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1 Introduction
In mathematics, the fractal geometry has presented some attractive complex graphs and
objects to computer graphics. Fractal is a Latin word, derived from the word ‘fractus’ which
means ‘broken’. First time the term fractal was used by a young mathematician Gaston Julia
[], when he was studying Cayley ’s problem related to the behavior of Newton’s method
in complex plane. Julia introduced the concept of iterative function system (IFS), and, by
using it, Julia derived the Julia set in . After that, in , Benoit Mandelbrot extended
the ideas of Julia. He introduced the Mandelbrot set by using the complex function z +
c with using z as a complex function and c as a complex parameter [–]. The fractal
structure of Mandelbrot and Julia sets has been demonstrated for quadratic, cubic and
higher degree polynomials, by using the Picard orbit which is an application of one-step
feedback process [].

Julia and Mandelbrot sets have been studied under the effect of noises [–] arising
in the objects. In , Rani and Kumar [, ] introduced superior iterates (a two-step
feedback process) in the study of fractal theory and created superior Julia and Mandelbrot
sets. Later on, in a series of papers Rani et al. generated and analyzed superior Julia and
superior Mandelbrot sets for quadratic [–, –], cubic [], and nth degree [, , ,
–] complex polynomials. After creation of superior Mandelbrot sets, Negi and Rani
[] collected the properties of midgets of quadratic superior Mandelbrot sets. Negi and
Rani [] simulated the behavior of Julia sets using switching processes. Superior Julia and
superior Mandelbrot sets have also been studied under the effect of noises [–, , , –
]. Chauhan et al. [, ] obtained new Julia and Mandelbrot sets via Ishikawa iterates (an
example of three-step feedback process). Kang et al. [] introduced Julia and Mandelbrot
sets in Jungck Mann and Jungck Ishikawa orbits.

Mandelbrot set serves as a lexicon for the Julia set. The location of the parameter c
within the Mandelbrot set furnishes information on properties of the corresponding Julia
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set. There are similarities between magnified positions of the Mandelbrot set, and the
corresponding filled Julia set holds only near certain c values such as the central junctions
of the antenna. These are c values, for which  is eventually periodic; such c values are
called Misiurewicz points [].

It is a well-known fact that s-convexity and Ishikawa iteration play a vital role in the de-
velopment of geometrical pictures of fractal sets []. Further, we know very well about
the applications of fractal sets in cryptography and other useful areas in our modern era.
In this paper, we deal with generalization of s-convexity, approximate convexity and the
results of Bernstein and Doetsch []. The concept of s-convexity and rational s-convexity
was introduced by Breckner and Orbán []. In  Breckner and Orbán [] and Hudzik
and Maligranda [] proved that s-convex functions are nonnegative when  < s < ; more-
over, the set of s-convex functions increases as s decreases.

In , Hudzik and Maligranda [] discussed a few results related with s-convex func-
tions in the second sense, and some new results about Hadamard’s inequality for s-convex
functions were discussed by Alomari and Darus [, ] and Kirmaci et al. []. In ,
Dragomir and Fitzpatrick [] proved a variant of Hermite-Hadamard’s inequality for s-
convex functions in the second sense. Takahashi [] first introduced a notion of convex
metric space, which is a more general space, and each linear normed space is a special
example of the space. Very recently Rana et al. [] discussed the dynamics of Ishikawa
iteration procedure. Recently Ojha and Mishra [] discussed an application of a fixed
point theorem for s-convex function.

In this paper, we establish some new fixed point results in the generation of Julia
and Mandelbrot sets by using Jungck Mann and Jungck Ishikawa iterations with s-
convexity. We define the Jungck Mann and Jungck Ishikawa orbits and escape criterions for
quadratic, cubic and nth degree complex polynomials by using Jungck Mann and Jungck
Ishikawa iterations with s-convexity.

2 Preliminaries
Definition . (Mandelbrot set [–]) The Mandelbrot set M for the quadratic Qc(z) =
z + c is defined as the collection of all c ∈ C for which the orbit of the point  is bounded,
that is,

M =
{

c ∈ C :
{

Qn
c ()

}
; n = , , , . . .

}

is bounded. An equivalent formulation is

M =
{

c ∈ C :
{

Qn
c () does not tend to ∞ as n → ∞}}

.

We choose the initial point , as  is the only critical point of Qc.

Definition . (Julia set []) The attractor basin of infinity is never all of C since fc has
fixed points zf = /±√

/ + c (and also points of period n that satisfy a polynomial equa-
tion of degree n, namely f n(z) = z). The nonempty, compact boundary of the attractor
basin of infinity is called the Julia set of fc,

Jc = ∂A∞(c).
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Definition . (Filled Julia set [, , –]) The filled in Julia set of the function f is
defined as

K(f ) =
{

z ∈ C : f k(z) → ∞}
.

Definition . ([, , –]) The Julia set of the function f is defined to be the boundary
of K(f ), i.e.,

J(f ) = ∂K(f ).

Definition . [] Let {zn : n = , , , , . . .} denoted by {zn} be a sequence of complex
numbers. Then we say Limn→∞ zn = ∞ if for given M > , there exists N >  such that for
all n > N , we must have |zn| > M. Thus all the values of zn lie outside a circle of radius M
for sufficiently large values of n. Let

Q(z) = azn + azn– + azn– + · · · + an–z + anz; a �= 

be a polynomial of degree n, where n ≥ . The coefficients are allowed to be complex
numbers. In other words, it follows that Qc(z) = z + c.

Definition . (Picard orbit []) Let X be a nonempty set and f : X → X. For any point
x ∈ X, the Picard orbit is defined as the set of iterates of a point x, that is,

O(f , x) =
{

xn; xn = f (xn–), n = , , , . . .
}

.

Definition . (Jungck Mann orbit []) Let us consider the sequence {xn} of iterates for
any initial point x ∈ X such that

{
Sxn+:Sxn+ = ( – α)sSxn + αsTxn

}
,

where α, s ∈ (, ) for n = , , , . . . . The above sequence of iterates with s-convexity is
called Jungck Mann orbit, denoted by JMO, which is a function of four tuple (T , x,α, s).

Definition . (Jungck Ishikawa orbit []) Let us consider the sequence {xn} of iterates
for any initial point x ∈ X such that

{
Sxn+:Sxn+ = ( – α)sSxn + αsTyn;

Syn = ( – β)sSxn + βsTxn
}

,

where α,β , s ∈ (, ) for n = , , , . . . . The above sequence of iterates with s-convexity is
called Jungck Ishikawa orbit, denoted by JIO, which is a function of six tuple (T , x,α,β , s).

Remark . The JIO reduces to:
. The Jungck Mann orbit when β = ;
. The Jungck orbit when β =  and α = .
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In nonlinear dynamics, we have two different types of points. Points that leave the inter-
val after a finite number are in a stable set of infinity. Points that never leave the interval
after any number of iterations have bounded orbits. So, an orbit is bounded if there exists a
positive real number such that the modulus of every point in the orbit is less than this num-
ber. The collection of points that are bounded, i.e., there exists M such that |Qn(z)| ≤ M,
for all n, is called a prisoner set, while the collection of points that are in the stable set of
infinity is called an escape set. Hence, the boundary of the prisoner set is simultaneously
the boundary of the escape set and that is the Mandelbrot set for Q.

3 Escape criterions for the complex polynomials in Jungck Mann orbit
The escape criterion is the key to generate the Julia sets and Mandelbrot sets. In this paper,
we prove the escape criterions of Julia and Mandelbrot sets for quadratics, cubics and the
higher degree complex polynomials in Jungck Mann orbit.

3.1 Escape criterion for the quadratic complex polynomials
For quadratic complex polynomial p(z) = z – az + c, we will choose Tz = z + c and Sz = az,
where a and c are complex numbers.

Theorem . Assume that |z| ≥ |c| > (+|a|)
sα , where  < α, s <  and c is a complex param-

eter. Define

Sz = ( – α)sSz + αsTz,

...

Szn = ( – α)sSzn– + αsTzn–,

where Sz is injective, Tz is a quadratic polynomial and n = , , , . . . , then |zn| → ∞ as
n → ∞.

Proof Let Tz = z + c and z = z, then we have

Szn = ( – α)sSzn– + αsTzn–

implies

|Sz| =
∣∣( – α)sSz + αsTz

∣∣

=
∣∣( – α)saz + αs(z + c

)∣∣

=
∣∣( – α)saz +

(
 – ( – α)

)s(z + c
)∣∣.

Using binomial series up to linear terms of α and ( – α) , we get

|Sz| =
∣∣( – sα)az +

(
 – s( – α)

)(
z + c

)∣∣

≥ (
 – s( – α)

)∣∣z + c
∣∣ –

∣∣( – sα)az
∣∣

≥ (
s – s( – α)

)∣∣z + c
∣∣ –

∣∣( – sα)az
∣∣, s < 
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≥ sα
∣∣z∣∣ – sα|c| – |az| + |sαaz|

≥ sα
∣∣z∣∣ – sα|z| – |az| + |sαaz|, |z| ≥ |c|

≥ sα
∣∣z∣∣ – sα|z| – |az|, |a| ≥ 

gives us

|az| ≥ sα
∣∣z∣∣ – |z| – |az|, sα < 

≥ sα
∣∣z∣∣ – |a||z| – |z|

= sα
∣∣z∣∣ –

(
 + |a|)|z|

= |z|(sα|z| –
(
 + |a|)).

Thus

|z| ≥ |z|
(

sα|z|
 + |a| – 

)

since |z| ≥ |c| > (+|a|)
sα , therefore there exists λ >  such that sα|z|

+|a| –  >  + λ. Consequently,
|z| > ( + λ)|z|. In particular, |zn| > |z|. So we may apply the same argument repeatedly to
find |zn| > ( + λ)n|z|. Thus, the orbit of z tends to infinity. This completes the proof. �

Corollary . Suppose that |c| > (+|a|)
sα , then the orbit of Jungck Mann JMO(Tc, ,α, s)

escapes to infinity.

In the proof of the theorem we used the fact that |z| ≥ |c| > (+|a|)
sα . Hence the following

corollary is the refinement of the escape criterion discussed in the above theorem.

Corollary . (Escape criterion) Let |z| > max{|c|, (+|a|)
sα }, then |zn| > ( + λ)n|z| and

|zn| −→ ∞ as n → ∞.

Corollary . Suppose that |zk| > max{|c|, (+|a|)
sα } for some k ≥ . Then |zk+| > ( + λ)n|zk|

and |zk+| −→ ∞ as n → ∞.

This corollary gives us an algorithm for the generation of Julia sets and Mandelbrot sets
of Tc. Given any point |z| ≤ |c|, we have computed the orbit ‘JMO’ of z. If for some n, |zn|
lies outside the circle of radius max{|c|, (+|a|)

sα }, we guarantee that the orbit escapes. Hence,
z is not in the Julia sets and also it is not in the Mandelbrot sets. On the other hand, if |zn|
never exceeds this bound, then by definition of the Julia sets and the Mandelbrot sets we
can make extensive use of this algorithm in the next section.

3.2 Escape criterion for the cubic complex polynomials
For cubic complex polynomial p(z) = z – az + c, we will choose Tz = z + c and Sz = az,
where a and c are complex numbers.

Theorem . Assume that |z| ≥ |c| > ( (+|a|)
sα ) 

 , where  < α, s <  and c is a complex pa-
rameter. Define

Sz = ( – α)sSz + αsTz,
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...

Szn = ( – α)sSzn– + αsTzn–,

where Sz is injective, Tz is a cubic polynomial and n = , , , . . . , then |zn| → ∞ as n → ∞.

Proof Let Tz = z + c and z = z, then we have

Szn = ( – α)sSzn– + αsTzn–

implies

|Sz| =
∣∣( – α)sSz + αsTz

∣∣

=
∣∣( – α)saz + αs(z + c

)∣∣

=
∣∣( – α)saz +

(
 – ( – α)

)s(z + c
)∣∣.

Using binomial series up to linear terms of α and ( – α), we get

|Sz| =
∣∣( – sα)az +

(
 – s( – α)

)(
z + c

)∣∣

≥ (
 – s( – α)

)∣∣z + c
∣∣ –

∣∣( – sα)az
∣∣

≥ (
s – s( – α)

)∣∣z + c
∣∣ –

∣∣( – sα)az
∣∣, s < 

≥ sα
∣∣z∣∣ – sα|c| – |az| + |sαaz|

≥ sα
∣∣z∣∣ – sα|z| – |az| + |sαaz|, |z| ≥ |c|

≥ sα
∣∣z∣∣ – sα|z| – |az|, |a| ≥ 

gives us

|az| ≥ sα
∣∣z∣∣ – |z| – |az|, sα < 

≥ sα
∣∣z∣∣ – |a||z| – |z|

= sα
∣∣z∣∣ –

(
 + |a|)|z|

= |z|(sα
∣∣z∣∣ –

(
 + |a|)).

Thus

|z| ≥ |z|
(

sα|z|
 + |a| – 

)

since |z| ≥ |c| > ( (+|a|)
sα ) 

 , therefore there exists λ >  such that sα|z|
+|a| –  >  + λ. Con-

sequently, |z| > ( + λ)|z|. In particular, |zn| > |z|. So we may apply the same argument
repeatedly to find |zn| > ( + λ)n|z|. Thus, the orbit of z tends to infinity. This completes
the proof. �

Corollary . Suppose that |c| > ( (+|a|)
sα ) 

 , then the orbit of Jungck Mann JMO(Tc, ,α, s)
escapes to infinity.
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In the proof of the theorem we used the fact that |z| ≥ |c| > ( (+|a|)
sα ) 

 . Hence the follow-
ing corollary is the refinement of the escape criterion discussed in the above theorem.

Corollary . (Escape criterion) Let |z| > max{|c|, ( (+|a|)
sα )}, then |zn| > ( + λ)n|z| and

|zn| −→ ∞ as n → ∞.

Corollary . Suppose that |zk| > max{|c|, ( (+|a|)
sα ) 

 } for some k ≥ . Then |zk+| > ( +
λ)n|zk| and |zk+| −→ ∞ as n → ∞.

This corollary gives us an algorithm for the generation of Julia sets and Mandelbrot sets
of Tcz = z + c.

3.3 Escape criterion for higher degree complex polynomials
For higher degree complex polynomial p(z) = zn – az + c, we will choose Tz = zn + c and
Sz = az, where n = , , , . . . , a and c are complex numbers.

Theorem . Assume that |z| ≥ |c| > ( (+|a|)
sα ) 

n– , where  < α, s <  and c is a complex
parameter. Define

Sz = ( – α)sSz + αsTz,

...

Szn = ( – α)sSzn– + αsTzn–,

where Sz is injective, Tz = zn + c and n = , , , . . . , then |zn| → ∞ as n → ∞.

Proof To prove the theorem, we follow the mathematical induction. For n = , Tz = z + c,
so the escape criterion is |z| > max{|c|, (+|a|)

sα }. For n = , Tz = z + c, so the escape criterion
is |z| > max{|c|, ( (+|a|)

sα )/}. Hence the theorem is true for n = , , . . . . Now suppose that
the theorem is true for any n. Let Tz = zn+ + c, z = z and |z| ≥ |c| > ( (+|a|)

sα ) 
n exist, then

we have

Szn = ( – α)sSzn– + αsTzn–

implies

|Sz| =
∣∣( – α)sSz + αsTz

∣∣

=
∣∣( – α)saz + αs(zn+ + c

)∣∣

=
∣∣( – α)saz +

(
 – ( – α)

)s(zn+ + c
)∣∣.

Using binomial series up to linear terms of α and ( – α), we get

|Sz| =
∣∣( – sα)az +

(
 – s( – α)

)(
zn+ + c

)∣∣

≥ (
 – s( – α)

)∣∣zn+ + c
∣∣ –

∣∣( – sα)az
∣∣

≥ (
s – s( – α)

)∣∣zn+ + c
∣∣ –

∣∣( – sα)az
∣∣ because s < 
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≥ sα
∣∣zn+∣∣ – sα|c| – |az| + |sαaz|

≥ sα
∣∣zn+∣∣ – sα|z| – |az| + |sαaz| because |z| ≥ |c|

≥ sα
∣∣zn+∣∣ – sα|z| – |az| because |a| ≥ 

gives us

|az| ≥ sα
∣∣zn+∣∣ – |z| – |az| because sα < 

≥ sα
∣∣zn+∣∣ – |a||z| – |z|

= sα
∣∣zn+∣∣ –

(
 + |a|)|z|

= |z|(sα
∣∣zn∣∣ –

(
 + |a|)).

Thus

|z| ≥ |z|
(

sα|zn|
 + |a| – 

)

since |z| ≥ |c| > ( (+|a|)
sα ) 

n , so that |z| > ( (+|a|)
sα ) 

n . Therefore there exists λ >  such that
sα|zn|
+|a| –  >  + λ. Consequently, |z| > ( + λ)|z|. In particular, |zn| > |z|. So we may apply the

same argument repeatedly to find |zn| > ( + λ)n|z|. Thus, the orbit of z tends to infinity.
This completes the proof. �

Corollary . Suppose that |c| > ( (+|a|)
sα ) 

n– , then the orbit JMO(Tc, ,α, s) escapes to in-
finity.

Corollary . (Escape criterion) Suppose that |zk| > max{|c|, ( (+|a|)
sα ) 

n– } for some k ≥ .
Then |zk+| > ( + λ)n|zk| and |zk+| −→ ∞ as n → ∞.

This corollary gives us an algorithm for the generation of Julia sets and Mandelbrot sets
of Tcz = zn + c.

4 Escape criterions for the complex polynomials in Jungck Ishikawa orbit
Now we prove the escape criterions of Julia and Mandelbrot sets for quadratics, cubics
and the higher degree complex polynomials in Jungck Ishikawa orbit.

4.1 Escape criterion for the quadratic complex polynomials
For quadratic complex polynomial p(z) = z – az + c, we will choose Tz = z + c and Sz = az,
where a and c are complex numbers.

Theorem . Assume that |z| ≥ |c| > (+|a|)
sα , |z| ≥ |c| > (+|a|)

sβ , where  < α,β , s <  and c
is a complex parameter. Define

Sz = ( – α)sSz + αsTy,

...

Szn = ( – α)sSzn– + αsTyn–,
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where

Sy = ( – β)sSz + βsTz,

...

Syn– = ( – β)sSzn– + βsTzn–,

Sz is injective, Tz is a quadratic polynomial and n = , , , . . . , then |zn| → ∞ as n → ∞.

Proof Let Tz = z + c and for z = z and y = y, then we have

Syn– = ( – β)sSzn– + βsTzn–,

implies

|Sy| =
∣∣( – β)sSz + βsTz

∣∣

=
∣∣( – β)saz + βs(z + c

)∣∣

=
∣∣( – β)saz +

(
 – ( – β)

)s(z + c
)∣∣.

Using binomial series up to linear terms of α and ( – α), we get

|Sy| =
∣∣( – sβ)az +

(
 – s( – β)

)(
z + c

)∣∣

≥ (
 – s( – β)

)∣∣z + c
∣∣ –

∣∣( – sβ)az
∣∣

≥ (
s – s( – β)

)∣∣z + c
∣∣ –

∣∣( – sβ)az
∣∣ because s < 

≥ sβ
∣∣z∣∣ – sβ|c| – |az| + |sβaz|

≥ sβ
∣∣z∣∣ – sβ|z| – |az| + |sβaz| because |z| ≥ |c|

≥ sβ
∣∣z∣∣ – sβ|z| – |az| because |a| ≥ 

gives us

|ay| ≥ sβ
∣∣z∣∣ – |z| – |az| because sβ < 

≥ sβ
∣∣z∣∣ – |a||z| – |z|

= sβ
∣∣z∣∣ –

(
 + |a|)|z|

= |z|(sβ|z| –
(
 + |a|)).

Thus

|y| ≥ |z|
(

sβ|z|
 + |a| – 

)
.

Since |z| > (+|a|)
sβ implies |z|( sβ|z|

+|a| – ) > |z|. Hence |y| > |z|( sβ|z|
+|a| – ) > |z| > sβ|z|.
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For z = z and y = y, consider

|Szn| =
∣∣( – α)sSzn– + αsTyn–

∣∣

implies

|Sz| =
∣∣( – α)sSz + αsTy

∣∣,

which yields

|az| =
∣∣( – α)sSz + αsTy

∣∣

=
∣∣( – α)saz +

(
 – ( – α)

)s(y + c
)∣∣

≥ (
 – s( – α)

)∣∣y + c
∣∣ –

∣∣( – sα)az
∣∣

≥ sα
∣∣y∣∣ –

(
 + |a|)|z|

≥ sαβ
∣∣z∣∣ –

(
 + |a|)|z|

≥ |z|(sαβ|z| –
(
 + |a|)).

Hence

|z| ≥ |z|
(

sαβ|z|
 + |a| – 

)
,

since |z| ≥ |c| > (+|a|)
sα and |z| ≥ |c| > (+|a|)

sβ , so that |z| > (+|a|)
sαβ

. Therefore there exists
λ >  such that ssαβ|z|

+|a| –  >  + λ. Consequently, |z| > ( + λ)|z|. In particular, |zn| > |z|. So
we may apply the same argument repeatedly to find |zn| > ( + λ)n|z|. Thus, the orbit of z
tends to infinity. This completes the proof. �

Corollary . Suppose that |c| > (+|a|)
sα and |c| > (+|a|)

sβ , then the orbit of Jungck Ishikawa
JIO(Tc, ,α,β , s) escapes to infinity.

In the proof of the theorem we used the facts that |z| ≥ |c| > (+|a|)
sα and |z| ≥ |c| > (+|a|)

sβ .
Hence the following corollary is the refinement of the escape criterion discussed in the
above theorem.

Corollary . (Escape criterion) Let |z| > max{|c|, (+|a|)
sα , (+|a|)

sβ }, then |zn| > ( + λ)n|z|
and |zn| −→ ∞ as n → ∞.

Corollary . Suppose that |zk| > max{|c|, (+|a|)
sα , (+|a|)

sβ } for some k ≥ . Then |zk+| > ( +
λ)n|zk| and |zk+| −→ ∞ as n → ∞.

This corollary gives us an algorithm for the generation of Julia sets and Mandelbrot sets
of Tc. Given any point |z| ≤ |c|, we have computed the orbit ‘JIO’ of z. If for some n, |zn|
lies outside the circle of radius max{|c|, (+|a|)

sα , (+|a|)
sβ }, we guarantee that the orbit escapes.

Hence, z is not in the Julia sets and also it is not in the Mandelbrot sets. On the other hand,
if |zn| never exceeds this bound, then by definition of the Julia sets and the Mandelbrot sets
we can make extensive use of this algorithm in the next section.



Nazeer et al. Journal of Inequalities and Applications  (2015) 2015:298 Page 11 of 16

4.2 Escape criterion for the cubic complex polynomials
For cubic complex polynomial p(z) = z – az + c, we will choose Tz = z + c and Sz = az,
where a and c are complex numbers.

Theorem . Assume that |z| ≥ |c| > ( (+|a|)
sα ) 

 and |z| ≥ |c| > ( (+|a|)
sβ ) 

 , where  < α,β , s <
 and c is a complex parameter. Define

Sz = ( – α)sSz + αsTy,

...

Szn = ( – α)sSzn– + αsTyn–,

where

Sy = ( – β)sSz + βsTz,

...

Syn– = ( – β)sSzn– + βsTzn–,

Sz is injective, Tz is a cubic polynomial and n = , , , . . . , then |zn| → ∞ as n → ∞.

Proof Let Tz = z + c and for z = z and y = y, then we have

Syn– = ( – β)sSzn– + βsTzn–

implies

|Sy| =
∣∣( – β)sSz + βsTz

∣∣

=
∣∣( – β)saz + βs(z + c

)∣∣

=
∣∣( – β)saz +

(
 – ( – β)

)s(z + c
)∣∣.

Using binomial series up to linear terms of α and ( – α), we get

|Sy| =
∣∣( – sβ)az +

(
 – s( – β)

)(
z + c

)∣∣

≥ (
 – s( – β)

)∣∣z + c
∣∣ –

∣∣( – sβ)az
∣∣

≥ (
s – s( – β)

)∣∣z + c
∣∣ –

∣∣( – sβ)az
∣∣ because s < 

≥ sβ
∣∣z∣∣ – sβ|c| – |az| + |sβaz|

≥ sβ
∣∣z∣∣ – sβ|z| – |az| + |sβaz| because |z| ≥ |c|

≥ sβ
∣∣z∣∣ – sβ|z| – |az| because |a| ≥ 

gives us

|ay| ≥ sβ
∣∣z∣∣ – |z| – |az| because sβ < 

≥ sβ
∣∣z∣∣ – |a||z| – |z|



Nazeer et al. Journal of Inequalities and Applications  (2015) 2015:298 Page 12 of 16

= sβ
∣∣z∣∣ –

(
 + |a|)|z|

= |z|(sβ
∣∣z∣∣ –

(
 + |a|)).

Thus

|y| ≥ |z|
(

sβ|z|
 + |a| – 

)
.

Since |z| ≥ |c| > ( (+|a|)
sβ ) 

 implies |z|( sβ|z|
+|a| – ) > |z|. Hence |y| > |z|( sβ|z|

+|a| – ) > |z| >
sβ|z|.

For z = z and y = y, consider

|Szn| =
∣∣( – α)sSzn– + αsTyn–

∣∣

implies

|Sz| =
∣∣( – α)sSz + αsTy

∣∣,

which yields

|az| =
∣∣( – α)sSz + αsTy

∣∣

=
∣∣( – α)saz +

(
 – ( – α)

)s(y + c
)∣∣

≥ (
 – s( – α)

)∣∣y + c
∣∣–

∣∣( – sα)az
∣∣

≥ sα
∣∣y∣∣ –

(
 + |a|)|z|

≥ sαβ
∣∣z∣∣ –

(
 + |a|)|z|

≥ |z|(sαβ
∣∣z∣∣ –

(
 + |a|)).

Hence

|z| ≥ |z|
(

sαβ|z|
 + |a| – 

)
,

since |z| ≥ |c| > ( (+|a|)
sα ) 

 and |z| ≥ |c| > ( (+|a|)
sβ ) 

 , so that |z| > ( (+|a|)
sαβ

) 
 . Therefore there

exists λ >  such that sαβ|z|
+|a| –  >  + λ. Consequently, |z| > ( + λ)|z|. In particular, |zn| >

|z|. So we may apply the same argument repeatedly to find |zn| > ( +λ)n|z|. Thus, the orbit
of z tends to infinity. This completes the proof. �

Corollary . Suppose that |c| > ( (+|a|)
sα ) 

 and |c| > ( (+|a|)
sβ ) 

 , then the orbit of Jungck
Ishikawa JIO(Tc, ,α,β , s) escapes to infinity.

In the proof of the theorem we used the facts that |z| ≥ |c| > ( (+|a|)
sα ) 

 and |z| ≥ |c| >
( (+|a|)

sβ ) 
 . Hence the following corollary is the refinement of the escape criterion discussed

in the above theorem.

Corollary . (Escape criterion) Let |z| > max{|c|, ( (+|a|)
sα ) 

 , ( (+|a|)
sβ ) 

 }, then |zn| > ( +
λ)n|z| and |zn| −→ ∞ as n → ∞.
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Corollary . Suppose that |zk| > max{|c|, ( (+|a|)
sα ) 

 , ( (+|a|)
sβ ) 

 } for some k ≥ . Then
|zk+| > ( + λ)n|zk| and |zk+| −→ ∞ as n → ∞.

This corollary gives us an algorithm for the generation of Julia sets and Mandelbrot sets
of Tcz = z + c.

4.3 Escape criterion for higher degree complex polynomials
For higher degree complex polynomial p(z) = zn – az + c, we will choose Tz = zn + c and
Sz = az, where n = , , , . . . , a and c are complex numbers.

Theorem . Assume that |z| ≥ |c| > ( (+|a|)
sα ) 

n– and |z| ≥ |c| > ( (+|a|)
sβ ) 

n– , where  <
α,β , s <  and c is a complex parameter. Define

Sz = ( – α)sSz + αsTy,

...

Szn = ( – α)sSzn– + αsTyn–,

where

Sy = ( – β)sSz + βsTz,

...

Syn– = ( – β)sSzn– + βsTzn–,

Sz is injective, Tz = zn + c and n = , , , . . . , then |zn| → ∞ as n → ∞.

Proof To prove the theorem, we follow the mathematical induction. For n = , Tz = z + c,
so the escape criterion is |z| > max{|c|, (+|a|)

sα , (+|a|)
sβ }. For n = , Tz = z + c, so the escape

criterion is |z| > max{|c|, ( (+|a|)
sα )/, ( (+|a|)

sβ )/}. Hence the theorem is true for n = , , . . . .
Now suppose that the theorem is true for any n. Let Tz = zn+ + c, z = z, y = y and |z| ≥
|c| > ( (+|a|)

sα ) 
n , |z| ≥ |c| > ( (+|a|)

sβ ) 
n exist, then we have

Syn– = ( – β)sSzn– + βsTzn–

implies

|Sy| =
∣∣( – β)sSz + βsTz

∣∣

=
∣∣( – β)saz + βs(zn+ + c

)∣∣

=
∣∣( – β)saz +

(
 – ( – β)

)s(zn+ + c
)∣∣.

Using binomial series up to linear terms of α and ( – α), we get

|Sy| =
∣∣( – sβ)az +

(
 – s( – β)

)(
zn+ + c

)∣∣

≥ (
 – s( – β)

)∣∣zn+ + c
∣∣ –

∣∣( – sβ)az
∣∣
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≥ (
s – s( – β)

)∣∣zn+ + c
∣∣ –

∣∣( – sβ)az
∣∣ because s < 

≥ sβ
∣∣zn+∣∣ – sβ|c| – |az| + |sβaz|

≥ sβ
∣∣zn+∣∣ – sβ|z| – |az| + |sβaz| because |z| ≥ |c|

≥ sβ
∣∣zn+∣∣ – sβ|z| – |az| because |a| ≥ 

gives us

|ay| ≥ sβ
∣∣zn+∣∣ – |z| – |az| because sβ < 

≥ sβ
∣∣zn+∣∣ – |a||z| – |z|

= sβ
∣∣zn+∣∣ –

(
 + |a|)|z|

= |z|(sβ
∣∣zn∣∣ –

(
 + |a|)).

Thus

|y| ≥ |z|
(

sβ|zn|
 + |a| – 

)
.

Since |z| > ( (+|a|)
sβ ) 

n , it implies |y|n+ > |z|n+( sβ|z|n
+|a| – )n+ > sβ|z|n+.

For z = z and y = y, consider

|Szn| =
∣∣( – α)sSzn– + αsTyn–

∣∣,

from which we obtain

|Sz| =
∣∣( – α)sSz + αsTy

∣∣

yields

|az| =
∣∣( – α)sSz + αsTy

∣∣

=
∣∣( – α)saz +

(
 – ( – α)

)s(yn+ + c
)∣∣

≥ (
 – s( – α)

)∣∣yn+ + c
∣∣ –

∣∣( – sα)az
∣∣

≥ sα
∣∣yn+∣∣ –

(
 + |a|)|z|

≥ sαβ
∣∣zn+∣∣ –

(
 + |a|)|z|

≥ |z|(sαβ
∣∣zn∣∣ –

(
 + |a|)).

Hence

|z| ≥ |z|
(

sαβ|zn|
 + |a| – 

)
,

since |z| ≥ |c| > ( (+|a|)
sα ) 

n and |z| ≥ |c| > ( (+|a|)
sβ ) 

n , so that |z| > ( (+|a|)
sαβ

) 
n . Therefore there

exists λ >  such that sαβ|zn|
+|a| –  >  + λ. Consequently, |z| > ( + λ)|z|. In particular, |zn| >
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|z|. So we may apply the same argument repeatedly to find |zn| > ( +λ)n|z|. Thus, the orbit
of z tends to infinity. This completes the proof. �

Corollary . Suppose that |c| > ( (+|a|)
sα ) 

n– and |c| > ( (+|a|)
sβ ) 

n– ,then the orbit JIO(Tc, ,
α,β , s) escapes to infinity.

Corollary . (Escape criterion) Suppose that |zk| > max{|c|, ( (+|a|)
sα ) 

n– , ( (+|a|)
sβ ) 

n– } for
some k ≥ . Then |zk+| > ( + λ)n|zk| and |zk+| −→ ∞ as n → ∞.

This corollary gives us an algorithm for the generation of Julia sets and Mandelbrot sets
of Tcz = zn + c.

5 Conclusions
In this paper, some fixed point results for Jungck Mann and Jungck Ishikawa iterations
with s-convexity have been introduced in the study of Julia and Mandelbrot sets. The new
escape criterions for complex quadratic, cubic and nth degree polynomials have been es-
tablished. If we take s = , it provides previous results existing in the relative literature.
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