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Abstract
We introduce an iterative process which converges strongly to a common point of
the solution set of a variational inequality problem for a Lipschitzian monotone
mapping and the fixed point set of a continuous pseudocontractive mapping in
Hilbert spaces. In addition, a numerical example which supports our main result is
presented. Our theorems improve and unify most of the results that have been
proved for this important class of nonlinear operators.
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1 Introduction
Let C be a subset of a real Hilbert space H . A mapping T : C → H is called Lipschitzian
if there exists L >  such that ‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ C. If L =  then T is called
nonexpansive and if L ∈ (, ) then T is called a contraction. The operator T is called pseu-
docontractive if for each x, y ∈ C we have

〈Tx – Ty, x – y〉 ≤ ‖x – y‖. (.)

T is called strongly pseudocontractive if there exists k ∈ (, ) such that

〈x – y, Tx – Ty〉 ≤ k‖x – y‖, for all x, y ∈ C,

and T is said to be a k-strict pseudocontractive if there exists a constant  ≤ k <  such that

〈x – y, Tx – Ty〉 ≤ ‖x – y‖ – k
∥
∥(I – T)x – (I – T)y

∥
∥

, for all x, y ∈ C.

Observe that the class of pseudocontractive mappings is a more general class of mappings
in the sense that it includes the classes of nonexpansive, strongly pseudocontractive, and
k-strict pseudocontractive mappings.

Interest in pseudocontractive mappings stems mainly from their firm connection with
the important class of nonlinear monotone mappings, where a mapping A with domain
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D(A) and range R(A) in H is called monotone if

〈Ax – Ay, x – y〉 ≥ , ∀x, y ∈ D(A).

A mapping A is called α-inverse strongly monotone if there exists a positive real number α

such that

〈Ax – Ay, x – y〉 ≥ α‖Ax – Ay‖, ∀x, y ∈ D(A).

A mapping A is called α-strongly monotone if there exists a positive real number α such
that

〈Ax – Ay, x – y〉 ≥ α‖x – y‖, ∀x, y ∈ D(A).

It is obvious to see that the class of monotone mappings includes the class of α-inverse
strongly monotone and α-strongly monotone mappings. Furthermore, we observe that
any α-inverse strongly monotone mappings A is a monotone and 

α
-Lipschitzian mapping.

We observe that A is monotone if and only if T := I – A is pseudocontractive and thus
a zero of A, N(A) := {x ∈ D(A) : Ax = }, is a fixed point of T , F(T) := {x ∈ D(T) : Tx = x}.
It is now well known that if A is monotone then the solutions of the equation Ax =  cor-
respond to the equilibrium points of some evolution systems. Consequently, considerable
research efforts have been devoted to iterative methods for approximating fixed points
of T when T is nonexpansive or pseudocontractive (see, e.g., [–] and the references
therein).

Let C be a nonempty, closed, and convex subset of a real Hilbert space H . The classical
variational inequality problem is to find a u ∈ C such that 〈v – u, Au〉 ≥  for all v ∈ C,
where A is a nonlinear mapping. The set of solutions of the variational inequality is de-
noted by VI(C, A). In the context of the variational inequality problem, this implies that
u ∈ VI(C, A) if and only if u = PC(u – λAu), ∀λ > , where PC is a metric projection of H
into C.

It is now well known that variational inequalities cover disciplines such as partial differ-
ential equations, optimal control, optimization, mathematical programming, mechanics
and finance. See, for instance, [–].

Variational inequalities were introduced and studied by Stampacchia [] in . Since
then, several numerical methods have been developed for solving variational inequalities;
see, for instance, [, , –] and the references therein.

In , Takahashi and Toyoda [] introduced the following iterative scheme under
the assumption that a set C ⊂ H is closed and convex, a mapping T of C into itself is
nonexpansive, and a mapping A of C into H is α-inverse strongly monotone:

{

x ∈ C,
xn+ = αnxn + ( – αn)TPC(xn – λnAxn), n ≥ ,

(.)

for all n ≥ , where {αn} is a sequence in (, ) and {λn} is a sequence in (, α). They proved
that if F(T) ∩ VI(C, A) is nonempty, then the sequence {xn} generated by (.) converges
weakly to some z ∈ F(T) ∩ VI(C, A).



Alghamdi et al. Journal of Inequalities and Applications  (2015) 2015:292 Page 3 of 15

In order to obtain a strong convergence theorem, Iiduka and Takahashi [] reconsid-
ered the common element problem via the following iterative algorithm:

{

x = x ∈ C,
xn+ = αnx + ( – αn)TPC(xn – λnAxn), n ≥ ,

(.)

for all n ≥ , where T : C → C is a nonexpansive mapping, A : C → H is a α-inverse
strongly monotone mapping, {αn} is a sequence in (, ) and {λn} is a sequence in (, α).
They proved that if F(T)∩VI(C, A) is nonempty, then the sequence {xn} generated by (.)
converges strongly to some z ∈ F(T) ∩ VI(C, A).

In , Nadezhkina and Takahashi [] introduced the following hybrid method for
finding an element of F(S) ∩ VI(C, A) and established the following strong convergence
theorem for the sequence generated by this process.

Theorem NT [] Let C be a closed convex subset of a real Hilbert space H . Let A be
a Lipschitzian monotone mapping of C into H with Lipschitz constant L and let S be a
nonexpansive mapping of C into itself such that F(S) ∩ VI(C, A) �= ∅. Let {xn}, {yn} and {zn}
be sequences generated by

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C,
yn = PC(xn – λnAxn),
zn = αnxn + ( – αn)SPC(xn – λnAyn),
Cn = {z ∈ C : ‖zn – z‖ ≤ ‖xn – z‖},
Qn = {z ∈ C : 〈xn – z, x – xn〉 ≥ },
xn+ = PCn∩Qn x,

for every n ≥ , where {λn} ⊂ [a, b] for some a, b ∈ (, 
L ) and {αn} ⊂ [, c] for some c ∈ [, ).

Then the sequences {xn}, {yn} and {zn} converge strongly to the same element of PF(S)∩VI(C,A)x.

Our concern now is the following: can an approximation sequence {xn} be constructed
which converges to a common point of the solution set of a variational inequality problem for
a monotone mapping and the fixed point set of a continuous pseudocontractive mapping?

In this paper, it is our purpose to introduce an iterative scheme which converges strongly
to a common element of the solution set of a variational inequality problem for Lips-
chitzian monotone mapping and the fixed point set of a continuous pseudocontractive
mapping in Hilbert spaces. Our results provide an affirmative answers to our concern. In
addition, a numerical example which supports our main result is presented. Our theorems
will extend and unify most of the results that have been proved for this important class of
nonlinear operators.

2 Preliminaries
Let C be a nonempty, closed, and convex subset of a real Hilbert space H . It is well known
that for every point x ∈ H , there exists a unique nearest point in C, denoted by PCx, i.e.,

‖x – PCx‖ ≤ ‖x – y‖ for all y ∈ C. (.)
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The mapping PC is called the metric projection of H onto C and characterized by the
following properties (see, e.g., []):

PCx ∈ C and 〈x – PCx, PCx – y〉 ≥ , for all x ∈ H , y ∈ C and (.)

‖y – PCx‖ ≤ ‖x – y‖ – ‖x – PCx‖, for all x ∈ H , y ∈ C. (.)

In the sequel we shall make use of the following lemmas.

Lemma . [] Let H be a real Hilbert space. Then, for all x, y ∈ H and α ∈ [, ] the
following equality holds:

∥
∥αx + ( – α)y

∥
∥

 = α‖x‖ + ( – α)‖y‖ – α( – α)‖x – y‖.

Lemma . Let H be a real Hilbert space. Then for any given x, y ∈ H , the following in-
equality holds:

‖x + y‖ ≤ ‖x‖ + 〈y, x + y〉.

Lemma . [] Let {an} be a sequence of nonnegative real numbers satisfying the follow-
ing relation:

an+ ≤ ( – αn)an + αnδn, n ≥ n,

where {αn} ⊂ (, ) and {δn} ⊂ R satisfying the following conditions: limn→∞ αn = ,
∑∞

n= αn = ∞, and lim supn→∞ δn ≤ . Then limn→∞ an = .

Lemma . [] Let {an} be sequences of real numbers such that there exists a subsequence
{ni} of {n} such that ani < ani+, for all i ∈ N. Then there exists a nondecreasing sequence
{mk} ⊂ N such that mk → ∞ and the following properties are satisfied by all (sufficiently
large) numbers k ∈N:

amk ≤ amk + and ak ≤ amk +.

In fact, mk = max{j ≤ k : aj < aj+}.

Lemma . [] Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let T : C → H be continuous pseudocontractive mapping. For r >  and x ∈ H , define a
mapping Fr : H → C as follows:

Frx :=
{

z ∈ C : 〈y – z, Tz〉 –

r
〈

y – z, ( + r)z – x
〉 ≤ ,∀y ∈ C

}

for all x ∈ H . Then the following hold:
() Fr is single-valued;
() Fr is firmly nonexpansive type mapping, i.e., for all x, y ∈ H ,

‖Frx – Fry‖ ≤ 〈Frx – Fry, x – y〉;
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() F(Fr) = F(T);
() F(T) is closed and convex.

Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let T : C → H ,
be a continuous pseudocontractive mapping. Then, in what follows, Trn : H → C are de-
fined as follows: For x ∈ H and {rn} ⊂ [e,∞), for some e > , define

Trn x :=
{

z ∈ C : 〈y – z, Tz〉 –

rn

〈

y – z, ( + rn)z – x
〉 ≤ ,∀y ∈ C

}

.

Now, we prove our main convergence theorem.

3 Main result
Theorem . Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let T : C → C be a continuous pseudocontractive mapping. Let A : C → H be a Lips-
chitzian monotone mapping with Lipschitz constant L. Assume that F = F(T) ∩ VI(C, A)
is nonempty. Let {xn} be a sequence generated from an arbitrary x, u ∈ C by

{

zn = PC[xn – γnAxn],
xn+ = αnu + ( – αn)(anxn + bnTrn xn + cnPC[xn – γnAzn]),

(.)

where PC is a metric projection from H onto C, γn ⊂ [a, b] ⊂ (, 
L ), and {an}, {bn}, {cn} ⊂

(a, b) ⊂ (, ), {αn} ⊂ (, c) ⊂ (, ) satisfying the following conditions: (i) an + bn + cn = , (ii)
limn→∞ αn = ,

∑
αn = ∞. Then {xn} converges strongly to the point x∗ of F nearest to u.

Proof Let un = PC(xn – γnAzn) and wn = Trn xn for all n ≥ . Let p ∈ F . Then from
Lemma . we get ‖wn – p‖ ≤ ‖Trn xn – Trn p‖ ≤ ‖xn – p‖. In addition, from (.) we have

‖un – p‖ ≤ ‖xn – γnAzn – p‖ – ‖xn – γnAzn – un‖

= ‖xn – p‖ – ‖xn – un‖ + γn〈Azn, p – un〉
= ‖xn – p‖ – ‖xn – un‖ + γn

(〈Azn – Ap, p – zn〉
+ 〈Ap, p – zn〉 + 〈Azn, zn – un〉

)

≤ ‖xn – p‖ – ‖xn – un‖ + γn〈Azn, zn – un〉
≤ ‖xn – p‖ – ‖xn – zn‖ – 〈xn – zn, zn – un〉

– ‖zn – un‖ + γn〈Azn, zn – un〉
= ‖xn – p‖ – ‖xn – zn‖ – ‖zn – un‖

+ 〈xn – γnAzn – zn, un – zn〉, (.)

and from (.), we obtain

〈xn – γnAzn – zn, un – zn〉 = 〈xn – γnAxn – zn, un – zn〉 + 〈γnAxn – γnAzn, un – zn〉
≤ 〈γnAxn – γnAzn, un – zn〉
≤ γnL‖xn – zn‖‖un – zn‖.
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Thus, we get

‖un – p‖ ≤ ‖xn – p‖ – ‖xn – zn‖ – ‖zn – un‖

+ γnL‖xn – zn‖‖un – zn‖
≤ ‖xn – p‖ – ‖xn – zn‖ – ‖zn – un‖

+ γnL
[‖xn – zn‖ + ‖zn – un‖]

≤ ‖xn – p‖ + (γnL – )
[‖xn – zn‖ + ‖zn – un‖] (.)

≤ ‖xn – p‖. (.)

Furthermore, from (.) and Lemma . we have the following:

‖xn+ – p‖ =
∥
∥αnu + ( – αn)(anxn + bnwn + cnun) – p

∥
∥



≤ αn‖u – p‖ + ( – αn)
∥
∥an(xn – p) + bn(wn – p)

+ cn(un – p)
∥
∥



≤ αn‖u – p‖ + ( – αn)
[

an‖xn – p‖ + bn‖wn – p‖

+ cn‖un – p‖] – ( – αn)anbn‖wn – xn‖

– ( – αn)ancn‖un – xn‖ – ( – αn)bncn‖wn – un‖,

and using (.) we get

‖xn+ – p‖ ≤ αn‖u – p‖ + ( – αn)an‖xn – p‖ + ( – αn)bn‖xn – p‖

+ ( – αn)cn
[‖xn – p‖ + (γnL – )

[‖xn – zn‖ + ‖zn – un‖]]

– ( – αn)anbn‖wn – xn‖ – ( – αn)ancn‖un – xn‖

– ( – αn)bncn‖wn – un‖

≤ αn‖u – p‖ + ( – αn)‖xn – p‖

+ ( – αn)cn(γnL – )
[‖xn – zn‖ + ‖zn – un‖]

– ( – αn)anbn‖wn – xn‖ – ( – αn)ancn‖un – xn‖

– ( – αn)bncn‖wn – un‖. (.)

Since γnL < , from (.) we get

‖xn+ – p‖ ≤ αn‖u – p‖ + ( – αn)‖xn – p‖. (.)

Thus, by induction,

‖xn+ – p‖ ≤ max
{‖u – p‖,‖x – p‖}, ∀n ≥ ,

which implies that {xn} and {zn} are bounded.
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Let x∗ = PF (u). Then, using (.), Lemma ., and following the methods used to get
(.) we obtain that

∥
∥xn+ – x∗∥∥ =

∥
∥αnu + ( – αn)(anxn + bnwn + cnun) – x∗∥∥

≤ ∥
∥αn

(

u – x∗) + ( – αn)
[

(anxn + bnwn + cnun) – x∗]∥∥

≤ ( – αn)
∥
∥anxn + bnwn + cnun – x∗∥∥

+ αn
〈

u – x∗, xn+ – x∗〉

≤ ( – αn)an
∥
∥xn – x∗∥∥ + ( – αn)bn

∥
∥wn – x∗∥∥

+ ( – αn)cn
∥
∥un – x∗∥∥ – ( – αn)bnan‖wn – xn‖

– ( – αn)bncn‖un – wn‖ – ( – αn)ancn‖xn – un‖

+ αn
〈

u – x∗, xn+ – x∗〉,

which implies that

∥
∥xn+ – x∗∥∥ ≤ ( – αn)an

∥
∥xn – x∗∥∥ + ( – αn)bn

∥
∥xn – x∗∥∥

+ ( – αn)cn
[∥
∥xn – x∗∥∥ + (γnL – )

[‖xn – zn‖ + ‖zn – un‖]]

– ( – αn)bnan‖wn – xn‖ – ( – αn)bncn‖un – wn‖

– ( – αn)ancn‖xn – un‖ + αn
〈

u – x∗, xn+ – x∗〉

≤ ( – αn)‖xn – x∗‖ + ( – αn)cn(γnL – )
[‖xn – zn‖ + ‖zn – un‖]

– ( – αn)bnan‖wn – xn‖ – ( – αn)bncn‖un – wn‖

– ( – αn)ancn‖xn – un‖ + αn
〈

u – x∗, xn+ – x∗〉 (.)

≤ ( – αn)
∥
∥xn – x∗∥∥ + αn

〈

u – x∗, xn+ – x∗〉. (.)

Now, we consider two cases.
Case . Suppose that there exists n ∈N such that {‖xn – x∗‖} is decreasing for all n ≥ n.

Then we get {‖xn – x∗‖} is convergent. Thus, from (.) we have

xn – zn → , zn – un →  as n → ∞, (.)

and

wn – xn → , un – wn → , xn – un →  as n → ∞. (.)

Moreover, from the fact that αn → , as n → ∞, (.), (.), and (.) we have

‖xn+ – xn‖ =
∥
∥αn(u – xn) + ( – αn)

(

bnwn + cnun – ( – an)xn
)∥
∥

≤ αn‖u – xn‖ + ( – αn)bn‖wn – xn‖ + ( – αn)cn‖un – xn‖ → , (.)

as n → ∞.
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Furthermore, since {xn+} is bounded subset of H which is reflexive, we can choose
a subsequence {xni+} of {xn+} such that xni+ ⇀ z and lim supn→∞〈u – x∗, xn+ – x∗〉 =
limi→∞〈u – x∗, xni+ – x∗〉. This implies from (.) that xni ⇀ z.

Now, we show that z ∈ VI(C, A). But, since A is Lipschitz continuous, we have Azn –
Aun → , as n → ∞ and from (.) and (.) we have uni ⇀ z and zni ⇀ z. Let

Tv =

{

Av + NCv, if v ∈ C,
∅, if v /∈ C.

(.)

Then T is maximal monotone and  ∈ Tv if and only if v ∈ VI(C, A) (see, e.g. []). Let
(v, w) ∈ G(T). Then we have w ∈ Tv = Av + NCv and hence w – Av ∈ NCv. So, we have
〈v – u, w – Av〉 ≥ , for all u ∈ C. On the other hand, from un = PC(xn – γnAzn) and v ∈ C,
we have 〈xn –γnAzn – un, un – v〉 ≥ , and hence, 〈v – un, (un – xn)/γn + Azn〉 ≥ . Therefore,
from w – Av ∈ NCv and uni ∈ C we have

〈v – uni , w〉 ≥ 〈v – uni , Av〉 ≥ 〈v – uni , Av〉 –
〈

v – uni , (uni – xni )/γni + Azni

〉

= 〈v – uni , Av – Auni〉 + 〈v – uni , Auni – Azni〉
–

〈

v – uni , (uni – xni )/γni

〉

≥ 〈v – uni , Auni – Azni〉 –
〈

v – uni , (uni – xni )/γni

〉

.

Hence, we have 〈v – z, w〉 ≥ , as i → ∞. Since T is maximal monotone, we have z ∈ T–()
and hence z ∈ VI(C, A).

Now, we show that z ∈ F(T). Note that, from the definition of wni , we have

〈y – wni , Twni〉 –


rni

〈

y – wni , (rni + )wni – xni

〉 ≤ , ∀y ∈ C. (.)

Put zt = tv + ( – t)z for all t ∈ (, ] and v ∈ C. Consequently, we get zt ∈ C. From (.)
and pseudocontractivity of T it follows that

〈wni – zt , Tzt〉 ≥ 〈wni – zt , Tzt〉 + 〈zt – wni , Twni〉 –


rni

〈

zt – wni , ( + rni )wni – xni

〉

= –〈zt – wni , Tzt – Twni〉 –


rni

〈zt – wni , wni – xni〉 – 〈zt – wni , wni〉

≥ –‖zt – wni‖ –


rni

〈zt – wni , wni – xni〉 – 〈zt – wni , wni〉

= 〈wni – zt , zt〉 –
〈

zt – wni ,
wni – xni

rni

〉

.

Then, since wn – xn → , as n → ∞ we obtain wni –xni
rni

→  as i → ∞. Thus, it follows that

〈z – zt , Tzt〉 ≥ 〈z – zt , zt〉 as i → ∞,

and hence

–〈v – z, Tzt〉 ≥ –〈v – z, zt〉, ∀v ∈ C.
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Letting t →  and using the fact that T is continuous we obtain

–〈v – z, Tz〉 ≥ –〈v – z, z〉, ∀v ∈ C.

Now, let v = Tz. Then we obtain z = Tz and hence z ∈ F(T). Therefore, by (.) we imme-
diately obtain

lim sup
n→∞

〈

u – x∗, xn+ – x∗〉 = lim
i→∞

〈

u – x∗, xni+ – x∗〉

=
〈

u – x∗, z – x∗〉 ≤ . (.)

Then it follows from (.), (.), and Lemma . that ‖xn – x∗‖ → , as n → ∞. Conse-
quently, {xn} converges to the minimum norm point of F .

Case . Suppose that there exists a subsequence {ni} of {n} such that

∥
∥xni – x∗∥∥ <

∥
∥xni+ – x∗∥∥,

for all i ∈ N. Then, by Lemma ., there exists a nondecreasing sequence {mk} ⊂ N such
that mk → ∞, and

∥
∥xmk – x∗∥∥ ≤ ∥

∥xmk + – x∗∥∥ and
∥
∥xk – x∗∥∥ ≤ ∥

∥xmk + – x∗∥∥, (.)

for all k ∈N. Now, from (.) we get

xmk – zmk → , zmk – umk →  as k → ∞, (.)

and

wmk – xmk → , umk – wmk → , xmk – umk →  as k → ∞. (.)

Thus, like in Case , we obtain xmk + – xmk →  and

lim sup
k→∞

〈

u – x∗, xmk + – x∗〉 ≤ . (.)

Now, from (.) we have

∥
∥xmk + – x∗∥∥ ≤ ( – αmk )

∥
∥xmk – x∗∥∥ + αmk

〈

u – x∗, xmk + – x∗〉, (.)

and hence (.) and (.) imply that

αmk

∥
∥xmk – x∗∥∥ ≤ ∥

∥xmk – x∗∥∥ –
∥
∥xmk + – x∗∥∥ + αmk

〈

u – x∗, xmk+ – x∗〉

≤ +αmk

〈

u – x∗, xmk + – x∗〉.

But since that αmk > , we obtain

∥
∥xmk – x∗∥∥ ≤ +

〈

u – x∗, xmk + – x∗〉.
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Then, using (.), we get ‖xmk – x∗‖ → , as k → ∞. This together with (.) imply
that ‖xmk + – x∗‖ → , as k → ∞. But ‖xk – x∗‖ ≤ ‖xmk + – x∗‖, for all k ∈ N, thus we
obtain xk → x∗. Therefore, from the above two cases, we can conclude that {xn} converges
strongly to the point x∗ of F nearest to u. �

If, in Theorem ., we assume that T = I , the identity mapping on C, we obtain the
following corollary.

Corollary . Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let A : C → H be a Lipschitzian monotone mapping with Lipschitz constant L. Assume that
VI(C, A) is nonempty. Let {xn} be a sequence generated from an arbitrary x, u ∈ C by

{

zn = PC[xn – γnAxn],
xn+ = αnu + ( – αn)(anxn + ( – an)PC[xn – γnAzn]),

(.)

where PC is a metric projection from H onto C, γn ⊂ [a, b] ⊂ (, 
L ), and {an} ⊂ (a, b) ⊂

(, ), {αn} ⊂ (, c) ⊂ (, ) satisfying limn→∞ αn = ,
∑

αn = ∞. Then {xn} converges
strongly to the point x∗ = PVI(C,A)(u).

If, in Theorem ., we assume that A = , we obtain the following corollary, which is
Theorem . of [].

Corollary . Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let T : C → C be a continuous pseudocontractive mapping. Assume that F(T) is nonempty.
Let {xn} be a sequence generated from an arbitrary x, u ∈ C by

xn+ = αnu + ( – αn)
(

anxn + ( – an)Trn xn
)

,

where {an} ⊂ (a, b) ⊂ (, ), {αn} ⊂ (, c) ⊂ (, ) satisfying limn→∞ αn = ,
∑

αn = ∞. Then
{xn} converges strongly to the point x∗ = PF(T)(u).

If, in Theorem ., we assume that A is α-inverse strongly monotone then A is Lips-
chitzian and we obtain the following corollary.

Corollary . Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let T : C → C be a continuous pseudocontractive mapping. Let A : C → H an α-inverse
strongly monotone mapping. Assume that F = F(T) ∩ VI(C, A) is nonempty. Let {xn} be a
sequence generated from an arbitrary x, u ∈ C by

{

zn = PC[xn – γnAxn],
xn+ = αnu + ( – αn)(anxn + bnTrn xn + cnPC[xn – γnAzn]),

(.)

where PC is a metric projection from H onto C, γn ⊂ [a, b] ⊂ (,α), and {an}, {bn}, {cn} ⊂
(a, b) ⊂ (, ), {αn} ⊂ (, c) ⊂ (, ) satisfying (i) an + bn + cn = , (ii) limn→∞ αn = ,
∑

αn = ∞. Then {xn} converges strongly to the point x∗ = PF (u).

If, in Theorem ., we assume that C = H , a real Hilbert space, then PC becomes identity
mapping and VI(C, A) = A–(), and hence we get the following corollary.
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Corollary . Let H be a real Hilbert space. Let T : H → H be a continuous pseudocon-
tractive mapping. Let A : H → H be a Lipschitzian monotone mapping with Lipschitz con-
stant L. Assume that F = F(T) ∩A–() is nonempty. Let {xn} be a sequence generated from
an arbitrary x, u ∈ C by

{

zn = xn – γnAxn,
xn+ = αnu + ( – αn)(anxn + bnTrn xn + cn[xn – γnAzn]),

(.)

where γn ⊂ [a, b] ⊂ (, 
L ) and {an}, {bn}, {cn} ⊂ (a, b) ⊂ (, ), {αn} ⊂ (, c) ⊂ (, ) satisfy-

ing the following conditions: (i) an + bn + cn = , (ii) limn→∞ αn = ,
∑

αn = ∞. Then {xn}
converges strongly to the point x∗ of F nearest to u.

We also note that the method of proof of Theorem . provides the following theorem
for approximating the common minimum-norm point of the solution set of a variational
inequality problem for monotone mapping and fixed point set of a continuous pseudo-
contractive mapping.

Theorem . Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let T : C → C be a continuous pseudocontractive mapping. Let A : C → H be a Lips-
chitzian monotone mapping with Lipschitz constant L. Assume that F = F(T) ∩ VI(C, A)
is nonempty. Let {xn} be a sequence generated from an arbitrary x, u ∈ C by

{

zn = PC[xn – γnAxn],
xn+ = PC[( – αn)(anxn + bnTrn xn + cnPC[xn – γnAzn])],

(.)

where PC is a metric projection from H onto C, γn ⊂ [a, b] ⊂ (, 
L ), and {an}, {bn}, {cn} ⊂

(a, b) ⊂ (, ), {αn} ⊂ (, c) ⊂ (, ) satisfying the following conditions: (i) an + bn + cn = ,
(ii) limn→∞ αn = ,

∑
αn = ∞. Then {xn} converges strongly to the minimum-norm point x∗

of F .

Remark . Theorem . extends Theorem . of Takahashi and Toyoda [] and The-
orem . of Yao et al. [], Theorem . of Iiduka and Takahashi [] and the results of
Nadezhkina and Takahashi [] in the sense that our scheme provides a common point
of the solution set of variational inequalities for a more general class of monotone map-
pings and/or the fixed point set of a more general class of continuous pseudocontractive
mappings. Our results provide an affirmative answer to our concern.

4 Applications to minimization problems
In this section, we study the problem of finding a minimizer of a continuously Fréchet
differentiable convex functional in Hilbert spaces. Let f be a continuously Fréchet differ-
entiable convex functionals of H into (–∞,∞) such that the gradient of f , (�f ) is contin-
uous and monotone. For γ > , and x ∈ H , let Trn x := {z ∈ H : 〈y – z, (I – (�f ))z〉 – 

γ
〈y – z,

( + γ )z – x〉 ≤ ,∀y ∈ H}. Then the following theorem holds.

Theorem . Let H be a real Hilbert space. Let f be a continuously Fréchet differentiable
convex functionals of H into (–∞,∞) such that the gradient of f , (�f ) is continuous and
monotone such that N := arg miny∈C f (y) �= ∅. Let {xn} be a sequence generated from an
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arbitrary x, u ∈ C by

xn+ = αnu + ( – αn)
(

anxn + ( – an)Trn xn
)

,

where {an} ⊂ (a, b) ⊂ (, ), {αn} ⊂ (, c) ⊂ (, ) satisfying limn→∞ αn = ,
∑

αn = ∞. Then
{xn} converges strongly to the point x∗ ∈N nearest to u.

Proof We note that T := (I – �f ) is continuous pseudocontractive mapping with F(T) =
(�f )–() and from the convexity and Frećhet differentiability of f we see that the zero of
�f is given by N = arg miny∈C f (y). Thus, the conclusion follows from Corollary .. �

5 Numerical example
In this section, we give an example of a continuous pseudocontractive mapping T and a
Lipschitzian monotone mapping with all the conditions of Theorem . and some numer-
ical experiment results to explain the conclusion of the theorem.

Example . Let H = R with Euclidean norm. Let C = [–, ] and T : C → R be defined
by

Tx :=

{

–x, x ∈ [–, ],
x, (, ],

and

Ax :=

{

, x ∈ [–, 
 ],

(x – 
 ), x ∈ ( 

 , ].
(.)

Then we easily see that T is continuous pseudocontractive with F(T) = [, ].
In addition, we observe that A is monotone with VI(C, A) = [–, 

 ]. Next, we show that
A it is Lipschitzian with L = . If x, y ∈ [–, 

 ] then

|Ax – Ay| = | – | ≤ |x – y|.

If x, y ∈ ( 
 , ] then

|Ax – Ay| = 
∣
∣
∣
∣

(

x –



)

–
(

y –



)∣
∣
∣
∣

= 
∣
∣
∣
∣

((

x –



)

+
(

y –



))((

x –



)

–
(

y –



))∣
∣
∣
∣

= |x + y – ||x – y| ≤ |x – y|.

If x ∈ [–, 
 ] and y ∈ ( 

 , ] then

|Ax – Ay| =
∣
∣
∣
∣
 – 

(

y –



)∣
∣
∣
∣

= 
(

y –



)

= 
∣
∣
∣
∣

(

y –



)

–
(

x –



)

+
(

x –



)∣
∣
∣
∣
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≤ |x + y – ||x – y| + (x – y)

= 
[|x + y – | + |x + y|]|x – y|

≤ |x – y|.

Thus, we see that A is a Lipschtzian mapping with L = . It is also clear that F(T) ∩
VI(C, A) = [, ] ∩ [–, 

 ] = [, 
 ].

Furthermore, if x ∈ (, ], the inequality

Trx =
{

z ∈ C : 〈y – z, Tz〉 –

r
〈

y – z, ( + r)z – x
〉 ≤ ,∀y ∈ C

}

, (.)

shows that we may take Tr(x) = x. If x ∈ [–, ], inequality (.) gives that

r(y – z)(–z) – (y – z)
[

( + r)z – x
] ≤ , ∀y ∈ C,

which implies that Tr(x) = z = x
r+ and hence we get

Tr(x) :=

{

x, x ∈ (, ],
x

r+ , x ∈ [–, ].

Now, if we take, αn = 
n+ , an = bn = 

n+ + ., cn = . – 
n+ ; rn = , ∀n ≥  and

γn = . + 
n+ , we observe that the conditions of Theorem . are satisfied and Scheme

(.) reduces to

{

zn = PC[xn – γnAxn],
xn+ = αnu + ( – αn)(anxn + bnTrn xn + cnPC[xn – γnAzn]).

(.)

When u = –. and x = . we see that Scheme (.) converges strongly to x∗ = . as
shown in Figure .

Figure 1 Convergence of {xn} with u = –0.1 and x0 = 0.8.
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When u = . and x = –. we see that Scheme (.) converges strongly to x∗ = . as
shown in Figure .

Figure 2 Convergence of {xn} with u = 0.6 and x0 = –2.0.
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