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D(A) and rangeR(A) in H is calledmonotoneif

�Ax …Ay,x …y� 	 �, � x,y � D(A).

A mappingA is calledα-inverse strongly monotoneif there exists a positive real numberα

such that

�Ax …Ay,x …y� 	 α� Ax …Ay� � , � x,y � D(A).

A mapping A is calledα-strongly monotoneif there exists a positive real numberα such

that

�Ax …Ay,x …y� 	 α� x …y� � , � x,y � D(A).

It is obvious to see that the class of monotone mappings includes the class ofα-inverse

strongly monotone andα-strongly monotone mappings. Furthermore, we observe that

anyα-inverse strongly monotone mappingsA is a monotone and�
α

-Lipschitzian mapping.

We observe thatA is monotone if and only ifT := I …A is pseudocontractive and thus

a zero ofA, N(A) := {x � D(A) : Ax = � }, is a “xed point of T , F(T) := {x � D(T) : Tx = x}.

It is now well known that if A is monotone then the solutions of the equationAx = � cor-

respond to the equilibrium points of some evolution systems. Consequently, considerable

research e�orts have been devoted to iterative methods for approximating “xed points

of T when T is nonexpansive or pseudocontractive (see,e.g., [� …�� ] and the references

therein).

Let C be a nonempty, closed, and convex subset of a real Hilbert spaceH. The classical

variational inequality problem is to “nd au � C such that �v …u,Au� 	 � for all v � C,

whereA is a nonlinear mapping. The set of solutions of the variational inequality is de-

noted byVI (C,A). In the context of the variational inequality problem, this implies that

u � VI (C,A) if and only if u = PC(u …λAu), � λ > �, where PC is a metric projection ofH

into C.

It is now well known that variational inequalities cover disciplines such as partial di�er-

ential equations, optimal control, optimization, mathematical programming, mechanics

and “nance. See, for instance, [�� …�� ].

Variational inequalities were introduced and studied by Stampacchia [�� ] in ���	. Since

then, several numerical methods have been developed for solving variational inequalities;

see, for instance, [�� , �
 , �� …�� ] and the references therein.

In ����, Takahashi and Toyoda [ �	 ] introduced the following iterative scheme under

the assumption that a setC 
 H is closed and convex, a mappingT of C into itself is

nonexpansive, and a mappingA of C into H is α-inverse strongly monotone:

�
x� � C,

xn+� = αnxn + (� …αn)TPC(xn …λnAxn), n 	 �,
(�.�)

for all n 	 �, where {αn} is a sequence in (�, �) and{λn} is a sequence in (�, �α). They proved

that if F(T) � VI (C,A) is nonempty, then the sequence{xn} generated by (�.� ) converges

weaklyto somez � F(T) � VI (C,A).
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In order to obtain a strong convergence theorem, Iiduka and Takahashi [�� ] reconsid-

ered the common element problem via the following iterative algorithm:

�
x� = x � C,

xn+� = αnx + (� …αn)TPC(xn …λnAxn), n 	 �,
(�.�)

for all n 	 �, where T : C � C is a nonexpansive mapping,A : C � H is a α-inverse

strongly monotone mapping,{αn} is a sequence in (�, �) and{λn} is a sequence in (�, �α).

They proved that ifF(T) � VI (C,A) is nonempty, then the sequence{xn} generated by (�.� )

converges stronglyto somez � F(T) � VI (C,A).

In ����, Nadezhkina and Takahashi [ �
 ] introduced the following hybrid method for

“nding an element of F(S) � VI (C,A) and established the following strong convergence

theorem for the sequence generated by this process.

Theorem NT [�
 ] Let C be a closed convex subset of a real Hilbert space H. Let A be

a Lipschitzian monotone mapping of C into H with Lipschitz constant L and let S be a

nonexpansive mapping of C into itself such that F(S) � VI (C,A) �= 
 . Let {xn}, {yn} and {zn}

be sequences generated by

�
���������

���������

x� = x � C,

yn = PC(xn …λnAxn),

zn = αnxn + (� …αn)SPC(xn …λnAyn),

Cn = {z � C : � zn …z� � � xn …z�} ,

Qn = {z � C : �xn …z,x …xn� 	 � },

xn+� = PCn� Qnx,

for every n	 �, where{λn} 
 [a,b] for some a,b � (�, �
L ) and {αn} 
 [�, c] for some c� [�, �).

Then the sequences{xn}, {yn} and{zn} converge strongly to the same element of PF(S)� VI (C,A)x.

Our concern now is the following: can an approximation sequence{xn} be constructed

which converges to a common point of the solution set of a variational inequality problem for

a monotone mapping and the “xed point set of a continuous pseudocontractive mapping?

In this paper, it is our purpose to introduce an iterative scheme which converges strongly

to a common element of the solution set of a variational inequality problem for Lips-

chitzian monotone mapping and the “xed point set of a continuous pseudocontractive

mapping in Hilbert spaces. Our results provide an a
rmative answers to our concern. In

addition, a numerical example which supports our main result is presented. Our theorems

will extend and unify most of the results that have been proved for this important class of

nonlinear operators.

2 Preliminaries
Let C be a nonempty, closed, and convex subset of a real Hilbert spaceH. It is well known

that for every pointx � H, there exists a unique nearest point inC, denoted byPCx, i.e.,

� x …PCx� � � x …y� for all y � C. (�.�)
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The mapping PC is called the metric projection ofH onto C and characterized by the
following properties (see,e.g., [�� ]):

PCx � C and �x …PCx,PCx …y� 	 �, for all x � H,y � C and (�.�)

� y …PCx� � � � x …y� � …� x …PCx� � , for all x � H,y � C. (�.�)

In the sequel we shall make use of the following lemmas.

Lemma . [�� ] Let H be a real Hilbert space. Then, for all x,y � H and α � [�, �] the
following equality holds:

�
� αx + (� …α)y

�
� �

= α� x� � + (� …α)� y� � …α(� …α)� x …y� � .

Lemma . Let H be a real Hilbert space. Then for any given x,y � H, the following in-
equality holds:

� x + y� � � � x� � + � �y,x + y� .

Lemma . [�� ] Let {an} be a sequence of nonnegative real numbers satisfying the follow-
ing relation:

an+� � (� …αn)an + αnδn, n 	 n� ,

where {αn} 
 (�, �) and {δn} 
 R satisfying the following conditions: limn�� αn = �,
� �

n=� αn = � , and lim supn�� δn � �. Then limn�� an = �.

Lemma . [�� ] Let {an} be sequences of real numbers such that there exists a subsequence
{ni} of {n} such that ani < ani +� , for all i � N. Then there exists a nondecreasing sequence
{mk} 
 N such that mk � � and the following properties are satis“ed by all(su�ciently
large) numbers k� N:

amk � amk+� and ak � amk+� .

In fact, mk = max{j � k : aj < aj+� }.

Lemma . [�� ] Let C be a nonempty, closed, and convex subset of a real Hilbert space H.
Let T : C � H be continuous pseudocontractive mapping. For r > � and x � H, de“ne a
mapping Fr : H � C as follows:

Frx :=
	

z � C : �y …z,Tz� …
�
r



y …z, (� + r)z…x

�
� �, � y � C

�

for all x � H. Then the following hold:
() Fr is single-valued;
() Fr is firmly nonexpansive type mapping, i.e., for all x,y � H ,

� Frx …Fry� � � � Frx …Fry,x …y� ;
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() F(Fr) = F(T);
() F(T) is closed and convex.

Let C be a nonempty, closed, and convex subset of a real Hilbert spaceH. LetT : C � H,
be a continuous pseudocontractive mapping. Then, in what follows,Trn : H � C are de-

“ned as follows: Forx � H and{rn} 
 [e,� ), for somee> �, de“ne

Trnx :=
	

z � C : �y …z,Tz� …
�
rn



y …z, (� + rn)z…x

�
� �, � y � C

�
.

Now, we prove our main convergence theorem.

3 Main result
Theorem . Let C be a nonempty, closed, and convex subset of a real Hilbert space H.

Let T : C � C be a continuous pseudocontractive mapping. Let A : C � H be a Lips-
chitzian monotone mapping with Lipschitz constant L. Assume thatF = F(T) � VI (C,A)

is nonempty. Let {xn} be a sequence generated from an arbitrary x� ,u � C by

�
zn = PC[xn …γnAxn],

xn+� = αnu + (� …αn)(anxn + bnTrnxn + cnPC[xn …γnAzn]),
(�.�)

where PC is a metric projection from H onto C, γn 
 [a,b] 
 (�, �
L ), and {an},{bn},{cn} 


(a,b) 
 (�, �), {αn} 
 (�, c) 
 (�, �) satisfying the following conditions: (i) an + bn + cn = �, (ii)

limn�� αn = �,
�

αn = � . Then{xn} converges strongly to the point x� ofF nearest to u.

Proof Let un = PC(xn …γnAzn) and wn = Trnxn for all n 	 �. Let p � F . Then from

Lemma�.
 we get� wn …p� � � Trnxn …Trnp� � � xn …p� . In addition, from (�.� ) we have

� un …p� � � � xn …γnAzn …p� � …� xn …γnAzn …un� �

= � xn …p� � …� xn …un� � + � γn�Azn,p …un�

= � xn …p� � …� xn …un� � + � γn


�Azn …Ap,p …zn�

+ �Ap,p …zn� + �Azn,zn …un�
�

� � xn …p� � …� xn …un� � + � γn�Azn,zn …un�

� � xn …p� � …� xn …zn� � … ��xn …zn,zn …un�

…� zn …un� � + � γn�Azn,zn …un�

= � xn …p� � …� xn …zn� � …� zn …un� �

+ � �xn …γnAzn …zn,un …zn� , (�.�)

and from (�.� ), we obtain

�xn …γnAzn …zn,un …zn� = �xn …γnAxn …zn,un …zn� + �γnAxn …γnAzn,un …zn�

� � γnAxn …γnAzn,un …zn�

� γnL� xn …zn�� un …zn� .
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Thus, we get

� un …p� � � � xn …p� � …� xn …zn� � …� zn …un� �

+ � γnL� xn …zn�� un …zn�

� � xn …p� � …� xn …zn� � …� zn …un� �

+ γnL
�
� xn …zn� � + � zn …un� � �

� � xn …p� � + (γnL … �)
�
� xn …zn� � + � zn …un� � �

(�.�)

� � xn …p� � . (�.	)

Furthermore, from (�.� ) and Lemma�.� we have the following:

� xn+� …p� � =
�
� αnu + (� …αn)(anxn + bnwn + cnun) …p

�
� �

� αn� u …p� � + (� …αn)
�
� an(xn …p) + bn(wn …p)

+ cn(un …p)
�
� �

� αn� u …p� � + (� …αn)
�
an� xn …p� � + bn� wn …p� �

+ cn� un …p� � �
… (� …αn)anbn� wn …xn� �

… (� …αn)ancn� un …xn� � … (� …αn)bncn� wn …un� � ,

and using (�.� ) we get

� xn+� …p� � � αn� u …p� � + (� …αn)an� xn …p� � + (� …αn)bn� xn …p� �

+ (� …αn)cn
�
� xn …p� � + (γnL … �)

�
� xn …zn� � + � zn …un� � ��

… (� …αn)anbn� wn …xn� � … (� …αn)ancn� un …xn� �

… (� …αn)bncn� wn …un� �

� αn� u …p� � + (� …αn)� xn …p� �

+ (� …αn)cn(γnL … �)
�
� xn …zn� � + � zn …un� � �

… (� …αn)anbn� wn …xn� � … (� …αn)ancn� un …xn� �

… (� …αn)bncn� wn …un� � . (�.
)

SinceγnL < �, from ( �.
 ) we get

� xn+� …p� � � αn� u …p� � + (� …αn)� xn …p� � . (�.�)

Thus, by induction,

� xn+� …p� � � max
�
� u …p� � , � x� …p� � �

, � n 	 �,

which implies that {xn} and{zn} are bounded.
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Let x� = PF (u). Then, using (�.� ), Lemma�.� , and following the methods used to get

(�.
 ) we obtain that

�
� xn+� …x�

�
� �

=
�
� αnu + (� …αn)(anxn + bnwn + cnun) …x�

�
� �

�
�
� αn



u …x� �

+ (� …αn)
�
(anxn + bnwn + cnun) …x� � �� �

� (� …αn)
�
� anxn + bnwn + cnun …x�

�
� �

+ � αn


u …x� ,xn+� …x� �

� (� …αn)an
�
� xn …x�

�
� �

+ (� …αn)bn
�
� wn …x�

�
� �

+ (� …αn)cn
�
� un …x�

�
� �

… (� …αn)bnan� wn …xn� �

… (� …αn)bncn� un …wn� � … (� …αn)ancn� xn …un� �

+ � αn


u …x� ,xn+� …x� �

,

which implies that

�
� xn+� …x�

�
� �

� (� …αn)an
�
� xn …x�

�
� �

+ (� …αn)bn
�
� xn …x�

�
� �

+ (� …αn)cn
� �� xn …x�

�
� �

+ (γnL … �)
�
� xn …zn� � + � zn …un� � ��

… (� …αn)bnan� wn …xn� � … (� …αn)bncn� un …wn� �

… (� …αn)ancn� xn …un� � + � αn


u …x� ,xn+� …x� �

� (� …αn)� xn …x� � � + (� …αn)cn(γnL … �)
�
� xn …zn� � + � zn …un� � �

… (� …αn)bnan� wn …xn� � … (� …αn)bncn� un …wn� �

… (� …αn)ancn� xn …un� � + � αn


u …x� ,xn+� …x� �

(�.�)

� (� …αn)
�
� xn …x�

�
� �

+ � αn


u …x� ,xn+� …x� �

. (�.�)

Now, we consider two cases.

Case�. Suppose that there existsn� � N such that{� xn …x� �} is decreasing for alln 	 n� .

Then we get{� xn …x� �} is convergent. Thus, from (�.� ) we have

xn …zn � �, zn …un � � as n � � , (�.�)

and

wn …xn � �, un …wn � �, xn …un � � as n � � . (�.��)

Moreover, from the fact thatαn � �, as n � � , (�.� ), (�.� ), and (�.�� ) we have

� xn+� …xn� =
�
� αn(u …xn) + (� …αn)



bnwn + cnun … (� …an)xn

� ��

� αn� u …xn� + (� …αn)bn� wn …xn� + (� …αn)cn� un …xn� � �, (�.��)

asn � � .
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Furthermore, since{xn+� } is bounded subset ofH which is re”exive, we can choose
a subsequence{xni +� } of {xn+� } such that xni +� ⇀ z and lim supn�� �u …x� ,xn+� …x� � =
limi�� � u …x� ,xni +� …x� � . This implies from (�.�� ) that xni ⇀ z.

Now, we show thatz � VI (C,A). But, sinceA is Lipschitz continuous, we haveAzn …
Aun � �, as n � � and from (�.� ) and (�.�� ) we haveuni ⇀ z andzni ⇀ z. Let

Tv =

�
Av + NCv, if v � C,


 , if v /� C.
(�.��)

Then T is maximal monotone and � � Tv if and only if v � VI (C,A) (see,e.g.[�� ]). Let
(v,w) � G(T). Then we havew � Tv = Av + NCv and hencew …Av � NCv. So, we have
�v …u,w …Av� 	 �, for all u � C. On the other hand, fromun = PC(xn …γnAzn) andv � C,
we have�xn …γnAzn …un,un …v� 	 �, and hence,�v…un, (un …xn)/γn +Azn� 	 �. Therefore,
from w …Av � NCv anduni � C we have

�v …uni ,w� 	 � v …uni ,Av� 	 � v …uni ,Av� …


v …uni , (uni …xni )/γni + Azni

�

= �v …uni ,Av …Auni � + �v …uni ,Auni …Azni �

…


v …uni , (uni …xni )/γni

�

	 � v …uni ,Auni …Azni � …


v …uni , (uni …xni )/γni

�
.

Hence, we have�v…z,w� 	 �, as i � � . SinceT is maximal monotone, we havez � T …�(�)
and hencez � VI (C,A).

Now, we show thatz � F(T). Note that, from the de“nition of wni , we have

�y …wni ,Twni � …
�

rni



y …wni , (rni + �) wni …xni

�
� �, � y � C. (�.��)

Put zt = tv + (� …t)z for all t � (�, �] and v � C. Consequently, we getzt � C. From (�.�� )
and pseudocontractivity ofT it follows that

�wni …zt ,Tzt � 	 � wni …zt ,Tzt � + �zt …wni ,Twni � …
�

rni



zt …wni , (� + rni )wni …xni

�

= …�zt …wni ,Tzt …Twni � …
�

rni

� zt …wni ,wni …xni � …�zt …wni ,wni �

	 …� zt …wni �
� …

�
rni

� zt …wni ,wni …xni � …�zt …wni ,wni �

= �wni …zt ,zt � …
�
zt …wni ,

wni …xni

rni

�
.

Then, sincewn …xn � �, as n � � we obtain
wni …xni

rni
� � as i � � . Thus, it follows that

�z…zt ,Tzt � 	 � z…zt ,zt � asi � � ,

and hence

…�v …z,Tzt � 	 …�v …z,zt � , � v � C.
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Letting t � � and using the fact that T is continuous we obtain

…�v …z,Tz� 	 …�v …z,z� , � v � C.

Now, let v = Tz. Then we obtainz = Tz and hencez � F(T). Therefore, by (�.� ) we imme-

diately obtain

lim sup
n��



u …x� ,xn+� …x� �

= lim
i��



u …x� ,xni +� …x� �

=


u …x� ,z…x� �

� �. (�.�	)

Then it follows from (�.� ), (�.�	 ), and Lemma�.� that � xn …x� � � �, as n � � . Conse-

quently, {xn} converges to the minimum norm point ofF .

Case�. Suppose that there exists a subsequence{ni} of {n} such that

�
� xni …x�

�
� <

�
� xni +� …x�

�
� ,

for all i � N. Then, by Lemma�.	 , there exists a nondecreasing sequence{mk} 
 N such

that mk � � , and

�
� xmk …x�

�
� �

�
� xmk+� …x�

�
� and

�
� xk …x�

�
� �

�
� xmk+� …x�

�
� , (�.�
)

for all k � N. Now, from (�.� ) we get

xmk …zmk � �, zmk …umk � � as k � � , (�.��)

and

wmk …xmk � �, umk …wmk � �, xmk …umk � � as k � � . (�.��)

Thus, like in Case �, we obtainxmk+� …xmk � � and

lim sup
k��



u …x� ,xmk+� …x� �

� �. (�.��)

Now, from (�.� ) we have

�
� xmk+� …x�

�
� �

� (� …αmk)
�
� xmk …x�

�
� �

+ � αmk



u …x� ,xmk+� …x� �

, (�.��)

and hence (�.�
 ) and (�.�� ) imply that

αmk

�
� xmk …x�

�
� �

�
�
� xmk …x�

�
� �

…
�
� xmk+� …x�

�
� �

+ � αmk



u …x� ,xmk+� …x� �

� +� αmk



u …x� ,xmk+� …x� �

.

But since thatαmk > �, we obtain

�
� xmk …x�

�
� �

� +�


u …x� ,xmk+� …x� �

.
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Then, using (�.�� ), we get� xmk …x� � � �, as k � � . This together with (�.�� ) imply
that � xmk+� …x� � � �, as k � � . But � xk …x� � � � xmk+� …x� � , for all k � N, thus we
obtain xk � x� . Therefore, from the above two cases, we can conclude that{xn} converges
strongly to the point x� of F nearest tou. �

If, in Theorem �.� , we assume thatT = I , the identity mapping onC, we obtain the
following corollary.

Corollary . Let C be a nonempty, closed, and convex subset of a real Hilbert space H.
Let A : C � H be a Lipschitzian monotone mapping with Lipschitz constant L.Assume that
VI (C,A) is nonempty. Let {xn} be a sequence generated from an arbitrary x� ,u � C by

�
zn = PC[xn …γnAxn],

xn+� = αnu + (� …αn)(anxn + (� …an)PC[xn …γnAzn]),
(�.��)

where PC is a metric projection from H onto C, γn 
 [a,b] 
 (�, �
L ), and {an} 
 (a,b) 


(�, �), {αn} 
 (�, c) 
 (�, �) satisfying limn�� αn = �,
�

αn = � . Then {xn} converges
strongly to the point x� = PVI(C,A)(u).

If, in Theorem �.� , we assume thatA = �, we obtain the following corollary, which is
Theorem �.� of [ �� ].

Corollary . Let C be a nonempty, closed, and convex subset of a real Hilbert space H.
Let T : C � C be a continuous pseudocontractive mapping.Assume that F(T) is nonempty.
Let {xn} be a sequence generated from an arbitrary x� ,u � C by

xn+� = αnu + (� …αn)


anxn + (� …an)Trnxn

�
,

where{an} 
 (a,b) 
 (�, �), {αn} 
 (�, c) 
 (�, �) satisfyinglimn�� αn = �,
�

αn = � . Then
{xn} converges strongly to the point x� = PF(T)(u).

If, in Theorem �.� , we assume thatA is α-inverse strongly monotone thenA is Lips-
chitzian and we obtain the following corollary.

Corollary . Let C be a nonempty, closed, and convex subset of a real Hilbert space H.
Let T : C � C be a continuous pseudocontractive mapping. Let A : C � H an α-inverse
strongly monotone mapping. Assume thatF = F(T) � VI (C,A) is nonempty. Let {xn} be a
sequence generated from an arbitrary x� ,u � C by

�
zn = PC[xn …γnAxn],

xn+� = αnu + (� …αn)(anxn + bnTrnxn + cnPC[xn …γnAzn]),
(�.��)

where PC is a metric projection from H onto C, γn 
 [a,b] 
 (�, α), and {an},{bn},{cn} 

(a,b) 
 (�, �), {αn} 
 (�, c) 
 (�, �) satisfying(i) an + bn + cn = �, (ii) limn�� αn = �,
�

αn = � . Then{xn} converges strongly to the point x� = PF (u).

If, in Theorem �.� , we assume thatC = H, a real Hilbert space, thenPC becomes identity
mapping andVI (C,A) = A…�(�), and hence we get the following corollary.
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Corollary . Let H be a real Hilbert space. Let T : H � H be a continuous pseudocon-
tractive mapping. Let A : H � H be a Lipschitzian monotone mapping with Lipschitz con-
stant L. Assume thatF = F(T) � A…�(�) is nonempty. Let {xn} be a sequence generated from
an arbitrary x� ,u � C by

�
zn = xn …γnAxn,

xn+� = αnu + (� …αn)(anxn + bnTrnxn + cn[xn …γnAzn]),
(�.��)

whereγn 
 [a,b] 
 (�, �
L ) and {an},{bn},{cn} 
 (a,b) 
 (�, �), {αn} 
 (�, c) 
 (�, �) satisfy-

ing the following conditions: (i) an + bn + cn = �, (ii) limn�� αn = �,
�

αn = � . Then {xn}
converges strongly to the point x� ofF nearest to u.

We also note that the method of proof of Theorem�.� provides the following theorem
for approximating the common minimum-norm point of the solution set of a variational

inequality problem for monotone mapping and “xed point set of a continuous pseudo-
contractive mapping.

Theorem . Let C be a nonempty, closed, and convex subset of a real Hilbert space H.
Let T : C � C be a continuous pseudocontractive mapping. Let A : C � H be a Lips-

chitzian monotone mapping with Lipschitz constant L. Assume thatF = F(T) � VI (C,A)
is nonempty. Let {xn} be a sequence generated from an arbitrary x� ,u � C by

�
zn = PC[xn …γnAxn],

xn+� = PC[(� …αn)(anxn + bnTrnxn + cnPC[xn …γnAzn])],
(�.��)

where PC is a metric projection from H onto C, γn 
 [a,b] 
 (�, �
L ), and {an},{bn},{cn} 


(a,b) 
 (�, �), {αn} 
 (�, c) 
 (�, �) satisfying the following conditions: (i) an + bn + cn = �,
(ii) limn�� αn = �,

�
αn = � . Then{xn} converges strongly to the minimum-norm point x�

ofF .

Remark . Theorem �.� extends Theorem �.� of Takahashi and Toyoda [�	 ] and The-
orem �.� of Yao et al. [�� ], Theorem �.� of Iiduka and Takahashi [�� ] and the results of
Nadezhkina and Takahashi [�
 ] in the sense that our scheme provides a common point

of the solution set of variational inequalities for a more general class of monotone map-
pings and/or the “xed point set of a more general class of continuous pseudocontractive
mappings. Our results provide an a
rmative answer to our concern.

4 Applications to minimization problems
In this section, we study the problem of “nding a minimizer of a continuously Fréchet

di�erentiable convex functional in Hilbert spaces. Letf be a continuously Fréchet di�er-
entiable convex functionals ofH into (…� ,� ) such that the gradient off , (� f ) is contin-
uous and monotone. Forγ > �, and x � H, let Trnx := {z � H : �y…z, (I … (� f ))z� …�

γ
� y…z,

(� + γ )z…x� � �, � y � H}. Then the following theorem holds.

Theorem . Let H be a real Hilbert space. Let f be a continuously Fréchet di�erentiable
convex functionals of H into(…� ,� ) such that the gradient of f, (� f ) is continuous and
monotone such thatN := arg miny� C f (y) �= 
 . Let {xn} be a sequence generated from an
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arbitrary x � ,u � C by

xn+� = αnu + (� …αn)


anxn + (� …an)Trnxn

�
,

where{an} 
 (a,b) 
 (�, �), {αn} 
 (�, c) 
 (�, �) satisfyinglimn�� αn = �,
�

αn = � . Then

{xn} converges strongly to the point x� � N nearest to u.

Proof We note that T := (I …� f ) is continuous pseudocontractive mapping withF(T) =
(� f )…�(�) and from the convexity and Fre�het di�erentiability of f we see that the zero of

� f is given byN = arg miny� C f (y). Thus, the conclusion follows from Corollary�.� . �

5 Numerical example
In this section, we give an example of a continuous pseudocontractive mappingT and a
Lipschitzian monotone mapping with all the conditions of Theorem�.� and some numer-

ical experiment results to explain the conclusion of the theorem.

Example . Let H = R with Euclidean norm. LetC = […�, �] and T : C � R be de“ned

by

Tx :=

�
…�x, x � […�, �],

x, (�, �],

and

Ax :=

�
�, x � […�, �

� ],

�( x …�
� )� , x � ( �

� , �].
(
.�)

Then we easily see thatT is continuous pseudocontractive withF(T) = [�, �].

In addition, we observe thatA is monotone withVI (C,A) = […�, �
� ]. Next, we show that

A it is Lipschitzian with L = ��. If x,y � […�, �
� ] then

|Ax …Ay| = |� … � | � �� |x …y|.

If x,y � ( �
� , �] then

|Ax …Ay| = �

�
�
�
�

�
x …

�
�

� �

…
�

y …
�
�

� � �
�
�
�

= �

�
�
�
�

��
x …

�
�

�
+

�
y …

�
�

����
x …

�
�

�
…

�
y …

�
�

�� �
�
�
�

= � |x + y … �||x …y| � �� |x …y|.

If x � […�, �
� ] and y � ( �

� , �] then

|Ax …Ay| =

�
�
�
�� … �

�
y …

�
�

� � �
�
�
� = �

�
y…

�
�

� �

= �

�
�
�
�

�
y …

�
�

� �

…
�

x …
�
�

� �

+
�

x …
�
�

� � �
�
�
�
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� � |x + y … �||x …y| + (x …y)�

= �
�
|x + y … �| + |x + y|

�
|x …y|

� �� |x …y|.

Thus, we see thatA is a Lipschtzian mapping withL = ��. It is also clear that F(T) �
VI (C,A) = [�, �] � […�, �

� ] = [�, �
� ].

Furthermore, if x � (�, �], the inequality

Trx =
	

z � C : �y …z,Tz� …
�
r



y …z, (� + r)z…x

�
� �, � y � C

�
, (
.�)

shows that we may takeTr(x) = x. If x � […�, �], inequality (
.� ) gives that

r(y …z)(…�z) … (y …z)
�
(� + r)z…x

�
� �, � y � C,

which implies thatTr (x) = z = x
	 r+� and hence we get

Tr(x) :=

�
x, x � (�, �],

x
	 r+� , x � […�, �].

Now, if we take,αn = �
n+��� , an = bn = �

n+��� + �.�, cn = �.� … �
n+��� ; rn = ��, � n 	 � and

γn = �.�� + �
n+��� , we observe that the conditions of Theorem�.� are satis“ed and Scheme

(�.� ) reduces to

�
zn = PC[xn …γnAxn],

xn+� = αnu + (� …αn)(anxn + bnTrnxn + cnPC[xn …γnAzn]).
(
.�)

When u = …�.� and x� = �.� we see that Scheme (
.� ) converges strongly tox� = �.� as
shown in Figure� .

Figure 1 Convergence of {xn} with u = –0.1 and x0 = 0.8.
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When u = �.� and x� = …�.� we see that Scheme (
.� ) converges strongly tox� = �.
 as
shown in Figure� .

Figure 2 Convergence of {xn} with u = 0.6 and x0 = –2.0.
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