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1 Introduction
In  FH Jackson defined q-derivative and definite q-integral [] (see also []). It was the
starting point of q-analysis. Today the interest in the subject has exploded. The q-analysis
has numerous applications in various fields of mathematics, e.g., dynamical systems, num-
ber theory, combinatorics, special functions, fractals and also for scientific problems in
some applied areas such as computer science, quantum mechanics and quantum physics
(see, e.g., [–]). For further development and recent results in q-analysis, we refer to the
books [, ] and [] and the references given therein. The first results concerning integral
inequalities in q-analysis were proved in  by Gauchman []. Later on some further
q-analogs of the classical inequalities have been proved (see [–]). Moreover, in 
Maligranda et al. [] derived a q-analog of the classical Hardy inequality. Further devel-
opment of Hardy’s original inequality from  (see [] and []) has been enormous.
Some of the most important results and applications have been presented and discussed
in the books [, ] and []. Hence, it seems to be a huge new research area to investigate
which of these so-called Hardy-type inequalities have their q-analogs.

The aim of this paper is to obtain some q-analogs of Hardy-type inequalities for the
Riemann-Liouville fractional integral operator of order n ∈ N and to find necessary and
sufficient conditions of the validity of these inequalities for all non-negative real functions
(see Theorems . and .).

The paper is organized as follows. In order not to disturb our discussions later on, some
preliminaries are presented in Section . The main results can be found in Section , while
the detailed proofs are given in Section .
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2 Preliminaries
First we recall some definitions and notations in q-analysis from the recent books [, ]
and [].

Let q ∈ (, ). Then a q-real number [α]q is defined by

[α]q :=
 – qα

 – q
, α ∈ R,

where limq→
–qα

–q = α.
The q-analog of the binomial coefficients is defined by

[n]q! :=

{
 if n = ,
[]q × []q × · · · × [n]q if n ∈ N ,

[
n
k

]
q

:=
[n]q!

[n – k]q![k]q!
.

We introduce the q-analog of a polynomial in the following way:

(x – a)n
q :=

{
 if n = ,
(x – a)(x – qa) · · · (x – qn–a) if n ∈ N ,

()

(x – a)n+m
q = (x – a)m

q
(
x – qma

)n
q , n, m = , , , . . . . ()

The q-gamma function �q is defined by

�q(n + ) := [n]q!, n ∈ N .

For f : [, b) → R,  < b ≤ ∞, we define the q-derivative as follows:

Dqf (x) :=
f (x) – f (qx)

( – q)x
, x ∈ [, b).

Clearly, if the function f (x) is differentiable at a point x ∈ (, ), then limq→ Dqf (x) = f ′(x).
Let  < a ≤ b < ∞. The definite q-integral (also called the q-Jackson integral) of a func-

tion f (x) is defined by the formulas

∫ a


f (x) dqx := ( – q)a

∞∑
k=

qkf
(
qka

)
. ()

Moreover, the improper q-integral of a function f (x) is defined by

∫ ∞


f (x) dqx := ( – q)

∞∑
k=–∞

qkf
(
qk), ()

provided that the series on the right-hand sides of () and () converge absolutely.
Suppose that f (x) and g(x) are two functions which are defined on (, ∞). Then

∫ ∞


f (x)Dq

(
g(x)

)
=

∞∑
j=

f
(
qj)(g

(
qj) – g

(
qj+)). ()
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Let � be a subset of (,∞) and X�(t) denote the characteristic function of �. For all z:
 < z < ∞, we have that∫ ∞


X(,z](t)f (t) dqt = ( – q)

∑
qi≤z

qif
(
qi) ()

and ∫ ∞


X[z,∞)(t)f (t) dqt = ( – q)

∑
qi≥z

qif
(
qi). ()

Al-Salam (see [] and also []) introduced the fractional q-integral of the Riemann-
Liouville operator Iq,n of order n ∈ N by

Iq,nf (x) :=


�q(n)

∫ x


Kn–(x, s)f (s) dqs,

where Kn–(x, s) = (x – qs)n–
q .

Next we will present a lemma (Lemma .) concerning discrete Hardy-type inequalities
which are proved in []. In this paper all authors studied inequalities of the form

( ∞∑
j=

ur
j
(
(Snf )j

)r
) 

r

≤ C

( ∞∑
i=

vp
i f p

i

) 
p

, ∀f ≥  ()

for the n-multiple discrete Hardy operator with weights of the form

(Snf )j =
∞∑

k=j

ω,k

k∑
k=

ω,k

k∑
k=

ω,k · · ·
kn–∑

kn–=

ωn–,kn–

kn–∑
i=

fi =
∞∑
i=j

An–(i, j)fi,

where u = {ui}∞i=, v = {vi}∞i=, ωi = {ωi,k}∞k= are positive sequences of real numbers (i.e.,
weight sequences). She also studied inequality () for the operator S∗

n defined by

(
S∗

nf
)

i :=
i∑

j=

fiAn–,(i, j),

which is the conjugate to the operator Sn, where An–,(i, j) ≡  for n =  and

An–,(i, j) =
i∑

kn–=j

ωn–,kn–

i∑
kn–=kn–

ωn–,kn– · · ·
i∑

k=k

ω,k

for n ≥ .
We consider the following Hardy-type inequalities:

( ∞∑
j=–∞

ur
j
(
(Snf )j

)r
) 

r

≤ C

( ∞∑
i=–∞

vp
i f p

i

) 
p

()

and
( ∞∑

i=–∞
ur

i
((

S∗
nf

)
i

)r
) 

r

≤ C∗
( ∞∑

i=–∞
vp

i f p
i

) 
p

. ()
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In the sequel, for any p > , the conjugate number p′ is defined by p′ := p/(p – ), and
the considered functions are assumed to be non-negative. Moreover, the symbol M � K
means that there exists α >  such that M ≤ αK , where α is a constant which may depend
only on parameters such as p, q, r. Similarly, the case K � M. If M � K � M, then we
write M ≈ K .

Lemma .
(i) Let  < p ≤ r < ∞ and n ≥ . Then inequality () holds if and only if

A(n) = max≤m≤n– Am(n) < ∞, where

Am(n) = sup
k∈Z

( ∞∑
j=k

Ap′
m,(j, k)v–p′

j

) 
p′ ( k∑

i=–∞
Ar

n–,m+(k, i)ur
i

) 
r

, n ∈N.

Moreover, A(n) ≈ C, where C is the best constant in ().
(ii) Let  < p ≤ r < ∞ and n ≥ . Then inequality () holds if and only if

A∗(n) = max≤m≤n– A
∗

m(n) < ∞, where

A
∗

m(n) = sup
k∈Z

( ∞∑
i=k

Ar
m,(i, k)ur

i

) 
r
( k∑

j=–∞
Ap′

n–,m+(k, j)v–p′
j

) 
p′

, n ∈N.

Moreover, A∗(n) ≈ C, where C is the best constant in ().

We also need the corresponding result for the case  < r < p < ∞, which was proved in
[].

Lemma .
(i) Let  < r < p < ∞ and n ≥ . Then inequality () holds if and only if

B(n) = max≤m≤n– Bm(n) < ∞, where

Bm(n) =

{ ∞∑
i=–∞

( ∞∑
j=i

Ap′
m,(j, i)v–p′

j

) p(r–)
p–r

( i∑
k=–∞

Ar
n–,m+(i, k)ur

k

) p
p–r

× +

( ∞∑
j=i

Ap′
m,(j, i)v–p′

j

)} p–r
pr

, +Ei,j = Ei,j – Ei,j+, n ∈N.

Moreover, B(n) ≈ C, where C is the best constant in ().
(ii) Let  < r < p < ∞ and n ≥ . Then inequality () holds if and only if

B∗(n) = max≤m≤n– B
∗

m(n) < ∞, where

B
∗

m(n) =

{ ∞∑
i=–∞

( ∞∑
j=i

Ar
m,(j, i)ur

j

) r
p–r

( i∑
k=–∞

Ap′
n–,m+(i, k)v–p′

k

) r(p–)
p–r

× +

( ∞∑
j=i

Ar
m,(j, i)ur

j

)} p–r
pr

, +Ei,j = Ei,j – Ei,j+,∀n ∈N.

Moreover, B∗(n) ≈ C∗, where C∗ is the best constant in ().
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Let (a(n)
i,j ) be a matrix whose elements are non-negative and non-increasing in the second

index for all i, j: ∞ > i ≥ j > –∞, and the entries of the matrix a(n)
i,j satisfy the following (so-

called discrete Oinarov condition):

a(n)
i,j ≈

n∑
γ =

a(γ )
i,k dn,γ

k,j , γ = , , . . . , n – , n ∈N ()

for all ∞ > i ≥ k ≥ j > –∞.

Remark . Note that the matrices (dγ ,m
k,j ), γ = , , . . . , m, m ≥ , are arbitrary non-

negative matrices which satisfy () (see []).

Moreover, in [] necessary and sufficient conditions for inequalities () and () were
proved for matrix operators with a matrix (a(n)

i,j ) which satisfies (). For our purposes we
need such characterization on the following form.

Lemma .
(i) Let  < p ≤ r < ∞ and the entries of the matrix (a(n)

i,j ) satisfy condition (). Then
inequality () for the operator (A–f )j :=

∑∞
i=j a(n)

i,j fi, j ∈ Z, holds if and only if at least
one of the conditions B+ < ∞ or B– < ∞ holds, where

B
– = sup

k∈Z

( ∞∑
i=k

v–p′
i

( k∑
j=–∞

(
a(n)

i,j
)rur

j

) p′
r
) 

p′
,

B
+ = sup

k∈Z

( k∑
j=–∞

ur
j

( ∞∑
i=k

(
a(n)

i,j
)p′

v–p′
i

) r
p′ ) 

r

.

Moreover, B+ ≈B– ≈ C, where C is the best constant in ().
(ii) Let  < p ≤ r < ∞. Let the entries of the matrix (a(n)

i,j ) satisfy condition (). Then
inequality () for the operator (A+f )i :=

∑i
j=–∞ a(n)

i,j fj, i ∈ Z, holds if and only if at
least one of the conditions A+ < ∞ or A– < ∞ holds, where

A
– = sup

k∈Z

( ∞∑
i=k

ur
i

( k∑
j=–∞

(
a(n)

i,j
)p′

v–p′
j

) r
p′ ) 

r

,

A
+ = sup

k∈Z

( k∑
j=–∞

v–p′
j

( ∞∑
i=k

(
a(n)

i,j
)rur

i

) p′
r
) 

p′
.

Moreover, A+ ≈A– ≈ C, where C is the best constant in ().

3 The main results
Let  < r, p ≤ ∞. Then the q-analog of the two-weighted inequality for the operator Iq,n

of the form

(∫ ∞


ur(x)

(
Iq,nf (x)

)r dqx
) 

r
≤ C

(∫ ∞


vp(x)f p(x) dqx

) 
p

()
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has several applications in various fields of science. In the classical analysis two-weighted
estimates for the Riemann-Liouville fractional operator were derived by Stepanov for the
case with parameters greater than one (see [, ]).

We consider the operator Iq,n of the following form:

Iq,nf (x) =


�q(n)

∫ ∞


X(,x](s)Kn–(x, s)f (s) dqs,

which is defined for all x > . Although it does not coincide with the operator Iq,n (they
coincide at the points x = qk , k ∈ Z), we have the equality

∫ ∞


ur(x)

(
Iq,nf (x)

)r dqx =
∫ ∞


ur(x)

(
Iq,nf (x)

)r dqx.

Therefore, inequality () can be rewritten as

(∫ ∞


ur(x)

(
Iq,nf (x)

)r dqx
) 

r
≤ C

(∫ ∞


vp(x)f p(x) dqx

) 
p

. ()

Its conjugate operator I∗
q,n can be defined by

I∗
q,nf (s) :=


�q(n)

∫ ∞


X[s,∞)(x)Kn–(x, s)f (x) dqx,

with the same kernel. The dual inequality of inequality () reads as follows:

(∫ ∞


ur(x)

(
I∗

q,nf (x)
)r dqx

) 
r
≤ C∗

(∫ ∞


vp(x)f p(x) dqx

) 
p

, ()

where C and C∗ are positive constants independent of f and u(·), v(·) are positive real-
valued functions on (,∞), i.e., weight functions. In what follows we investigate inequal-
ities () and ().

Let N = N ∪ {}. Then, for  ≤ m ≤ n – , m, n ∈ N, we use the following notations:

Qn–
m =

{∫ ∞



(∫ ∞


X(,z](s)Kp′

m (z, s)v–p′
(s) dqs

) p(r–)
p–r

×
(∫ ∞


X[z,∞)(x)Kr

n–m–(x, z)ur(x) dqx
) p

p–r

× Dq

(∫ ∞


X(,z](s)Kp′

m (z, s)v–p′
(s) dqs

)} p–r
pr

,

Qn–
m =

{∫ ∞



(∫ ∞


X(,z](s)Kr

m(z, s)ur(s) dqs
) r

p–r

×
(∫ ∞


X[z,∞)(x)K–p′

n–m–(z, x)v–p′
(x) dqx

) r(p–)
p–r

× Dq

(∫ ∞


X(,z](s)Kr

m(z, s)ur(x) dqs
)} p–r

pr
,
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Hn–
m = sup

z>

(∫ ∞


X[z,∞)(x)Kr

n–m–(x, z)ur(x) dqx
) 

r
(∫ ∞


X(,z](s)Kp′

m (z, s)v–p′
(s) dqs

) 
p′

,

Hn–
m = sup

z>

(∫ ∞


X(,z](x)Kr

m(z, x)ur(x) dqx
) 

r
(∫ ∞


X[z,∞)(s)Kp′

n–m–(s, z)v–p′
(s) dqs

) 
p′

,

A+(z) =
(∫ ∞


X[z,∞)(x)ur(x)

(∫ ∞


X(,z](t)Kp′

n–(x, t)v–p′ (t) dqt
) r

p′
dqx

) 
r
,

A–(z) =
(∫ ∞


X(,z](t)v–p′

(t)
(∫ ∞


X[z,∞)(x)Kr

n–(x, t)ur(x) dqx
) p′

r
dqt

) 
p′

.

A+(z) =
(∫ ∞


X[z,∞)(t)v–p′

(t)
(∫ ∞


X(,z](x)Kr

n–(t, x)ur(x) dqx
) p′

r
dqt

) 
p′

,

A–(z) =
(∫ ∞


X(,z](x)ur(x)

(∫ ∞


X[z,∞)(t)Kp′

n–(t, x)v–p′ (t) dqt
) r

p′
dqx

) 
r
,

Hn– = max
≤k≤n–

Hn–
k , Hn– = max

≤k≤n–
Hn–

k ,

A+
q = sup

z>
A+(z), A–

q = sup
z>

A–(z), A+
q = sup

z>
A+(z), A–

q = sup
z>

A–(z),

Qn– = max
≤k≤n–

Qn–
k and Qn– = max

≤k≤n–
Qn–

k .

Our main results read as follows.

Theorem .
(i) Let  < r < p < ∞. Then inequality () holds if and only if Qn– < ∞. Moreover,

Qn– ≈ C, where C is the best constant in ().
(ii) Let  < p ≤ r < ∞. Then inequality () holds if and only if at least one of the

conditions Hn– < ∞ or A+
q < ∞ or A–

q < ∞ holds. Moreover, Hn– ≈ A+
q ≈ A–

q ≈ C,
where C is the best constant in ().

Theorem .
(i) Let  < r < p < ∞. Then inequality () holds if and only if Qn– < ∞. Moreover,

Qn– ≈ C∗, where C∗ is the best constant in ().
(ii) Let  < p ≤ r < ∞. Then inequality () holds if and only if at least one of the

conditions Hn– < ∞ or A+
q < ∞, or A–

q < ∞ holds. Moreover, Hn– ≈A+
q ≈A–

q ≈ C,
where C is the best constant in ().

For the proofs of these results, we need the following lemmata of independent interest.

Lemma . Let x, t, s:  < s ≤ t ≤ x < ∞. Then

max
≤m≤n–

Kn–m–(x, t)Km(t, s) ≤ Kn–(x, s) ≤
n–∑
m=

[
n – 

m

]
q

Kn–m–(x, t)Km(t, s) ()

for m:  ≤ m ≤ n – , n, m –  ∈N and where Kn–(x, s) = (x – qs)n–
q .

Lemma . Let f and g be non-negative functions on (,∞), α,β ∈R and

I(z) :=
(∫ ∞


X(,z](t)f (t) dqt

)α(∫ ∞


X[z,∞)(x)g(x) dqx

)β

.
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Then

sup
z>

I(z) = ( – q)α+β sup
k∈Z

( ∞∑
j=k

qjf
(
qj))α( k∑

i=–∞
qig

(
qi))β

, ()

where at least one of α and β is non-negative.

This result was proved in [], but for the readers’ convenience we will include in Sec-
tion  a proof which is slightly simpler than that in the Russian version given in [].

Lemma . Let α,β ∈R
+, K(·, ·) be a non-negative function and

I+(z) :=
(∫ ∞


X[z,∞)(x)g(x)

(∫ ∞


X(,z](t)K(x, t)f (t) dqt

)α

dqx
)β

,

I–(z) :=
(∫ ∞


X(,z](t)f (t)

(∫ ∞


X[z,∞)(x)K(x, t)g(x) dqx

)α

dqt
)β

.

Then

sup
z>

I+(z) = sup
k∈Z

(
( – q)

k∑
j=–∞

qjg
(
qj)(( – q)

∞∑
i=k

qiK
(
qj, qi)f

(
qi))α)β

()

and

sup
z>

I–(z) = sup
k∈Z

(
( – q)

∞∑
j=k

qjf
(
qj)(( – q)

k∑
j=–∞

qjK
(
qj, qi)g

(
qj))α)β

. ()

Lemma . Let Qn–
m ,Qn–

m < ∞ for  < m ≤ n – . Then

Qn–
m =

{ ∞∑
i=–∞

(
( – q)

∞∑
t=i

qtKp′
m

(
qi, qt)v–p′(

qt)) p(r–)
p–r

×
(

( – q)
i∑

j=–∞
qjKr

n–m–
(
qj, qi)ur(qj)) p

p–r

× +

( ∞∑
n=i

( – q)qnKr
m
(
qi, qn)v–p′(

qn))} p–r
pr

and

Qn–
m =

{ ∞∑
i=–∞

(
( – q)

∞∑
t=i

qtKr
m
(
qi, qt)ur(qt)) r

p–r

×
(

( – q)
i∑

j=–∞
qjKp′

n–m–
(
qj, qi)v–p′(

qj)) r(p–)
p–r

× +

( ∞∑
n=i

( – q)qnKr
m
(
qi, qn)ur(qn))} p–r

pr

,

where +En,i = En,i – En,i+.
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4 Proofs
Proof of Lemma . Let  < s ≤ t ≤ x < ∞. First we prove the lower estimate. By using ()
we find that

Kn–m–(x, t)Km(t, s) = (x – qt)n–m–
q (t – qs)m

q

≤ (x – qs)n–m–
q (x – qs)m

q

≤ (x – qs)n–m–
q

(
x – qn–ms

)m
q

= (x – qs)n–
q = Kn–(x, s)

for  < s ≤ t ≤ x < ∞ and  ≤ m ≤ n – , m – , n ∈N. Hence,

max
≤m≤n–

Kn–m–(x, t)Km(t, s) ≤ Kn–(x, s),

and the lower estimate in () is proved.
According to () we get that K(x, t)K(t, s) = K(x, s) ≡  for n = . Moreover, we have

that

K(x, s) = (x – qs)q < (x – qt)q + (t – qs)q

=
∑

m=

[

m

]
q

K–m–(x, t)Km(t, s)

for n = .
This means that the inequality

Kn–(x, s) <
n–∑
m=

[
n – 

m

]
q

Kn–m–(x, t)Km(t, s) ()

holds for n = . Our aim is now to use induction, and we assume that () holds for n = l –,
l ≥ , and we will prove that it then holds also for n = l.

We use our induction assumption, make some calculations and obvious estimates and
find that

Kl–(x, s) = Kl–(x, s)
(
x – ql–s

)
<

( l–∑
m=

[
l – 

m

]
q

Kl–m–(x, t)Km(t, s)

)(
x – ql–s

)

<
l–∑

m=

[
l – 

m

]
q

Kl–m–(x, t)Km(t, s)
(
x – ql–m–t + ql–m–t – ql–s

)

=
l–∑

m=

[
l – 

m

]
q

Kl–m–(x, t)Km(t, s)
(
x – ql–m–t

)

+
l–∑

m=

[
l – 

m

]
q

Kl–m–(x, t)Km(t, s)ql–m–(t – qm+s
)
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=

[
l – 



]
q

Kl–(x, t)K(t, s) +
l–∑
m=

[
l – 

m

]
q

Kl–m–(x, t)Km(t, s)

+
l–∑
m=

ql–m–

[
l – 
m – 

]
q

Kl–m–(x, t)Km(t, s) +

[
l – 
l – 

]
q

K(x, t)Kl–(t, s)

=

[
l – 



]
q

Kl–(x, t)K(t, s)

+
l–∑
m=

(
ql–m–

[
l – 
m – 

]
q

+

[
l – 

m

]
q

)
Kl–m–(x, t)Km(t, s)

+

[
l – 
l – 

]
q

K(x, t)Kl(t, s).

Since, for any m ≥  (ql–m–[ l – 
m – 

]
q +

[l – 
m

]
q =

[l – 
m

]
q), we get that

Kl–(x, s) <
l–∑

m=

[
l – 
m

]
q

Kl–m–(x, t)Km(t, s).

Hence, () holds also with n = l which, by the induction axiom, means that also the
upper estimate in () is proved. The proof is complete. �

Proof of Lemma . From () and () it follows that

I(z) = ( – q)α+β

(∑
qj≤z

qjf
(
qj))α(∑

qi≥z

qig
(
qi))β

.

If z = qk , then, for k ∈ Z,

I(z) = ( – q)α+β

( ∞∑
j=k

qjf
(
qj))α( k∑

i=–∞
qig

(
qi))β

.

If qk < z < qk–, then, for k ∈ Z,

I(z) = ( – q)α+β

( ∞∑
j=k

qjf
(
qj))α( k–∑

i=–∞
qig

(
qi))β

.

Hence, for k ∈ Z and β > , we find that

sup
qk≤z<qk–

I(z) = ( – q)α+β

( ∞∑
j=k

qjf
(
qj))α( k∑

i=–∞
qig

(
qi))β

.

Therefore

sup
z>

I(z) = sup
k∈Z

sup
qk≤z<qk–

I(z)

= ( – q)α+β sup
k∈Z

( ∞∑
j=k

qjf
(
qj))α( k∑

i=–∞
qig

(
qi))β

. ()



Persson and Shaimardan Journal of Inequalities and Applications  (2015) 2015:296 Page 11 of 17

We have proved that () holds wherever β > .
Next we assume that α > . Let qk+ < z < qk , k ∈ Z. Then we get that

I(z) = ( – q)α+β sup
k∈Z

( ∞∑
j=k+

qjf
(
qj))α( k∑

i=–∞
qig

(
qi))β

,

and analogously as above we find that

sup
qk+<z≤qk

I(z) = ( – q)α+β

( ∞∑
j=k

qjf
(
qj))α( k∑

i=–∞
qig

(
qi))β

,

and () holds also for the case α > . The proof is complete. �

Proof of Lemma . Let z = qk , k ∈ Z. By using () and () we have that

I+(z) =

(
( – q)

k∑
j=–∞

qjg
(
qj)(( – q)

∞∑
i=k

qiK
(
qj, qi)f

(
qi))α)β

.

For the cases qk+ < z < qk , k ∈ Z and qk < z < qk–, k ∈ Z, we find that

I+(z) =

(
( – q)

k∑
j=–∞

qjg
(
qj)(( – q)

∞∑
i=k+

qiK
(
qj, qi)f

(
qi))α)β

and

I+(z) =

(
( – q)

k–∑
j=–∞

qjg
(
qj)(( – q)

∞∑
i=k

qiK
(
qj, qi)f

(
qi))α)β

,

respectively.
Hence, we conclude that

sup
qk+<z<qk–

I+(z) =

(
( – q)

k∑
j=–∞

qjg
(
qj)(( – q)

∞∑
i=k

qiK
(
qj, qi)f

(
qi))α)β

.

Since supz> I+(z) = supk∈Z supqk+<z<qk– I+(z), we find that () holds. The identity ()
can be proved in a similar way as (). The proof is complete. �

Proof of Lemma . Without loss of generality we may assume that Qn–
m < ∞. By using

(), () and () we can deduce that

Qn–
m =

{ ∞∑
i=–∞

(∫ ∞


X(,qi](s)Kp′

m
(
qi, s

)
v–p′

(s) dqs
) p(r–)

p–r

×
(∫ ∞


X[qi ,∞)(x)Kr

n–m–
(
x, qi)ur(x) dqx

) p
p–r

×
(∫ ∞


X(,qi](s)Kp′

m
(
qi, s

)
v–p′

(s) dqs
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–
∫ ∞


X(,qi+](s)Kp′

m
(
qi+, s

)
v–p′

(s) dqs
)} p–r

pr

=

{ ∞∑
i=–∞

(
( – q)

∞∑
t=i

qtKp′
m

(
qi, qt)v–p′(

qt)) p(r–)
p–r

×
(

( – q)
i∑

j=–∞
qjKr

n–m–
(
qj, qi)ur(qj)) p

p–r

× +

( ∞∑
n=i

( – q)qnKr
m
(
qi, qn)v–p′(

qn))} p–r
pr

,

and the first equality in Lemma . is proved.
The second inequality can be proved in a similar way, so we leave out the details. The

proof is complete. �

Proof of Theorem . By using formulas () and () we find that inequality () can be
rewritten as

( ∞∑
j=–∞

( – q)r+qjur(qj)( ∞∑
i=j

qif
(
qi)Kn–

(
qj, qi))r) 

r

≤ C

( ∞∑
i=–∞

( – q)qif p(qi)vp(qi)) 
p

. ()

Let

ur
j = ( – q)r+qjur(qj), fi = qif

(
qi),

vp
i = ( – q)qi(–p)vp(qi), W (n)(i, j) = Kn–

(
qj, qi).

()

Then we get that inequality () can be rewritten as the discrete weighted Hardy-type
inequality (see, e.g., [])

( ∞∑
j=–∞

ur
j

( ∞∑
i=j

W (n)(i, j)fi

)r) 
r

≤ C

( ∞∑
i=–∞

vp
i ap

i

) 
p

. ()

Hence, inequality () is equivalent to inequality (), where (W (n)(i, j)) is the non-
negative triangular matrix which has entries W (n)(i, j) ≥  for j ≤ i and W (n)(i, j) ≡  for
j > i and is non-decreasing in the first index for all i ≥ j > –∞.

First we will prove that, for n ∈ N ,

( – q)n–
i∑

kn–=j

[n – ]qqkn–
i∑

kn–=kn–

[n – ]qqkn– · · ·
i∑

k=k

[]qqk = W (n)(i, j). ()

We will use induction and first we note that W ()(i, j) = (qj – qi)
q ≡  for n = . If n = ,

then

( – q)
i∑

k=j

qk =
i∑

k=j

[]q
(
qk – qk+) =

(
qj – qi+)

q = W ()(i, j).
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Assume now that formula () holds for n –  ∈ N , i.e., that

( – q)n–
i∑

kn–=j

[n – ]qqkn–
i∑

kn–=kn–

[n – ]qqkn– · · ·
i∑

k=k

[]qqk = W (n–)(i, j).

By using this induction assumption we find that

( – q)n–
i∑

kn–=j

[n – ]qqkn–
i∑

kn–=kn–

[n – ]qqkn– · · ·
i∑

k=k

[]qqk

= ( – q)[n – ]q

i∑
kn–=j

qkn– W (n–)(i, j)

=
(
 – qn–) i∑

kn–=j

qkn–
(
qkn– – qi+)n–

q .

Since (qkn– – qi+)n–
q – (qkn–+ – qi+)n–

q = ( – qn–)qkn– (qkn– – qi+)n–
q , we get that ()

holds also for n. Hence, by the induction axiom, we conclude that () holds for each
n ∈ N .

Let wm,k = [m]q(qkm – qkm+), m = , , , . . . , n – . Then, by using (), we have that

W (n)(i, j) =
i∑

kn–=j

wn–,kn–

i∑
kn–=kn–

wn–,kn– · · ·
i∑

k=k

w,k . ()

Therefore, we see that the matrix operator in (), defined by

(̃Sf )j :=
∞∑
i=j

W (n)(i, j)fi, j ∈ Z,

is an n-multiple discrete Hardy operator with weights (see ()).
Therefore, Lemma . and Lemma . can be used.
(i) Let  < r < p < ∞. Then, based on Lemma ., it follows that inequality () holds if

and only if Q̃n– = max≤m≤n– Q̃n–
m < ∞, where

Q̃n–
m =

{ ∞∑
i=–∞

( ∞∑
j=i

(
W (m+)(j, i)

)p′
v–p′

j

) p(r–)
p–r

×
( i∑

k=–∞

(
W (n–m)(i, k)

)rur
k

) p
p–r

× +

( ∞∑
j=i

(
W (m+))p′

(j, i)v–p′
j

)} p–r
pr

.

Since inequality () is equivalent to inequality (), we conclude that the condition
Q̃n– < ∞ is a necessary and sufficient condition for the validity of inequality (). More-
over, Q̃n– ≈ C.
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By using the definitions () in Q̃n–
m , we get that

Q̃n–
m =

{ ∞∑
i=–∞

(
( – q)

∞∑
j=i

qjKp′
m

(
qi, qj)v–p′(

qj)) p(r–)
p–r

×
(

( – q)
i∑

k=–∞
qkKr

n–m–
(
qk , qi)ur(qk)) p

p–r

× +

( ∞∑
j=i

( – q)qjKp′
m

(
qi, qj)v–p′(

qj))} p–r
pr

.

By using Lemma ., we find that

Q̃n–
m =

{∫ ∞



(∫ ∞


X(;z](s)Kp′

m (z, s)v–p′
(s) dqs

) p(r–)
p–r

×
(∫ ∞


X[z,∞)(x)Kr

n–m–(x, z)ur(x) dqx
) p

p–r

× Dq

(∫ ∞


X(;z](s)Kp′

m (z, s)v–p′
(s) dqs

)} p–r
pr

,

i.e., that Q̃n– = Qn–. Then we find that inequality () holds if and only if Qn– < ∞. More-
over, Qn– ≈ C, where C is the best constant in (). Thus the proof of the statement (i) of
Theorem . is complete.

(ii) Let  < p ≤ r < ∞. Then from Lemma . it follows that inequality () holds if and
only if H̃n– = max≤m≤n– H̃n–

m < ∞ holds, where

H̃n–
m = sup

k∈Z

( ∞∑
i=k

(
W (m+)(i, k)

)p′
v–p′

i

) 
p′

×
( k∑

j=–∞

(
W (n–m)(k, j)

)rur
j

) 
r

, n ∈N.

If x = qj, s = qi, t = qk , for j ≤ k ≤ i, then, by Lemma . and (), we obtain that (recall
that W (n)(i, j) = Kn–(qj, qi))

W (n)(i, j) ≤
n–∑
m=

[
n – 

m

]
q

W (n–m)(k, j)W (m+)(i, k). ()

Since, again by Lemma ., max≤m≤n– W (m+)(i, k)W (n–m)(k, j) ≤ W (n)(i, j), it follows
that

W (n)(i, j) ≥ h(n)
n–∑
m=

[
n – 

m

]
q

W (m+)(i, k)W (n–m)(k, j), ()

where h(n) =
(∑n–

m=
[n – 

m

]
q

)–.
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According to () and () we have that

W (n)(i, j) ≈
n–∑
m=

W (m)(i, k)W (n,m)(k, j),

where W (n,m)(k, j) =
[n – 

m

]
qW (n–m–)(k, j).

Therefore, we have proved that the matrix (W (n)(i, j)) in () satisfies the Oinarov con-
dition () and Lemma . can be used.

Hence, we have the following necessary and sufficient conditions for the validity of in-
equality ():

Ã+ = sup
k∈Z

( k∑
j=–∞

ur
j

( ∞∑
i=k

(
W (n)(i, j)

)p′
v–p′

i

) r
p′ ) 

r

< ∞

or

Ã– = sup
k∈Z

( ∞∑
i=k

v–p′
i

( k∑
j=–∞

(
W (n)(i, j)

)rur
j

) p′
r
) 

p′
< ∞.

Since, again by Lemma ., max≤m≤n– W (m+)(i, k)W (n–m)(k, j) ≤ W (n)(i, j), we get that

H̃n– = sup
k∈Z

( k∑
j=–∞

uj

( ∞∑
i=k

(
max

≤m≤n–

(
W (n–m)(k, j)W (m+)(i, k)

))p′
v–p′

i

) r
p′ ) 

r

≤
( k∑

j=–∞
uj

( ∞∑
i=k

(
W (n)(i, j)

)p′
v–p′

i

) r
p′ ) 

r

= Ã+.

Moreover, by () we have that

Ã+ ≤ sup
k∈Z

( k∑
j=–∞

uj

( ∞∑
i=k

( n–∑
m=

[
n – 

m

]
q

W (n–m)(k, j)W (m+)(i, k)

)p′

v–p′
i

) r
p′ ) 

r

≤
n–∑
m=

[
n – 

m

]
q

H̃n– � H̃n–.

Hence, Ã+ ≈ H̃n–. In a similar way it can be proved that H̃n– ≈ Ã–.
Since inequality () is equivalent to inequality (), we get that inequality () holds if

and only if at least one of the conditions Ã+ < ∞ or Ã– < ∞, or H̃n– < ∞ holds.
Now, using notations () in H̃n–

m , we obtain that

H̃n–
m = ( – q)


r + 

p′ sup
k∈Z

( k∑
j=–∞

qjur(qj)Kr
n–m–

(
qj, qk)) 

r

×
( ∞∑

i=k

qtv–p′(
qi)Kp′

m
(
qk , qi)) 

p′
.
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The parameters and functions in H̃n–
m satisfy all the conditions of Lemma .. Therefore,

we find that

H̃n–
m = sup

z>

(∫ ∞


X[z,∞)(x)Kr

n–m–(x, z)ur(x) dqx
) 

r

×
(∫ ∞


X(,z](s)Kp′

m (z, s)v–p′
(s) dqs

) 
p′

,

i.e., that H̃n–
m = Hn–

m and H̃n– = Hn– = max≤m≤n– Hn–
m < ∞.

In a similar way as above, by using Lemma . and (), we get that A+
q = Ã+ and A–

q = Ã–.
Hence, we obtain that inequality () holds if and only if at least one of the conditions

Hn– < ∞ or A+
q < ∞, or A–

q < ∞ holds. Moreover, A+
q ≈ A–

q ≈ Hn– ≈ C, where C is the
best constant in (). Also the proof of the statement (ii) of Theorem . is complete. �

Proof of Theorem . In a similar way as in the proof of Theorem ., by using (), () and
(), we can prove that we have the following discrete Hardy-type inequality:

( ∞∑
i=–∞

ur
i

( i∑
j=–∞

W (n)
n–,(i, j)fi

)r) 
r

≤ C

( ∞∑
i=–∞

vp
i ap

i

) 
p

, ()

which is equivalent to inequality ().
(i) Let  < r < p < ∞. By using Lemma . and Lemma ., we can in a similar way as

in the proof of Theorem .(i) derive that inequality () holds if and only if Qn– < ∞
holds. Moreover, Qn– ≈ C∗, where C∗ is the best constant in (). The proof of part (i) is
complete.

(ii) Let  < p ≤ r < ∞. By using Lemma ., Lemma ., Lemma . and Lemma .,
we can, analogously as in the proof of the (ii)-part, prove that inequality () holds if and
only if at least one of the conditions Hn– < ∞ or A+

q < ∞, or A–
q < ∞ holds. Moreover,

Hn– ≈ A–
q ≈ A+

q ≈ C∗, where C∗ is the best constant in (). The proof of part (ii) is
complete. �
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