Gr,n,f ,δr,n to Gr,f . The theorem is proved.

5.3 Proof of Theorem 5
Let n ≥ . We can choose an increasing sequence {Mk}∞k=, Mk → ∞ as k → ∞ in such a
way that all sequences tMk

n,s ,  ≤ s ≤ n (as above, tMk
n,s is the sth knot of the g-spline Gr,n,f ,Mk )

have limits (finite or infinite). Let tn, < · · · < tn,m be all distinct finite limits of these se-
quences in ascending order. Analogously to the proof of Theorem , we get uniform on
each segment [, c], c >  convergence of the sequence Gr,n,f ,Mk to the g-spline Pr,n,f ,{Mk }
with m knots (defined on the whole half-line) together with all derivatives up to the order
r –  inclusively. For brevity we will write Pr,n,f instead of Pr,n,f ,{Mk }.

Let the function x(t) be such that

‖x‖C[,∞),f ≤ ϕr,n,f (∞),
∥∥x(r)∥∥

L∞(,∞),g ≤ .
()

We will show that for all s = , , . . . , r – ,

∥∥x(s)∥∥
C[,∞) ≤ ∥∥P(s)

r,n,f
∥∥

C[,∞). ()

Assume the converse, let for some s, ‖x(s)‖C[,∞) > ‖P(s)
r,n,f ‖C[,∞). Then there exists ε > 

such that ‖x(s)‖C[,∞) > ( + ε)‖P(s)
r,n,f ‖C[,∞). We can suppose that |x(s)()| > ( + ε)|P(s)

r,n,f ()|
(if this is not true, then there exists a point t >  such that |x(s)(t)| > ‖( + ε)P(s)

r,n,f ‖C[,∞)

and instead of the function x(t) we can consider y(t) := x(t + t). Moreover, since the func-
tions f and g are non-increasing, conditions () and () are not broken and uniform
norms of the function x and its derivatives do not increase). Moreover, we can assume
that

x(s)() > ( + ε)P(s)
r,n,f () >  ()

(if this is not true, we can multiply x and (or) Pr,n,f by –). Set 
k(t) := x(t)–(+ε)Pr,n,f ,Mk (t),
t ∈ [, Mk]. We can choose k so big that

x(s)() > ( + ε)P(s)
r,n,f ,Mk

() ()

and

( + ε)ϕr,n,f (Mk) > ϕr,n,f (∞). ()

From Lemma  we get

(–)sPr,n,f ,Mk () > . ()

In view of () and () (–)s
k() < , and hence due to Lemma  we get 

(s)
k () < .

However, this contradicts ().
In virtue of property () proved above, the limit limMk→∞ |G(k)

r,n,f ,Mk
()| does not depend

on the choice of the sequence {Mk}∞k=. This finishes the proof of the theorem.
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5.4 Proof of Theorem 6
We will need the following lemmas.

Lemma  Suppose that ϕr,n,f (∞) < ∞ and Qr,n ∈ Lr∞,∞(R+) is a g-spline of rth order de-
fined on half-line [,∞) with n ∈ Z+ knots  =: t < t < · · · < tn. Then there exists ε ∈ {–, }
such that for s = , , . . . , r,

Q(s)
r,n(t) = εP(s)

r (t), t ≥ tn. ()

We will prove the lemma using induction. In the case s = r, equality () holds. Let it be
true for s = k ≥ . We will prove that it is true for s = k –  too. In view of the induction
assumption Q(k)

r,n(t) = εP(k)
r (t), t ≥ tn. Moreover, Q(k–)

r,n (∞) = P(k–)
r (∞) = . Then, for t ≥ tn,

–Q(k–)
r,n (t) =

∫ ∞

t
Q(k)

r,n(s) ds = ε

∫ ∞

t
P(k)

r (s) ds = –εP(k–)
r (t).

The lemma is proved.

Lemma  Let ϕr,n,f (∞) < ∞ and limt→∞ f (t)
Pr(t) = ∞. Then the number of oscillation points

of the g-spline Pr,n,f tends to infinity as n → ∞.

Let some n ∈ N be fixed. Suppose that M >  is such that for all t > M, f (t)
Pr(t) > 

ϕr,n,f (∞) .
Let the g-spline Pr,n,f have k oscillating points  ≤ a < a < · · · < ak . Denote by  ≤ b <
b < · · · < bn+r+ all oscillation points of the g-spline Gr,n,f ,K , where K is chosen so big that
sgn Gr,n,f ,K (bs) = sgn Pr,n,f (bs), s = , , . . . , k, bk+ > max{ak , M} and ϕr,n,f (K) > 

ϕr,n,f (∞).
Choose ε >  so small that ( – ε)ϕr,n,f (K) > 

ϕr,n,f (∞).
Set 
(t) := Pr,n,f (t) – ( – ε)Gr,n,f ,K (t). Then sgn
(as) = sgn Pr,n,f (as), s = , , . . . , k, since

∣∣Pr,n,f (as)
∣∣ = ϕr,n,f (∞)f (as) > ( – ε)ϕr,n,f (K)f (as) ≥ ( – ε)

∣∣Gr,n,f ,K (as)
∣∣.

Hence the function 
(t) has k –  sign changes on the interval [, ak]. Moreover, for s =
k + , . . . , n + r + ,

∣
∣Pr,n,f (bs)

∣
∣ <

ϕr,n,f (∞)


f (bs) < ( – ε)ϕr,n,f (K)f (bs) = ( – ε)
∣
∣Gr,n,f ,K (bs)

∣
∣.

This means that sgn
(bs) = sgn Gr,n,f ,K (bs), s = k + , . . . , n + r + . Hence the function 
(t)
has n + r – k sign changes on the interval [bk+, a], and hence at least n + r –  sign changes
on the whole interval [, K]. This means that the function 
(r)(t) has at least n –  sign
changes, and hence the g-spline Pr,n,f has at least n –  knots.

Let tK
n,s, s = , . . . , n, be the knots of the g-spline Gr,n,f ,K . Note that for all s = , , . . . , n, the

g-spline Gr,n,f ,K has at least s oscillating points on the interval [, tk
n,s]. Really, assume the

converse, suppose for some  ≤ s ≤ n that the g-spline Gr,n,f ,K has less than s oscillation
points on the interval [, tK

n,s]. Then the g-spline Gr,n,f ,K has more than n+r+–s oscillation
points on the interval (tK

n,s, K], and hence more than n + r – s sign changes. This means that
the function G(r)

r,n,f ,K has more than n – s sign changes on the interval (tK
n,s, K]. However, this

is impossible.
This means that the limiting g-spline Pr,n,f has at least n– oscillation points. The lemma

is proved.



Babenko and Kovalenko Journal of Inequalities and Applications  (2015) 2015:295 Page 14 of 16

Lemma  For all s = , , . . . , r and all t ≥  (almost everywhere is the case when s = r), the
following inequality holds:

∣∣P(s)
r,n,f (t)

∣∣ ≤ ∣∣P(s)
r (t)

∣∣. ()

We will prove the statement of the lemma using induction. In the case s = r, inequality
() holds with equality sign. Let inequality () hold with s = k ≥ . We will prove that it
is true for s = k – .

Assume the converse. Let

T :=
{

t ∈ [,∞) :
∣
∣P(k–)

r,n,f (t)
∣
∣ >

∣
∣P(k–)

r (t)
∣
∣} �= ∅.

Denote by  < t < · · · < tl all knots of the g-spline Pr,n,f . Then, due to Lemma , T ⊂ [, tl)
and

∣
∣P(k–)

r,n,f (tl)
∣
∣ =

∣
∣P(k–)

r (tl)
∣
∣. ()

Let a ∈ T . Then

∣∣P(k–)
r (tl) – P(k–)

r (a)
∣∣ =

∣
∣∣∣

∫ tl

a
P(k)

r (t) dt
∣
∣∣∣ =

∫ tl

a

∣∣P(k)
r (t)

∣∣dt

≥
∫ tl

a

∣
∣P(k)

r,n,f (t)
∣
∣dt ≥

∣∣
∣∣

∫ tl

a
P(k)

r,n,f (t) dt
∣∣
∣∣

=
∣
∣P(k–)

r,n,f (tl) – P(k–)
r,n,f (a)

∣
∣;

this is impossible in virtue of (), and the facts that sgn P(k–)
r (tl) = sgn P(k–)

r (a), function
|P(k–)

r | is non-increasing and a ∈ T . Contradiction. Hence T = ∅ and the lemma is proved.
Let us return to the proof of the theorem.
Let

lim
t→∞

f (t)
|Pr(t)| =: c < ∞. ()

Then, in view of Theorem , c > . We will show that ϕr,n,f (∞) ≥ 
c ∀n. Assume the con-

verse, let a number n such that

ϕr,n,f (∞) <


c
()

exist. Denote by  < t < t < · · · < tk all knots of Pr,n,f . Then, due to Lemma , P′
r,n,f (t) =

±P′
r(t), t ≥ tk . In virtue of () we have

∣
∣Pr,n,f (t)

∣
∣ <

f (t)
c

for all t ≥ . f (∞) =  since () holds. Then Pr,n,f (∞) = , and hence

Pr,n,f (t) = ±Pr(t),
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t ≥ tk . But then |Pr(t)| < f (t)
c , i.e.,

f (t)
|Pr(t)| > c, t ≥ tn,

which contradicts (). Sufficiency is proved.
We will prove the necessity now. limn→∞ ϕr,n,f (∞) = δ > . Assume the converse, let

limt→∞
f (t)

|Pr(t)| = ∞. Then there exists a number M >  such that for all t > M the inequality

f (t)
|Pr(t)| >


δ

holds; this is equivalent to

∣∣Pr(t)
∣∣ < δf (t).

In view of Lemma , for all n, the following inequality holds:

∫ M



∣∣P′
r,n,f (t)

∣∣dt ≤
∫ M



∣∣Pr–(t)
∣∣dt. ()

Choose n so big that

n · f (M) >
∫ M



∣∣Pr–(t)
∣∣dt. ()

Choose m such that the g-spline Pr,m,f (t) has at least n+ oscillation points (this is possible
due to Lemma ). Denote by  ≤ a < a < · · · < an+ the first oscillation points of the
g-spline Pr,m,f (t). Then, in virtue of (), and by the facts that f is non-increasing function,
∨M

 Pr,m,f =
∫ M

 |P′
r,m,f (t)|dt and (), we get that an > M. Thus an+ > an > M are oscillation

points of the g-spline Pr,m,f (t), and we get

∣∣Pr,m,f (an+) – Pr,m,f (an)
∣∣ = ϕr,m,f (∞) · (f (an+) + f (an)

)

≥ δ · (f (an+) + f (an)
)

> δf (an)

>
∣∣Pr(an)

∣∣ =
∫ ∞

an

∣∣Pr–(t)
∣∣dt.

On the other hand, in view of Lemma ,

∣∣Pr,m,f (an+) – Pr,m,f (an)
∣∣ ≤

∫ an+

an

∣∣P′
r,m,f (t)

∣∣dt

≤
∫ an+

an

∣
∣Pr–(t)

∣
∣dt

<
∫ ∞

an

∣∣Pr–(t)
∣∣dt.

Contradiction. The theorem is proved.
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14. Mitrinović, DS, Peĉharić, JE, Fink, AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer
Academic, Dordrecht (1991)

15. Kofanov, VA: Inequalities for derivatives of functions on an axis with nonsymmetrically bounded higher derivatives.
Ukr. Math. J. 64(5), 636-648 (2012)

16. Bagdasarov, SK: Kolmogorov inequalities for functions in classesWrHω with bounded Lp-norm. Izv. RAN, Ser. Mat.
74(2), 5-64 (2010)

17. Skorokhodov, DS: On inequalities for the norms of intermediate derivatives of multiply monotone functions defined
on a finite segment. Ukr. Math. J. 64(4), 508-524 (2012)

18. Shadrin, A: The Landau-Kolmogorov inequality revisited. Discrete Contin. Dyn. Syst. 34(3), 1183-1210 (2014)
19. Babenko, Y, Borodachov, S: Inequalities for the norms of finite difference operators of multiply monotone sequences.

Math. Inequal. Appl. 15(2), 247-269 (2012)
20. Babenko, VF, Churilova, MS, Parfinovych, NV, Skorokhodov, DS: Kolmogorov type inequalities for the Marchaud

fractional derivatives on the real line and the half-line. J. Inequal. Appl. 2014, 504 (2014)
21. Motornyi, VP, Babenko, VF, Dovgoshei, AA, Kuznetsova, OI: Approximation Theory and Harmonic Analysis. Naukova

Dumka, Kiev (2012)
22. Matorin, AP: On inequalities between maximums of absolute values of functions and their derivatives on half-line.

Ukr. Math. J. 7, 262-266 (1955) (in Russian)
23. Schoenberg, IJ, Cavaretta, A: Solution of Landau’s problem, concerning higher derivatives on halfline. M.R.C. technical

summary report (1970)
24. Schoenberg, IJ, Cavaretta, A: Solution of Landau’s problem, concerning higher derivatives on halfline. In: Proc. of Conf.

on Approx. Theory, Varna, Sofia, pp. 297-308 (1972)
25. Krein, MG, Nudelman, AA: Markov Moments Problem and Extremal Problems. Nauka, Moscow (1973) (in Russian)
26. Krein, MG, Nudelman, AA: The Markov Moment Problem and Extremal Problems: Ideas and Problems of

P.L. Chebyshev and A.A. Markov and Their Further Development. Translations of Mathematical Monographs. Am.
Math. Soc., Providence (1977) (translated from the Russian by D. Louvish)


	On modulus of continuity of differentiation operator on weighted Sobolev classes
	Abstract
	Keywords

	Introduction
	Auxiliary results
	Main results
	Proofs of the auxiliary results
	Proof of Theorem 1
	Proof of Theorem 2

	Proofs of the main results
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6

	Competing interests
	Authors' contributions
	Acknowledgements
	References


