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1 Introduction
We start with the very basic concept of a convex function that has been seen as important
ever since it was defined.

Definition . A real valued function f : I →R, where I is an interval inR, is called convex
if

f
(
λx + ( – λ)y

) ≤ λf (x) + ( – λ)f (y), ()

where λ ∈ [, ], and x, y ∈ I .

One cannot deny the importance of convex functions. It is used by many mathemati-
cians in many fields of mathematics such as functional analysis, mathematical statistics,
and complex analysis (see for example [–] and references therein). In the field of in-
equalities, convex functions play a unique role. Most of the new inequalities till now de-
fined are results and consequences of (). The most cardinal and classical inequality for
convex functions is stated in the following.

Theorem . Let f : I →R be convex function and a, b ∈ I with a < b, then

f
(

a + b


)
≤ 

b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)


. ()

This famous integral inequality can be traced back to the papers presented by Hermite
[] and Hadamard []. Researchers have used inequality () several times for giving gen-
eralization and modification of Hadamard type inequalities using different modification
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of convex functions. For refinements, counterparts, and generalizations see for example
[, –].

Recently, many authors have considered a convex function on the coordinates to give the
Hadamard inequality on the coordinates and its different variants. Also they have given
many results associated with it (e.g. see [–]).

Definition . Let � := [a, b] × [c, d] ⊂ R
 with a < b and c < d. A function f : � → R

is called convex on the coordinates if the partial mapping fy : [a, b] → R, fy(u) := f (u, y)
and fx : [c, d] → R, fx(v) := f (x, v) are convex, where they are defined for all y ∈ [c, d] and
x ∈ [a, b].

We will keep the notation � = [a, b] × [c, d] throughout this paper.
Recall that a mapping f : � → R is convex in � if, for (x, y), (u, v) ∈ � and α ∈ [, ],

the following inequality holds:

f
(
α(x, y) + ( – α)(u, v)

) ≤ αf (x, y) + ( – α)f (u, v).

It can be seen that every convex mapping f : � →R is convex on the coordinates but the
converse is not true. Dragomir gave the Hadamard inequality for a rectangle in the plane
for convex functions on the coordinates (see []).

Theorem . Suppose that f : � → R is convex on the coordinates on �. Then one has
the following inequalities:

f
(

a + b


,
c + d



)

≤ 


[


b – a

∫ b

a
f
(

x,
c + d



)
dx +


d – c

∫ d

c
f
(

a + b


, y
)

dy
]

≤ 
(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dx dy

≤ 


[


b – a

∫ b

a
f (x, c) dx +


b – a

∫ b

a
f (x, d) dx +


d – c

∫ d

c
f (a, y) dy

+


d – c

∫ d

c
f (b, y) dy

]

≤ 


[
f (a, c) + f (a, d) + f (b, c) + f (b, d)

]
.

In [], Toader defined the concept of m-convexity, an intermediate between the usual
convexity and star shape properties.

Definition . The function f : [, b] → R is said to be m-convex, where m ∈ [, ], if for
every x, y ∈ [, b] and t ∈ [, ] we have

f
(
tx + m( – t)y

) ≤ tf (x) + m( – t)f (y). ()

In [] using inequality () and () Dragomir and Toader gave the following Hadamard
type inequality for m-convex functions.
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Theorem . Let f : [,∞) → R be m-convex function with m ∈ (, ] and  ≤ a < b. If
f ∈ L[a, b], then one has the following inequalities:

f
(

a + b


)
≤ 

b – a

∫ b

a

f (x) + mf ( x
m )


dx

≤ m + 


[
f (a) + f (b)


+ m

( f ( a
m ) + f ( b

m )


)]
. ()

They also gave the following related results to the Hadamard type inequality for m-
convex functions.

Theorem . Let f : [,∞) →R be an m-convex function with m ∈ (, ]. If  ≤ a < b < ∞
and f ∈ L[a, b], then one has the inequality


b – a

∫ b

a
f (x) dx ≤ min

{ f (a) + mf ( b
m )


,

f (b) + mf ( a
m )



}
.

Theorem . Let f : [,∞) →R be an m-convex function with m ∈ (, ]. If  ≤ a < b < ∞
and f is differentiable on (,∞), then one has the inequality

f (mb)
m

–
b – a


f ′(mb) ≤ 

b – a

∫ b

a
f (x) dx

≤ (b – ma)f (d) – (a – mb)f (a)
(b – a)

.

In this paper, new mean value theorems of Cauchy type for functionals associated with
nonnegative differences of the Hadamard inequality on the coordinates are proved. Gen-
eralized results related to the Hadamard inequality for m-convex functions on the coor-
dinates are also given.

2 Mean value theorems
We know that if a function f is twice differentiable on an interval I then it is convex on
I if and only if its second order derivative is nonnegative. If a function f (X) := f (x, y) has
continuous second order partial derivatives on interior of � then it is convex on � if the
Hessian matrix

Hf (X) =

⎛

⎝
∂f (X)

∂x
∂f (X)
∂y∂x

∂f (X)
∂x∂y

∂f (X)
∂y

⎞

⎠

is nonnegative definite, that is, vHf (X)vτ is nonnegative for all real nonnegative vector v
(see [], p.).

It is easy to see that f : � →R is coordinated convex on � iff

f ′′
x (y) =

∂f (x, y)
∂y and f ′′

y (x) =
∂f (x, y)

∂x

are nonnegative for all interior points (x, y) in �.
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For a real valued function f : � →R we define

H(f ) =



[


b – a

∫ b

a
f
(

x,
c + d



)
dx +


d – c

∫ d

c
f
(

a + b


, y
)

dy
]

– f
(

a + b


,
c + d



)
. ()

One can note that H(f ) ≥  if f is convex on the coordinates in �.
To give the mean value theorems of Cauchy type, we need the following lemma.

Lemma . Let f : � →R be a function such that

m ≤ ∂f (x, y)
∂x ≤ M and m ≤ ∂f (x, y)

∂y ≤ M

for all interior points (x, y) in �.
Consider the functions g, h : � →R defined as

g(x, y) =



max{M, M}
(
x + y) – f (x, y)

and

h(x, y) = f (x, y) –



min{m, m}
(
x + y).

Then g and h are coordinated convex in �.

Proof Since

∂g(x, y)
∂x = max{M, M} –

∂f (x, y)
∂x ≥ 

and

∂g(x, y)
∂y =

∂f (x, y)
∂y – min{m, m} ≥ 

for all interior points (x, y) in �, g is convex on the coordinates in �.
Similarly one can prove that h is convex on the coordinates in �. �

Theorem . Let f : � → R be a function, which has continuous partial derivatives of
second order in � and q(x, y) := x + y. Then there exist (η, ξ) and (η, ξ) in the interior
of � such that

H(f ) =



∂f (η, ξ)
∂x H(q)

and

H(f ) =



∂f (η, ξ)
∂x H(q),

provided that H(q) 	= .
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Proof Since f has continuous partial derivatives of second order in compact set �, there
exist real numbers m, m, M, and M such that

m ≤ ∂f (x, y)
∂x ≤ M and m ≤ ∂f (x, y)

∂y ≤ M.

Now consider functions g defined in Lemma .. As g is convex on the coordinates in �,

H(g) ≥ ,

that is,

H
(




max{M, M}q – f (x, y)
)

≥ .

From this we get

H(f ) ≤ max{M, M}H(q). ()

On the other hand, for the function h, one has

min{m, m}H(q) ≤ H(f ). ()

As H(q) 	= , combining inequalities () and (), we get

min{m, m} ≤ H(f )
H(q)

≤ max{M, M}.

Then there exist (η, ξ) and (η, ξ) in the interior of � such that

H(f )
H(q)

=
∂f (η, ξ)

∂x and
H(f )
H(q)

=
∂f (η, ξ)

∂y .

Hence the required result follows. �

3 Hadamard type inequalities for m-convex function on two coordinates
In this section we give Hadamard type inequalities for m-convex functions on two coor-
dinates. First of all we give the definitions of m-convex functions in two coordinates.

Definition . Let � = [, b] × [, d] ⊂ [,∞), then a function f : � → R, will be called
m-convex on the coordinates if the partial mappings fy : [, b] → R, fy(u) := f (u, y), and
fx : [, d] →R, fx(v) := f (x, v), are m-convex on [, b] and [, d], respectively.

In the following we give the Hadamard type inequality for m-convex functions on the
coordinates.

Theorem . Let � = [, b] × [, d] ⊂ [,∞) with b, d >  and f : � → R be m-convex
on the coordinates in � with m ∈ (, ]. If fx ∈ L[, d] and fy ∈ L[, b],  ≤ a < b,  ≤ c < d.
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Then we have


b – a

∫ b

a
f
(

x,
c + d



)
dx +


d – c

∫ d

c
f
(

a + b


, y
)

dy

≤ 
(b – a)(d – c)

∫ b

a

∫ d

c

(
f (x, y) + m

(
f
(

x,
y
m

)
+ f

(
x
m

, y
)))

dy dx

≤ (m + )



[
f (a, c) + f (b, c) + f (a, d) + f (b, d) + m

(
f
(

a
m

, c
)

+ f
(

b
m

, c
)

+ f
(

a
m

, d
)

+ f
(

b
m

, d
)

+ f
(

a,
c
m

)
+ f

(
a,

d
m

)
+ f

(
b,

c
m

)
+ f

(
b,

d
m

))

+ m
(

f
(

a
m

,
c
m

)
+ f

(
b
m

,
c
m

)
+ f

(
a
m

,
d
m

)
+ f

(
b
m

,
d
m

))]
.

Proof Since mapping f : � → R is m-convex on the coordinates, the functions fx and fy

are m-convex on [, d] and [, b], respectively. Using () for the function fy we have

fy

(
a + b



)
≤ 

b – a

∫ b

a

( fy(x) + mfy( x
m )



)
dx

≤ m + 


[
fy(a) + fy(b)


+ m

fy( a
m ) + fy( b

m )


]
,

that is,

f
(

a + b


, y
)

≤ 
b – a

∫ b

a

( f (x, y) + mf ( x
m , y)



)
dx

≤ m + 


[
f (a, y) + f (b, y)


+ m

f ( a
m , y) + f ( b

m , y)


]
. ()

From this one has


d – c

∫ d

c
f
(

a + b


, y
)

dy

≤ 
(b – a)(d – c)

∫ b

a

∫ d

c

( f (x, y) + mf ( x
m , y)



)
dy dx

≤ m + 
(d – c)

∫ d

c

[
f (a, y) + f (b, y)


+ m

f ( a
m , y) + f ( b

m , y)


]
dy. ()

Similarly using () for the function fx we have


b – a

∫ b

a
f
(

x,
c + d



)
dx

≤ 
(b – a)(d – c)

∫ b

a

∫ d

c

( f (x, y) + mf (x, y
m )



)
dy dx

≤ m + 
(b – a)

∫ b

a

[
f (x, c) + f (x, d)


+ m

f (x, c
m ) + f (x, d

m )


]
dx. ()
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By adding () and (), we get


b – a

∫ b

a
f
(

x,
c + d



)
dx +


d – c

∫ d

c
f
(

a + b


, y
)

dy

≤ 
(b – a)(d – c)

∫ b

a

∫ d

c

(
f (x, y) + m

(
f
(

x,
y
m

)
+ f

(
x
m

, y
)))

dy dx

≤ m + 


[


b – a

∫ b

a

(
f (x, c) + f (x, d)


+ m

f (x, c
m ) + f (x, d

m )


)
dx

+


d – c

∫ d

c

(
f (a, y) + f (b, y)


+ m

f ( a
m , y) + f ( b

m , y)


)
dy

]
. ()

For fixed y using the m-convexity of fy we have

f (x, y) ≤ f (x, y) + mf ( x
m , y)


. ()

Performing the average integral over the interval [a, b] and using () we get


b – a

∫ b

a
f (x, y) dx ≤ 

b – a

∫ b

a

( f (x, y) + mf ( x
m , y)



)
dx

≤ m + 


[
f (a, y) + f (b, y)


+ m

f ( a
m , y) + f ( b

m , y)


]
. ()

Similarly for fixed x using the m-convexity of fx one has


d – c

∫ d

c
f (x, y) dy ≤ 

d – c

∫ d

c

( f (x, y) + mf (x, y
m )



)
dy

≤ m + 


[
f (x, c) + f (x, d)


+ m

f (x, c
m ) + f (x, d

m )


]
. ()

Considering () for y = c, d, () for x = a, b, then () for y = c
m , d

m , () for x = a
m , b

m to
multiply later with m. Adding all these inequalities, we obtain


b – a

∫ b

a

(
f (x, c) + f (x, d)


+ m

f (x, c
m ) + f (x, d

m )


)
dx

+


d – c

∫ d

c

(
f (a, y) + f (b, y)


+ m

f ( a
m , y) + f ( b

m , y)


)
dy

≤ 


[


b – a

∫ b

a

( f (x, c) + mf ( x
m , c) + f (x, d) + mf ( x

m , d)


+ m
f (x, c

m ) + mf ( x
m , c

m ) + f (x, d
m ) + mf ( x

m , d
m )



)
dx

+


d – c

∫ d

c

( f (a, y) + mf (a, y
m ) + f (b, y) + mf (b, y

m )


+ m
f ( a

m , y) + mf ( a
m , y

m ) + f ( b
m , y) + mf ( b

m , y
m )



)
dy

]
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≤ 


[
f (a, c) + f (b, c) + f (a, d) + f (b, d) + m

(
f
(

a
m

, c
)

+ f
(

b
m

, c
)

+ f
(

a
m

, d
)

+ f
(

b
m

, d
)

+ f
(

a,
c
m

)
+ f

(
a,

d
m

)
+ f

(
b,

c
m

)
+ f

(
b,

d
m

))

+ m
(

f
(

a
m

,
c
m

)
+ f

(
b
m

,
c
m

)
+ f

(
a
m

,
d
m

)
+ f

(
b
m

,
d
m

))]
. ()

Now combining inequalities in () and (), we get the last two inequalities of the theo-
rem. �

Theorem . Let � = [, b] × [, d] ⊂ [,∞) with b, d >  and f : � → R be m-convex
on the coordinate in � with m ∈ (, ]. If fx ∈ L[, d] and fy ∈ L[, b], then

f
(

a + b


,
c + d



)
≤ 

b – a

∫ b

a

( f (x, c+d
 ) + mf ( x

m , c+d
 )



)
dx

+


c – d

∫ d

c

( f ( a+b
 , y) + mf ( a+b

 , y
m )



)
dy. ()

Proof By using () for y = c+d


f
(

a + b


,
c + d



)
≤ 

b – a

∫ b

a

( f (x, c+d
 ) + mf ( x

m , c+d
 )



)
dx. ()

Applying the first inequality in () for fx on [c, d] we have

f
(

x,
c + d



)
≤ 

c – d

∫ d

c

( f (x, y) + mf (x, y
m )



)
dy.

Put x = a+b
 we get

f
(

a + b


,
c + d



)
≤ 

c – d

∫ d

c

( f ( a+b
 , y) + mf ( a+b

 , y
m )



)
dy. ()

By adding () and () we get (). �

Remark . By putting m =  in Theorem . and Theorem . and combining we get
inequalities in Theorem ..

Theorem . Let f , fx, and fy be defined as in Theorem .. Then one has the following
inequality:


(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dy dx

≤ min

{


b – a

∫ b

a

( f (x, c) + mf (x, d
m )



)
dx,


b – a

∫ b

a

( f (x, d) + mf (x, c
m )



)
dx

}
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+ min

{


d – c

∫ d

c

( f (a, y) + mf ( b
m , y)



)
dy,


d – c

∫ d

c

( f (b, y) + mf ( a
m , y)



)
dy

}
. ()

Proof Since mapping f : � → R is m-convex on the coordinates, the functions fx and fy

are m-convex on [, d] and [, b], respectively. Thus we have by Theorem .


b – a

∫ b

a
fy(x) dx ≤ min

{ fy(a) + fy( b
m )


,

fy(b) + fy( a
m )



}
,

that is,


b – a

∫ b

a
f (x, y) dx ≤ min

{ f (a, y) + f ( b
m , y)


,

f (b, y) + f ( a
m , y)



}
.

Performing the average integral over the interval [c, d]


(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dx

≤ min

{


d – c

∫ d

c

( f (a, y) + f ( b
m , y)



)
dy,


d – c

∫ d

c

( f (b, y) + f ( a
m , y)



)
dy

}
. ()

Similarly for fx one has


(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dx

≤ min

{


b – a

∫ b

a

( f (x, c) + f (x, d
m )



)
dx,


b – a

∫ b

a

( f (x, d) + f (x, c
m )



)
dx

}
. ()

For the desired result we add inequalities () and (). �

Theorem . Let fx : [, d] ⊂ [,∞) → R, fx(u) = f (x, u) and fy : [, b] ⊂ [,∞) → R,
fy(v) = f (v, y) be partial m-convex mappings with m ∈ (, ]. If  ≤ a < b < ∞,  ≤ c < d < ∞,
also if fx ∈ L[, d] and fy ∈ L[, b] with fy and fx are differentiable on (,∞), then we have
the following inequality:


m

(


b – a

∫ b

a
f (x, md) dx +


d – c

∫ d

c
f (mb, y) dy

)

–



(
d – c
b – a

∫ b

a

∂f (x, md)
∂y

dx +
b – a
d – c

∫ d

c

∂f (mb, y)
∂x

dy
)

≤ 
(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dy dx ≤ 

(b – a)(d – c)

×
[

(d – mc)
∫ b

a
f (x, d) dx + (b – ma)

∫ d

c
f (b, y) dy

–
(

(c – md)
∫ b

a
f (x, c) dx + (a – mb)

∫ d

c
f (a, y) dy

)]
. ()
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Proof Since the functions fx and fy are m-convex on [, d] and [, b], respectively, and the
functions fx and fy are differentiable on (,∞), applying Theorem . we have

fx(md)
m

–
d – c


f ′
x(md) ≤ 

d – c

∫ d

c
fx(y) dy

≤ (d – mc)fx(d) – (c – md)fx(c)
(d – c)

and

fy(mb)
m

–
b – a


f ′
y (mb) ≤ 

b – a

∫ b

a
fy(x) dy

≤ (b – ma)fy(b) – (a – mb)fy(a)
(b – a)

.

This gives us

f (x, md)
m

–
d – c


∂f (x, md)

∂y
≤ 

d – c

∫ d

c
f (x, y) dy

≤ (d – mc)f (x, d) – (c – md)f (x, c)
(d – c)

()

and

f (mb, y)
m

–
b – a


∂f (mb, y)

∂x
≤ 

b – a

∫ b

a
f (x, y) dx

≤ (b – ma)f (b, y) – (a – mb)f (a, y)
(b – a)

. ()

Integrating () over [a, b] and () over [c, d] we get


b – a

∫ b

a

f (x, md)
m

dx –
d – c

(b – a)

∫ b

a

∂f (x, md)
∂y

dx

≤ 
(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dy dx

≤ 
b – a

∫ b

a

(
(d – mc)f (x, d) – (c – md)f (x, c)

(d – c)

)
dx ()

and


d – c

∫ d

c

f (mb, y)
m

dy –
b – a

(d – c)

∫ d

c

∂f (mb, y)
∂x

dy

≤ 
(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dy dx

≤ 
d – c

∫ d

c

(
(b – ma)f (b, y) – (a – mb)f (a, y)

(b – a)

)
dy, ()

respectively.
Adding () and () we get (). �
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15. Pečarić, JE, Dragomir, SS: A generalisation of Hadamard’s inequality for isotonic linear functionals. Rad. Mat. 7,

103-107 (1991)
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