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Abstract
In this paper, we study non-trivial warped product pseudo-slant submanifolds of
nearly Kenmotsu manifolds. In the beginning, we obtain some lemmas and then
develop the general sharp inequalities for mixed totally geodesic warped products
pseudo-slant submanifolds. The equality cases are also considered.
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1 Introduction
The geometric inequalities of warped product submanifolds have been studied actively
since Chen [] introduced the notion of a CR-warped product submanifold in a Kaehler
manifold and obtained inequalities for the second fundamental form in terms of warping
functions. In fact, different types of warped product submanifolds of different structures
are studied for the last  years (see []). Recently, Sahin [] established a general inequality
for warped product pseudo-slant (also named hemi-slant) isometrically immersed in a
Kaehler manifold for mixed totally geodesic. Later on, Uddin, et al. [–] obtained some
inequalities of warped product submanifolds in different structures. In the present paper,
we extend this idea into a nearly Kenmotsu manifold and derive the geometric inequalities
of non-trivial warped product pseudo-slant submanifolds which are the natural extensions
of CR-warped product submanifolds. Every CR-warped product submanifold is a non-
trivial warped product pseudo-slant submanifold of the forms M⊥ ×f Mθ and Mθ ×f M⊥
with slant angle θ = . First of all we consider non-trivial warped product pseudo-slant
submanifolds of the form M = M⊥ ×f Mθ and Mθ ×f M⊥ such that Mθ and M⊥ are proper-
slant and anti-invariant submanifolds. Next we establish inequalities involving the second
fundamental form, slant angle, and warping functions.

The paper is organized as follows: In Section , we review some preliminary formulas,
definitions and address the study of pseudo-slant submanifolds of nearly Kenmotsu man-
ifolds. In Section , we study warped product pseudo-slant submanifolds of a nearly Ken-
motsu manifold and obtain some lemmas. In Section , we define an orthonormal frame
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for warped product pseudo-slant submanifolds and then obtain general sharp inequalities
for the second fundamental form in terms of warping functions and slant immersions.

2 Preliminaries
Let ˜M be a (m + )-dimensional almost contact manifold with almost contact structure
(ϕ, ξ ,η) where ϕ is a (, ) tensor field, ξ is the structure vector field and η is a dual -form
satisfying the following property:

ϕ = –I + η ⊗ ξ , η(ξ ) = , ϕ(ξ ) = , η ◦ ϕ = . (.)

On an almost contact manifold there exists a Riemannian metric g which satisfies the
following:

g(ϕU ,ϕV ) = g(U , V ) – η(U)η(V ), η(U) = g(U , ξ ), (.)

for any U , V tangent to ˜M. Then an almost contact manifold ˜M equipped with a Rieman-
nian metric g is called an almost contact metric manifold (˜M, g). Furthermore, an almost
contact metric manifold is known to be a Kenmotsu manifold [] if

(˜∇Uϕ)V = g(ϕU , V )ξ – η(V )ϕU , (.)

and

˜∇Uξ = U – η(U)ξ , (.)

for any vector fields U , V on ˜M, where ˜∇ denote the Riemannian connection with respect
to g . Then an almost contact metric manifold ˜M is said to be a nearly Kenmotsu manifolds
[], if

(˜∇Uϕ)V + (˜∇V ϕ)U = –η(U)ϕV – η(V )ϕU , (.)

for any U , V tangent to ˜M. We shall use the symbol �(T ˜M) to denote the Lie algebras of
vector fields on a manifold ˜M.

Let M be a Riemannian manifold that is isometrically immersed in an almost contact
metric manifold ˜M and denote by the same symbol g the Riemannian metric induced
on M. Let �(TM) and �(T⊥M) be the Lie algebras of vector fields tangent to M and normal
to M, respectively, and ∇⊥ the induced connection on T⊥M. Denote by F (M) the algebra
of smooth functions on M and by �(TM) the F (M)-module of smooth sections of TM
over M. Denote by ∇ the Levi-Civita connection of M then the Gauss and Weingarten
formulas are given by

˜∇U V = ∇U V + h(U , V ), (.)

˜∇U N = –AN U + ∇⊥
U N , (.)

for each U , V ∈ �(TM) and N ∈ �(T⊥M), where h and AN are the second fundamental
form and the shape operator (corresponding to the normal vector field N ), respectively,
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for the immersion of M into M̃. They are related as

g
(

h(U , V ), N
)

= g(AN U , V ). (.)

Now for any U ∈ �(TM), we write

ϕU = PU + FU , (.)

where PU and FU are the tangential and normal components of ϕU , respectively. Similarly
for any N ∈ �(T⊥M), we have

ϕN = tN + fN , (.)

where tN (resp. fN ) are the tangential (resp. normal) components of ϕN . A submanifold M
is said to be totally geodesic and totally umbilical, if h(U , V ) =  and h(U , V ) = g(U , V )H ,
respectively.

There is another class of submanifolds, which is called the class of slant submanifold.
For each non-zero vector U tangent to M at p, such that U is not proportional to ξp, we
denote by  ≤ θ (U) ≤ π/, the angle between ϕU and TpM, which is called the Wirtinger
angle. If the angle θ (U) is constant for all U ∈ TpM – 〈ξ (p)〉 and p ∈ M, then M is called
a slant submanifold [] and the angle θ is called the slant angle of M. Obviously if θ = ,
M is invariant and if θ = π/, M is anti-invariant submanifold. A slant submanifold is said
to be proper slant if it is neither invariant nor anti-invariant.

In an almost contact metric manifold, in fact, Cabrerizo et al. [] obtained the following
theorem.

Theorem . Let M be a submanifold of an almost contact metric manifold M̃ such that
ξ ∈ TM. Then M is slant if and only if there exists a constant λ ∈ [, ] such that

P = λ(–I + η ⊗ ξ ). (.)

Furthermore, in such a case, θ is the slant angle and it satisfies λ = cos θ .

Hence, for a slant submanifold M of an almost contact metric manifold ˜M, we have the
following relations which are consequences of Theorem .:

g(PU , PV ) = cos θ
{

g(U , V ) – η(U)η(V )
}

, (.)

g(FU , FV ) = sin θ
{

g(U , V ) – η(U)η(V )
}

, (.)

for any U , V ∈ �(TM).
Moreover, we define pseudo-slant submanifolds of almost contact manifolds by using

the slant distribution given in []. However, pseudo-slant submanifolds were defined by
Carriazo [] under the name anti-slant submanifolds as a particular class of bi-slant sub-
manifolds. The definition of pseudo-slant is as follows.

Definition . A submanifold M of an almost contact manifold ˜M is said to be pseudo-
slant submanifold, if there exist two orthogonal distributions D⊥ and Dθ such that:
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(i) TM = Dθ ⊕D⊥ ⊕ 〈ξ 〉, where 〈ξ 〉 is a -dimensional distribution spanned by ξ .
(ii) D⊥ is an anti-invariant distribution under ϕ i.e., ϕD⊥ ⊆ T⊥M.

(iii) Dθ is a slant distribution with slant angle θ �= , π
 .

Let m and m be the dimensions of the distributions D⊥ and Dθ , respectively. If m=,
then M is an anti-invariant submanifold. If m= and θ = , then M is an invariant sub-
manifold. If m= and θ �= , π

 , then M is a proper-slant submanifold, or if θ = π
 , then M is

an anti-invariant submanifold and if θ = , then M is a semi-invariant submanifold. Since
μ is an invariant subspace of a normal bundle T⊥M, then in the case of a pseudo-slant
submanifold, the normal bundle T⊥M can be decomposed as follows:

T⊥M = ϕD⊥ ⊕ FDθ ⊕ μ, (.)

where μ is an even dimensional invariant subbundle of T⊥M. A pseudo-slant submanifold
is said to be mixed totally geodesic if h(X, Z) = , for all X ∈ �(D⊥) and Z ∈ �(Dθ ). Now
let {e, e, . . . , en} be an orthonormal basis of the tangent space TM and er belong to the
orthonormal basis {en+, en+, . . . , em} of a normal bundle T⊥M, then we define

hr
ij = g

(

h(ei, ej), er
)

and ‖h‖ =
n

∑

i,j=

g
(

h(ei, ej), h(ei, ej)
)

. (.)

As a consequence, for a differentiable function λ on M, we have

‖∇λ‖ =
n

∑

i=

(

ei(λ)
), (.)

where the gradient gradλ is defined by g(∇λ, X) = Xλ, for any X ∈ �(TM).

3 Warped product submanifolds
In [], Bishop and O’Neill, defined the notion of warped product manifolds to construct
examples of Riemannian manifolds with a negative curvature. These manifolds are nat-
ural generalizations of Riemannian product manifolds. They defined these manifolds as
follows: Let (M, g) and (M, g) be two Riemannian manifolds and f : M → (,∞) a
positive differentiable function on M. Consider the product manifold M × M with its
canonical projections π : M × M → M, π : M × M → M and the projection maps
given by π(p, q) = p and π(p, q) = q for every t = (p, q) ∈ M × M. The warped product
M = M ×f M is the product manifold M × M equipped with the Riemannian structure
such that

‖U‖ =
∥

∥π∗(U)
∥

∥

 + f (π(p)
)∥

∥π∗(U)
∥

∥



for any tangent vector U ∈ �(TtM), where ∗ is the symbol of the tangent maps. Thus we
have g = g + f g. The function f is called the warping function on M. It was defined in
[] and we have the following.

Lemma . [] Let M = M ×f M be warped product manifolds. For any X, Y ∈ �(TM)
and Z, W ∈ �(TM):
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(i) ∇XY ∈ �(TM),
(ii) ∇ZX = ∇XZ = (X ln f )Z,

(iii) ∇ZW = ∇′
ZW – g(Z, W )∇ ln f ,

where ∇ and ∇′ denote the Levi-Civita connections on M and M, respectively. On the
other hand, ∇ ln f , the gradient of ln f , is defined as g(∇ ln f , U) = U ln f . A warped product
manifold M = M ×f M is said to be trivial if the warping function f is constant. If M =
M ×f M is a warped product manifold then M is a totally geodesic and M is a totally
umbilical submanifold of M. First of all we give some preparatory lemmas.

Lemma . Let M = M⊥ ×f Mθ be a warped product pseudo-slant submanifold of a nearly
Kenmotsu manifold ˜M such that the structure vector field ξ is tangent to M⊥. Then

g
(

h(X, PX),ϕZ
)

= g
(

h(X, Z), FPX
)

+


{

η(Z) – (Z ln f )
}

cos θ‖X‖,

for any X ∈ �(TMθ ) and Z ∈ �(TM⊥).

Proof Let M = M⊥ ×f Mθ be a warped product pseudo-slant submanifold of a nearly Ken-
motsu manifold ˜M, then by (.), we have

g
(

h(X, PX),ϕZ
)

= –g(ϕ˜∇XPX, Z).

Thus using the covariant derivatives of ϕ, we obtain

g
(

h(X, PX),ϕZ
)

= g
(

(˜∇Xϕ)PX, Z
)

– g(˜∇XϕPX, Z).

From the nearly Kenmotsu structure (.) and Theorem ., we derive

g
(

h(X, PX),ϕZ
)

= –g
(

(˜∇PXϕ)X, Z
)

– cos θg(˜∇XZ, X) + g
(

h(X, Z), FPX
)

.

Thus from Lemma .(ii) and the covariant derivative of an endomorphism ϕ, we obtain

g
(

h(X, PX),ϕZ
)

= –g(˜∇PXϕX, Z) – g(˜∇PXX,ϕZ)

+ g
(

h(X, Z), FPX
)

– cos θ (Z ln f )‖X‖.

Using (.) and (.), we arrive at

g
(

h(X, PX),ϕZ
)

= g(∇PXZ, PX) – g(˜∇PXFX, Z)

+ g
(

h(X, Z), FPX
)

– cos θ (Z ln f )‖X‖.

Finally, using Lemma .(ii) and (.), we get

g
(

h(X, PX),ϕZ
)

= g
(

h(PX, Z), FX
)

) + g
(

h(X, Z), FPX
)

. (.)

Again for any X ∈ �(TMθ ) and Z ∈ �(TM⊥), we have

g
(

h(X, Z), FPX
)

= g(˜∇ZX, FPX).
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From the fact that ξ is tangent to M⊥, (.), and (.), we obtain

g
(

h(X, Z), FPX
)

= –g(ϕ˜∇ZX, PX) + cos θg(∇ZX, X).

Then from the definition of the covariant derivative of ϕ and Lemma .(ii), we can derive

g
(

h(X, Z), FPX
)

= g
(

(˜∇Zϕ)X, PX
)

– g(˜∇ZφX, PX) + cos θ (Z ln f )‖X‖.

Thus by using the structure equation (.) and (.) and (.), the above equation takes
the form

g
(

h(X, Z), FPX
)

= –g
(

(˜∇Xϕ)Z, PX
)

– η(Z) cos θ‖X‖ – g(∇ZPX, PX)

– g(˜∇ZFX, PX) + cos θ (X ln f )‖Z‖.

Using Lemma .(ii), (.), and (.), we arrive at

g
(

h(X, Z), FPX
)

= –g(˜∇XϕZ, PX) – g(˜∇XZ,ϕPX)

– η(Z) cos θ‖X‖ + g
(

h(Z, PX), FX
)

.

Equation (.) and Theorem . for a slant submanifold give us

g
(

h(X, Z), FPX
)

= g(AϕZX, PX) + cos θg(∇XZ, X) – η(Z) cos θ‖X‖

– g(˜∇XZ, FPX) + g
(

h(Z, PX), FX
)

.

Finally, from Lemma .(ii) and (.), we derive

g
(

h(X, PX),ϕZ
)

= g
(

h(X, Z), FPX
)

–
{

(Z ln f ) – η(Z)
}

cos θ‖X‖

– g
(

h(Z, PX), FX
)

. (.)

Thus from (.) and (.), we get

g
(

h(X, PX),ϕZ
)

– g
(

h(X, Z), FPX
)

=


{

η(Z) – (Z ln f )
}

cos θ‖X‖,

which is our final result. This completes the proof of the lemma. �

Lemma . Let M = M⊥ ×f Mθ be a warped product pseudo-slant submanifold of a nearly
Kenmotsu manifold ˜M. Then:

(iii) g(h(X, X),ϕZ) = g(h(Z, X), FX),
(iv) g(h(PX, PX),ϕZ) = g(h(Z, PX), FPX),

for any X ∈ �(TMθ ) and Z ∈ �(TM⊥).

Proof For X ∈ �(TMθ ) and Z ∈ �(TM⊥), we have

g
(

h(X, X),ϕZ
)

= g(˜∇XX,ϕZ) = –g(ϕ˜∇XX, Z).
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From the definition of the covariant derivative of a tensor field ϕ, we get

g
(

h(X, X),ϕZ
)

= g(˜∇Xϕ)X, Z) – g(˜∇XφX, Z).

Then from (.) and (.), we obtain

g
(

h(X, X),ϕZ
)

= g(˜∇XZ, PX) – g(˜∇XFX, Z).

Thus from Lemma .(ii) and (.), the above equation can be written as

g
(

h(X, X),ϕZ
)

= (Z ln f )g(X, PX) + g(AFXX, Z).

Since X and PX are orthogonal vector fields and considering (.), we arrive at

g
(

h(X, X),ϕZ
)

= g
(

h(X, Z), FX
)

, (.)

which is the first result of the lemma. Interchanging X by PX in (.), we get the last result
of the lemma. This completes the proof of the lemma. �

Lemma . Assume we have a M = Mθ ×f M⊥ non-trivial warped product pseudo-slant
submanifold of a nearly Kenmotsu manifold ˜M. Then:

(i) g(h(Z, Z), FPX) = g(h(Z, PX),ϕZ) + {η(X) – (X ln f )} cos θ‖Z‖,
(ii) g(h(Z, Z), FX) = g(h(Z, X),ϕZ) – (PX ln f )‖Z‖,

for any X ∈ �(TMθ ) and Z ∈ �(TM⊥), where the structure vector field ξ is tangent to Mθ .

Proof From (.), and (.), we get

g
(

h(Z, Z), FPX
)

= g(˜∇ZZ, FPX) = g(˜∇ZZ,ϕPX) – g
(

˜∇ZZ, PX
)

.

From Theorem ., we obtain

g
(

h(Z, Z), FPX
)

= –g(ϕ˜∇ZZ, PX) + cos θ
{

g(˜∇ZZ, X) – η(X)g(˜∇ZZ, ξ )
}

.

Using the property of a Riemannian connection and the covariant derivative of an endo-
morphism, we derive

g
(

h(Z, Z), FPX
)

= g
(

(˜∇Zϕ)Z, PX
)

– g(˜∇ZφZ, PX) – cos θg(∇ZX, Z)

+ cos θη(X)g(˜∇Zξ , Z).

Thus from the fact that in a nearly Kenmotsu manifolds (ξ ln f ) =  [] and from Lem-
ma .(ii), we arrive at

g
(

h(Z, Z), FPX
)

= g
(

h(Z, PX),φZ
)

+
{

η(X) – (X ln f )
}

cos θ‖Z‖,

which is the first part of the lemma. The second part of the lemma can easily be found by
interchanging X by PX in the above equation. This completes the proof of the lemma. �
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4 Inequalities of warped product submanifolds
4.1 Inequality for a warped product pseudo-slant submanifold of the form

M⊥ ×f Mθ

In this section, we obtain a geometric inequality of warped product pseudo-slant sub-
manifold in terms of the second fundamental form such that ξ is tangent to the anti-
invariant submanifold and the mixed totally geodesic submanifold. First of all we define
an orthonormal frame for later use.

Let M = M⊥ ×f Mθ be a m-dimensional warped product pseudo-slant submanifold
of a n + -dimensional nearly Kenmotsu manifold ˜M with Mθ of dimension d = β

and M⊥ of dimension d = α + , where Mθ and M⊥ are the integral manifolds of
Dθ and D⊥, respectively. Then we consider that {e, e, . . . , eα , ed=α+ = ξ} and {eα+ =
e∗

 , . . . , eα+β+ = e∗
β , eα+β+ = e∗

β+ = sec θPe∗
 , . . . , eα++β = e∗

β = sec θPe∗
β} are orthonor-

mal frames of D⊥ and Dθ , respectively. Thus the orthonormal frames of the normal
subbundles ϕD⊥, FDθ , and μ, respectively, are {em+ = ē = ϕe, . . . , em+α = ēα = ϕeα},
{em+α+ = ēα+ = ẽ = csc θFe∗

 , . . . , em+α+β = ēα+β = ẽβ = csc θFe∗
β , em+α+β+ = ēα+β+ = ẽβ+ =

csc θ sec θFPe∗
 , . . . , em+α+β = ēα+β = ẽβ = csc θ sec θFPe∗

β}, and {em– = ēm, . . . , en+ =
ē(n–m+)}.

Theorem . Let M = M⊥ ×f Mθ be a m-dimensional mixed totally geodesic warped prod-
uct pseudo-slant submanifold of a n + -dimensional nearly Kenmotsu manifold ˜M such
that ξ ∈ �(TM⊥), where M⊥ is an anti-invariant submanifold of dimension d and Mθ is
a proper-slant submanifold of dimension d of ˜M. Then:

(i) The squared norm of the second fundamental form of M is given by

‖h‖ ≥ β


cos θ

{∥

∥∇⊥ ln f
∥

∥

 – 
}

. (.)

(ii) The equality holds in (.), if M⊥ is totally geodesic and Mθ is a totally umbilical
submanifold into ˜M.

Proof The squared norm of the second fundamental form is defined as

‖h‖ =
∥

∥h
(

Dθ ,Dθ
)∥

∥

 +
∥

∥h
(

D⊥,D⊥)∥

∥

 + 
∥

∥h
(

Dθ ,D⊥)∥

∥

.

Since M is mixed totally geodesic,

‖h‖ =
∥

∥h
(

D⊥,D⊥)∥

∥

 +
∥

∥h
(

Dθ ,Dθ
)∥

∥

. (.)

Then with (.), we obtain

‖h‖ ≥
n+
∑

l=m+

β
∑

i,j=

g
(

h
(

e∗
i , e∗

j
)

, el
).
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Since the above equation can be expressed as in the components of ϕD⊥, FDθ , and ν , we
derive

‖h‖ ≥
α

∑

l=

β
∑

i,j=

g
(

h
(

e∗
i , e∗

j
)

, ēl
) +

β+α
∑

l=α+

β
∑

i,j=

g
(

h
(

e∗
i , e∗

j
)

, ēl
)

+
(n–m+)

∑

l=m

β
∑

i,j=

g
(

h
(

e∗
i , e∗

j
)

, ēl
). (.)

Leaving all the terms except the first, we get

‖h‖ ≥
α

∑

l=

β
∑

i,j=

g
(

h
(

e∗
i , e∗

j
)

, ēl
).

Using another adapted frame for Dθ , we derive

‖h‖ ≥
α

∑

i=

β
∑

r,k=

g
(

h
(

e∗
r , e∗

k
)

, ēi
) + sec θ

α
∑

i=

β
∑

r,k=

g
(

h
(

Pe∗
r , e∗

k
)

, ēi
)

+ sec
α

∑

i=

β
∑

r,k=

g
(

h
(

e∗
r , Pe∗

k
)

, ēi
) + sec θ

p
∑

i=

β
∑

r,k=

g
(

h
(

Pe∗
r , Pe∗

k
)

, ēi
).

Then for a mixed totally geodesic submanifold, the first and last terms of the right hand
side in the above equation vanish identically by using Lemma ., and we obtain

‖h‖ ≥  sec θ

α
∑

i=

β
∑

r=

g
(

h
(

Pe∗
r , e∗

r
)

, ēi
).

Thus from Lemma ., for a mixed totally geodesic submanifold and using the fact that
η(ei) = , i = , , . . . , d –  for an orthonormal frame, we arrive at

‖h‖ ≥ 


cos θ

α
∑

i=

β
∑

r=

(ēi ln f )g
(

e∗
r , e∗

r
). (.)

Now we add and subtract the same term ξ ln f in (.), getting

‖h‖ ≥ 


cos θ

α+
∑

i=

β
∑

r=

(ēj ln f )g
(

e∗
r , e∗

r
) –




cos θ

β
∑

r=

(ξ ln f )g
(

e∗
r , e∗

r
).

It well known that ξ ln f =  [] for a warped product submanifold of a nearly Kenmotsu
manifold. Thus the above equation gives

‖h‖ ≥ β


cos θ

{∥

∥∇⊥ ln f
∥

∥

 – 
}

.

If the equality holds above, then from the terms left in (.), we obtain the following con-
dition from the first term:

h
(

D⊥,D⊥)

= ,
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which means that M⊥ is totally geodesic in ˜M. Similarly, from the second and third terms
in (.), we derive

g
(

h
(

Dθ ,Dθ
)

, FDθ
)

= , g
(

h
(

Dθ ,Dθ
)

,ν
)

= ,

which implies that

h
(

Dθ ,Dθ
) ⊥ FDθ , h

(

Dθ ,Dθ
) ⊥ ν �⇒ h

(

Dθ ,Dθ
) ⊂ φD⊥.

We have Lemma ., which shows that Mθ is a totally umbilical into ˜M due to being totally
umbilical in M. So equality holds. This completes the proof of the theorem. �

4.2 Inequality for a warped product pseudo-slant submanifold of the form
Mθ ×f M⊥

In this section, we obtain an inequality of warped product pseudo-slant subamnifolds such
that the structure vector field ξ is tangent to the slant submanifold Mθ . Taking ξ tangent
to Dθ , then we use the last frame.

Theorem . Let M = Mθ ×f M⊥ be a m-dimensional mixed totally geodesic warped prod-
uct pseudo-slant submanifold of a n + -dimensional nearly Kenmotsu manifold ˜M such
that ξ ∈ �(TMθ ), where M⊥ is an anti-invariant submanifold of dimension d = α and Mθ

is a proper-slant submanifold of dimension d = β +  of ˜M. Then:
(i) The squared norm of the second fundamental form of M is given by

‖h‖ ≥ α

{

csc θ
(∥

∥∇θ ln f
∥

∥

 – 
)

–
β

∑

i=

(

e∗
i ln f

)
}

. (.)

(ii) If equality holds identically in (.), then Mθ is a totally geodesic submanifold and
M⊥ is a totally umbilical submanifold of ˜M, respectively.

Proof We start by the definition of the second fundamental form

‖h‖ =
∥

∥h
(

Dθ ,Dθ
)∥

∥

 +
∥

∥h
(

D⊥,D⊥)∥

∥

 + 
∥

∥h
(

Dθ ,D⊥)∥

∥

.

Since M is a mixed totally geodesic, we get

‖h‖ =
∥

∥h
(

D⊥,D⊥)∥

∥

 +
∥

∥h
(

Dθ ,Dθ
)∥

∥

. (.)

Thus by (.), we obtain

‖h‖ ≥
n+
∑

l=m+

α
∑

r,k=

g
(

h(er , ek), el
).

The above equation can be expressed in the components of φD⊥, FDθ , and ν as

‖h‖ ≥
α

∑

l,r,k=

g
(

h(er , ek), ēl
) +

β+α
∑

l=α+

α
∑

r,k=

g
(

h(er , ek), ēl
)

+
(n–m+)

∑

l=m

α
∑

r,k=

g
(

h(er , ek), ēl
). (.)
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We shall leave all the terms, except the second term, and we get

‖h‖ ≥
β
∑

l=

α
∑

r,k=

g
(

h(er , ek), ẽl
).

Thus using the adapted frame for FDθ , we derive

‖h‖ ≥ csc θ

β
∑

j=

α
∑

r=

g
(

h(er , er), Fe∗
j
) + csc θ sec θ

β
∑

j=

α
∑

r=

g
(

h(er , er), FPe∗
j
).

Using Lemma . for a mixed totally geodesic warped product submanifold and the fact
that η(ej) = ,  ≤ j ≤ d –  for an orthonormal frame, we arrive at

‖h‖ ≥ csc θ

β
∑

j=

α
∑

r=

(

Pe∗
j ln f

)g(er , er) + csc θ cos θ

β
∑

j=

α
∑

r=

(

e∗
j ln f

)g(er , er).

Hence by hypothesis, we obtain

‖h‖ ≥ α csc θ

β
∑

j=

(

Pe∗
j ln f

) + α cot θ

β
∑

j=

(

e∗
j ln f

).

By the property of trigonometric functions, we arrive at

‖h‖ ≥ α csc θ

β
∑

j=

(

e∗
j ln f

) – α

β
∑

j=

(

e∗
j ln f

).

Then by adding and subtracting the same terms ξ ln f in the above equation, we get

‖h‖ ≥ α csc θ

β+
∑

j=

(

e∗
j ln f

) – α

β
∑

j=

(

e∗
j ln f

) – α csc θ (ξ ln f ).

ξ ln f =  [] for a warped product submanifold of a nearly Kenmotsu manifold. Thus the
above equation gives

‖h‖ ≥ α

[

csc θ
{∥

∥∇θ ln f
∥

∥

 – 
}

–
β

∑

j=

(

e∗
j ln f

)
]

.

If the equality holds, from the terms left in (.) and (.), we obtain the following condi-
tions from the first and third terms:

∥

∥h(D,D)
∥

∥

 = , g
(

h
(

D⊥,D⊥)

,φD⊥)

= ,

and

g
(

h
(

D⊥,D⊥)

,ν
)

= ,
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where D = Dθ ⊕ ξ , this means that Mθ is a totally geodesic in ˜M and h(D⊥,D⊥) ⊆ FDθ .
Now from Lemma . for a mixed totally geodesic submanifold we find

g
(

h(Z, W ), FX
)

= –(PX ln f )g(Z, W ),

for any Z, W ∈ �(TM⊥) and X ∈ �(TMθ ). The above equations imply that M⊥ is totally
umbilical in ˜M, so the equality holds. This completes the proof of the theorem. �
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