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Abstract
This paper deals with a class of degenerate quasilinear elliptic equations of the form
–div(a(x,u,∇u)) + F(x,u,∇u) = f , where a(x,u,∇u) is allowed to degenerate with the
unknown u. Under some hypothesis on a, F, and f , we obtain the existence of
bounded solutions u ∈W1,p

0 (�)∩ L∞(�). For the case f ∈ L1(�), we also prove that
there exists at least one renormalized solution.
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1 Introduction
This paper concerns the following degenerate problem:

(P)

{
– div(a(x, u,∇u)) + F(x, u,∇u) = f in �,
u =  on ∂�,

where � is a bounded domain of RN (N ≥ ), f ∈ Lq(�) with q ≥  and a(x, s, ξ ) is a
Carathéodory function. Furthermore, we assume that there exists a continuous function
α from R

+ into R
+ such that α() =  and a(x, s, ξ )ξ ≥ α(|s|)|ξ |p for any s ∈R, ξ ∈R

N , and
almost every x in �. Thus problem (P) degenerates for the subset {x ∈ � : u(x) = }.

Problem (P) has important and extensive applications to the fluid dynamics in porous
media, in hydrology and in petroleum engineering (see [, ]). The simplest model is the
stationary case of the porous media equation with zero Dirichlet boundary condition:

(P)

{
–�(|u|m–u) + F(x, u) = f in �,
u =  on ∂�,

which has been widely studied in the literature (see [–] and references therein).
For the case α ≡ constant > , the existence of bounded solutions to problem (P) is

proved in [], when the data f is small in a suitable norm.
Concerning the case that α is a positive function, Porretta and Segura de León investi-

gated the existence results to problem (P); see []. We remark that in [], no sign condi-
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tion is imposed on F , but the growth of F at infinity need to be controlled. We also point
out that a variational inequality related to problem (P) was studied in [], and similar
results can be found in [] and [].

In the case α() = , f ∈ W –,r(�) ∩ L(�) with r ≥ p′, r > N
p– , Rakotoson proved the

existence of a bounded weak solution to problem (P) (see []), provided that F satisfies
a sign condition. As F =  and f ∈ W –,r(�), the existence of solutions to problem (P) has
been discussed in []. We point out that the parabolic version of [] has been studied
in [].

As f ∈ Lq(�) with q ≥ max{, N
p }, we shall give a direct method to prove the existence of

bounded weak solutions to problem (P) in the standard sense, i.e. u ∈ W ,p
 (�). The main

difficulty comes from the facts that its modulus of ellipticity vanishes when the solution u
vanishes. To overcome this difficulty, we shall firstly establish the L∞ estimate for solution
u, by the technique of rearrangement which is differs from the usual Stampacchia L∞

regularity procedure. Then, by constructing suitable approximate problems, and using a
priori estimates and a test function method, we shall finish the proof of this existence
results.

Furthermore, we will study the case when f ∈ L(�). Since no growth conditions are
required for ω and β (see (H)), it is not obvious that the term – div(a(x, u,∇u)) makes
sense even as a distribution. To overcome this difficulty, we shall use the concept of renor-
malized solutions, which is introduced by Diperna and Lions (see []). This notion was
adapted by many authors to study partial differential equations with measurable data, es-
pecially for L data (see [–] for example). We remark that an equivalent notion called
entropy solutions, was introduced independently by Bénilan et al. [].

The main ideas and methods come from [, , , ]. This paper is organized as fol-
lows: in Section  we give some preliminaries and state the main results; in Section ,
we study the existence of bounded solution to problem (P); in Section , we prove the
existence of renormalized solution.

2 Some preliminaries and the main results
2.1 Properties of the relative rearrangement
Let � be a bounded open subsets of RN , we denote by |E| the Lebesgue measure of a set E.
Assume that u : � →R be a measurable function, we define the distribution function μu(t)
of u as follows:

μu(t) =
∣∣{x ∈ � : u(x) > t

}∣∣, ∀t ∈R.

The decreasing rearrangement u∗ of u is defined as the generalized inverse function of
μu(t), i.e.

u∗(s) = inf
{

t ∈ R : μu(t) ≤ s
}

, s ∈ �∗ =
[
, |�|].

We recall also that u and u∗ are equi-measurable, i.e.

μu(t) = μu∗ (t), t ∈R,

which implies that for any non-negative Borel function ψ we have
∫

�

ψ
(
u(x)

)
dx =

∫ |�|


ψ

(
u∗(s)

)
ds,
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and if E ⊂ � be a measurable subset, then

∫
E

u(x) dx ≤
∫ |E|


u∗(s) ds.

Using the Fleming-Rishel formula, Hölder’s inequality, and the isoperimetric inequality,
we can get the following result (see [, , ]).

Lemma . For any non-negative function u ∈ W ,
 (�), the following chain of inequalities

holds:

NC/N
N μu(t)–/N ≤ –

d
dt

∫
u>t

|∇u|dx ≤ (
–μ′

u(t)
)/p′

(
–

d
dt

∫
u>t

|∇u|p dx
)/p

,

where CN denotes the measure of the unit ball in R
N .

For more details as regards the theory of rearrangement, we just refer to [] and the
references therein.

2.2 Assumptions and the main results
Let � be an open bounded set of RN (N ≥ ) and p > , we make the following assump-
tions.

(H) a : � × R × R
N → R

N is a Carathéodory vector function satisfying: there exists a
continuous function α from R+ into R+ such that α() =  and α(s) >  if s >  and

a(x, s, ξ )ξ ≥ α
(|s|)|ξ |p, ∀s ∈ R, a.e. x ∈ �,∀ξ ∈R

N ,∫ +∞


α


p– (s) ds =

∫ +∞




α(s)

ds = +∞

and


α

∈ L(, b) for any given b > .

(H) There exists a Carathéodory vector function ā such that for a.e. x ∈ �, ∀s ∈ R, ∀ξ , ξ ′ ∈
R

N with ξ �= ξ ′:
(i) a(x, s, ξ ) = α(|s|)ā(x, s, ξ ).

(ii) [ā(x, s, ξ ) – ā(x, s, ξ ′)][ξ – ξ ′] > .
(iii) There exist an increasing function ω from R

+ into R
+ and a non-negative

function ω̄ ∈ Lp′ (�) such that

∣∣ā(x, s, ξ )
∣∣ ≤ ω

(|s|)[|ξ |p– + ω̄(x)
]
.

(iv) The function ā is a positively homogeneous of degree (p – ) with respect to
the variable ξ , i.e.

ā(x, s, tξ ) = tp–ā(x, s, ξ ), ∀t ≥ .
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(H) F : �×R×R
N →R is a Carathéodory function, for which there exists an increasing

function β from [, +∞) into [, +∞) vanishing and continuous at zero such that for
a.e. x ∈ �, ∀s ∈R and ∀ξ ∈R

N :

∣∣F(x, s, ξ )
∣∣ ≤ β

(|s|)|ξ |p.

(H) f ∈ Lq(�) with q > max{, N
p }.

(H) lims→∞ eγ (|s|)
(+φ(|s|))p– = , where γ and φ are defined as follows:

γ (s) =
∫ s



β(|σ |)
α(|σ |) dσ ; φ(s) =

∫ s



(
α
(|σ |)) 

p– e
γ (|s|)
p– dσ . (.)

Remark . Assumption (H) allows us to consider the porous medium operators
�(|u|m–u) = div(m|u|m–∇u). In this case, it yields α(|s|) = |s|m–, so that the conditions
α() =  and 

α
∈ L(, b) indicate  < m < . Thus, in this case, the porous medium equa-

tion becomes a slow diffusion equation.

We now introduce several auxiliary functions by

α̃(s) =
∫ s


α


p–

(|t|)dt, (.)

γθ (s) =
∫ s



β(|σ |)
α(|σ |) + θ

dσ for any fixed θ > , (.)

γ̃θ (s) =
∫ s



β(|g(t)|)
α(|g(t)|) + θ

dt and γ̃ (s) =
∫ s



β(|g(t)|)
α(|g(t)|) dt. (.)

As usual, the usual truncation function Tθ at level ±θ is defined as Tθ (s) = max{–θ ,
min{θ , s}}. Throughout this paper, we use C(θ, θ, . . . , θm) to denote positive constants de-
pending only on specified quantities θ, θ, . . . , θm.

Now we give the definition of weak solutions of problem (P).

Definition . A measurable function u ∈ W ,p
 (�) is called a weak solution to problem

(P), if a(·, u,∇u) ∈ Lp′ (�) and F(·, u,∇u) ∈ L(�) such that
∫

�

a(x, u,∇u)∇v dx +
∫

�

F(x, u,∇u)v dx =
∫

�

fv dx, ∀v ∈ W ,p
 (�) ∩ L∞(�). (.)

For the existence of weak solutions, our result is stated as follows.

Theorem . If assumptions (H)-(H) hold, then there exists at least one bounded weak
solution u ∈ L∞(�) to problem (P) in the sense of Definition ..

As we have said before, when dealing with the case f ∈ L(�), we shall use the notion of
renormalized solution.

Definition . A measurable function u : � → R is a renormalized solution of problem
(P) if

Tk(u) ∈ W ,p
 (�) for any k ≥ , (.)
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lim
m→∞

∫
{m≤|u|≤m+}

a(x, u,∇u)∇u dx =  (.)

and if for any h ∈ W ,∞(�) with compact support and υ ∈ W ,p
 (�) ∩ L∞(�), u satisfies

∫
�

a(x, u,∇u)∇(
h(u)υ

)
dx +

∫
�

F(x, u,∇u)h(u)υ dx =
∫

�

fh(u)υ dx. (.)

The existence result for L data is stated as follows.

Theorem . Assume that (H) to (H) hold and β

α
∈ L(R+). If f ∈ L(�), then problem

(P) admits at least one renormalized solution.

Remark . In Theorem ., the conditions (H) and (H) are only needed in proving the
L∞(�) estimate of u. Therefore in Theorem ., we do not need these assumptions. But
instead, we need the condition β

α
∈ L(R+) as in []. Moreover, by the result of [], the

solution obtained in Theorem . belongs to W ,r
 (�), provided  – 

N < p < N .

3 Existence of weak solution to problem (P)
To prove Theorem ., we first establish the L∞ estimate of solutions to problem (P).

Lemma . Assume that (H) to (H) hold. If u ∈ W ,p
 (�) ∩ L∞(�) is a weak solution to

problem (P), then u satisfies the following estimate:

‖u‖L∞(�) ≤ M, (.)

where M is a constant which depends only on N , p, q, α, β , ‖f ‖Lq(�).

Proof of Lemma . For t > , h > , let St,h be a real function defined by

St,h(η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

, η > t + h,
η–t

h , t ≤ η ≤ t + h,

, |η| ≤ t,
η+t

h , –t – h ≤ η ≤ –t,

–, η ≤ –t – h.

(.)

It is easy to see that St,h(φ(u)) ∈ W ,p
 (�) ∩ L∞(�) and so St,h(φ(u))eγθ (|u|) ∈ W ,p

 (�) ∩
L∞(�), where φ and γθ are defined as in (.) and (.). Taking v = eγθ (|u|)St,h(φ(u)) as a
test function in (.), we have


h

∫
{t<|φ(u)|≤t+h}

φ′(u)eγθ (|u|)a(x, u,∇u)∇u dx

+
∫

{|φ(u)|>t}

∣∣St,h
(
φ(u)

)∣∣ β(|u|)
α(|u|) + θ

eγθ (|u|)a(x, u,∇u)∇u dx

+
∫

{|φ(u)|>t}
F(x, u,∇u)eγθ (|u|)St,h

(
φ(u)

)
dx

=
∫

{|φ(u)|>t}
feγθ (|u|)St,h

(
φ(u)

)
dx.
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Then letting θ → , we obtain


h

∫
{t<|φ(u)|≤t+h}

φ′(u)eγ (|u|)a(x, u,∇u)∇u dx

+
∫

{|φ(u)|>t}

∣∣St,h
(
φ(u)

)∣∣β(|u|)
α(|u|) eγ (|u|)a(x, u,∇u)∇u dx

+
∫

{|φ(u)|>t}
F(x, u,∇u)eγ (|u|)St,h

(
φ(u)

)
dx

=
∫

{|φ(u)|>t}
feγ (|u|)St,h

(
φ(u)

)
dx, (.)

where γ is defined as in (.). Notice that |St,h(φ(u))| ≤ , by (H), (H), and applying
Hölder’s inequality, we deduce from (.) that


h

∫
{t<ω≤t+h}

|∇ω|p dx ≤
∫

{ω>t}
|f |eγ (|u|) dx ≤ ‖f ‖Lq(�)

(∫
{ω>t}

∣∣eγ (|u|)∣∣q′
dx

) 
q′

,

where ω = |φ(u)| = φ(|u|). Let h tend to zero, we find that

–
d
dt

∫
{ω>t}

|∇ω|p dx ≤
∫

{ω>t}
|f |eγ (|u|) dx ≤ ‖f ‖Lq(�)

(∫
{ω>t}

∣∣eγ (|u|)∣∣q′
dx

) 
q′

. (.)

Setting

z(t) = sup
{|s|>φ–(t)}

eγ (|s|)

( + φ(|s|))p– ,

since φ is strictly increasing and lims→±∞ φ(s) = , we have

lim
t→+∞ z(t) = . (.)

Concerning the term (
∫
{ω>t} |eγ (|u|)|q′ dx)


q , we have

(∫
{ω>t}

∣∣eγ (|u|)∣∣q′
dx

) 
q

=
(∫

{ω>t}

(
eγ (|u|)

( + ω)p–

)q′

( + ω)q′(p–) dx
) 

q′

≤ C(p, q)z(t)
[(∫

{ω>t}
ωq′(p–) dx

) 
q′

+
(
μω(t)

) 
q′

]

≤ C(p, q)z(t)
[(∫ μω(t)


ωq′(p–)

∗ ds
) 

q′
+

(
μω(t)

) 
q′

]
. (.)

By (.), (.), and Lemma ., it follows that

NC/N
N μω(t)–/N

≤ (
–μ′

ω(t)
)/p′

(
–

d
dt

∫
{u>t}

|∇ω|p dx
) 

p

≤ (
–μ′

ω(t)
)/p′

C(p, q)z

p (t)

[(∫ μω(t)


ωq′(p–)

∗ ds
) 

pq′
+

(
μω(t)

) 
pq′

]
, (.)
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which indicates that, for  < θ < θ + h < |�|,

ω∗(θ ) – ω∗(θ + h)
h

≤ C(p, q)
hNC/N

N

∫ ω∗(θ )

ω∗(θ+h)
z


p (t)

(–μ′
ω(t))/p′

μω(t)–/N

×
[(∫ μω(t)


ωq′(p–)

∗ ds
) 

pq′
+

(
μω(t)

) 
pq′

]
dt

<
C(p, q, N)

h
sup

s∈[ω∗(θ+h),+∞]
z


p (s)

∫ ω∗(θ )

ω∗(θ+h)

(–μ′
ω(t))/p′

μω(t)–/N

×
[(∫ μω(t)


ωq′(p–)

∗ ds
) 

pq′
+

(
μω(t)

) 
pq′

]
dt.

Then we employ (.) of [] to get

ω∗(θ ) – ω∗(θ + h)
h

<
C(p, q, N)

h
sup

s∈[ω∗(θ+h),+∞]
z


p (s)

∫ θ+h

θ

(–ω′∗(σ ))/p

σ – 
N

×
[(∫ σ


ωq′(p–)

∗ ds
) 

pq′
+ σ


pq′

]
dσ .

Then letting h tend to zero, we deduce that, for almost θ ∈ [, |�|],

–ω′
∗(θ ) < C(p, q, N) sup

s∈[ω∗(θ ),+∞]
z


p (s)

(–ω′∗(θ ))/p

θ – 
N

[(∫ θ


ωq′(p–)

∗ ds
) 

pq′
+ θ


pq′

]
,

which leads, after applying Young’s inequality, to

–ω′
∗(θ ) < C(p, q, N)

[
sup

s∈[ω∗(θ ),+∞]
z


p (s)

]p′ 

θ (– 
N )p′

[(∫ θ


ωq′(p–)

∗ ds
) p′

pq′
+ θ

p′
pq′

]

≤ C(p, q, N) sup
s∈[ω∗(θ ),+∞]

z
p′
p (s)



θ (– 
N )p′

[
ω∗()θ

p′
pq′ + θ

p′
pq′ ]. (.)

Since q > N
p , we have q = p′

pq′ + p′
N – p′ +  > . From (.), we deduce that there exists t > 

such that

C(p, q, N)z
p′
p (s)|�|q ≤ 


for all s ≥ t.

Hence, upon integration over [,μω(t)], inequality (.) gives

ω∗() ≤  + t,

which implies that ‖u‖L∞(�) ≤ φ–( + t). We observe that t only depends on p, q, N ,
|�|, α, β , thus the proof of Lemma . is finished. �

To prove Theorem ., we shall consider suitable approximate problems. First of all, we
recall the following lemma, proved in [].
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Lemma . There exists a function g ∈ C(R) such that g is odd, strictly increasing, and

g ′(s) = α
(∣∣g(s)

∣∣) ≥  in R, (.)

g() = , lim
s→+∞ g(s) = +∞. (.)

For a.e. x ∈ �, ∀s ∈R, and ∀ξ ∈R
N , we define for fixed ε > :

Fε(x, s, ξ ) =
F(x, s, ξ )

 + ε|F(x, s, ξ )| ,

aε(x, s, ξ ) = ε|ξ |p–ξ + a
(
x, g(s), g ′(s)ξ

)
,

aεl(x, s, ξ ) = ε|ξ |p–ξ + a
(
x, g

(
Tl(s)

)
, g ′(Tl(s)

)
T ′

l (s)ξ
)
.

For any fixed ε > , we introduce the approximate problem

(Pε)

{
– div(aε(x, uε ,∇uε)) + Fε(x, g(uε), g ′(uε)∇uε) = fε in �,
uε =  on ∂�,

where {fε} satisfy

fε ∈ C∞
 (�) such that fε → f strongly in Lq(�) as ε → .

The existence result to problem (Pε) is stated as follows.

Theorem . Problem (Pε) admits at least a solution uε ∈ W ,p
 (�) ∩ L∞(�) with

‖g(uε)‖L∞(�) ≤ M, where M is a positive constant depending on M (see Lemma .) and
the behavior of function g .

Proof of Theorem . For any l > , let us consider the following truncated problem:

(Pεl)

{
– div(aεl(x, uε ,∇uε)) + Fε(x, g(Tl(uε)), g ′(Tl(uε))∇Tl(uε)) = fε in �,
uε =  on ∂�.

By the classic result (see []), problem (Pεl) admits a solution uε ∈ W ,p
 (�) ∈ L∞(�).

Then using the same argument of Lemma ., we conclude

∥∥g
(
Tl(uε)

)∥∥
L∞(�) ≤ M.

In view of Lemma ., it is easy to see that g– is defined well and strictly increasing in R.
Now choosing l > g–(M), we obtain

‖uε‖L∞(�) ≤ g–(M). (.)

Thus we have Tl(uε) = uε , which implies that uε is a weak solution of (Pε). The proof is
finished. �
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Proof of Theorem . Taking eγ̃θ (|uε |)uε as a test function in problem (Pε), we have

∫
�

eγ̃θ (|uε |)aε(x, uε ,∇uε)∇uε dx

+
∫

�

|uε| β(|g(uε)|)
α(|g(uε)|) + θ

eγ̃θ (|uε |)a(x, uε ,∇uε)∇uε dx

+
∫

�

Fε

(
x, g(uε), g ′(uε)∇uε

)
eγ̃θ (|uε |)uε dx

=
∫

�

fεeγ̃θ (|uε |)uε dx,

where γ̃θ is defined as in (.), and g is defined as in Lemma .. Then letting θ tend to
zero, using assumptions (H)-(H) and Theorem . we get

∫
�

eγ̃ (|uε |)aε(x, uε ,∇uε)∇uε dx ≤
∫

�

fεeγ̃ (|uε |)uε dx,

where γ̃ is defined as in (.).
In view of Theorem ., (H), and (H), the above estimate gives

ε

∫
�

|∇uε|p +
∫

�

∣∣∇g(uε)
∣∣p dx ≤ eγ̃ (g–(M))g–(M)‖f ‖L(�). (.)

Now denoting ūε = g(uε), estimates (.) and (.) imply that ūε is bounded uniformly
in W ,p

 (�) ∩ L∞(�). As a consequence, there exist a subsequence (still denoted by {ūε})
and a measurable function ū ∈ W ,p

 (�) ∩ L∞(�) such that

ūε ⇀ ū weakly in W ,p
 (�) and weakly∗ in L∞(�), (.)

ūε → ū a.e. in �. (.)

In the following, the rest of the proof is divided into several steps.
Step : To deal with the difficulty that α vanishes at zero, we define the following trun-

cation function near the origin:

ζk(s) = max{s, k} = k + (s – k)+, ∀s ∈R, (.)

where k >  is a fixed constant. Then we easily get

ζk(ūε) ⇀ ζk(ū) weakly in W ,p
 (�) and weakly∗ in L∞(�). (.)

Now taking ρε
θ = eγθ (ūε)[ζk(ūε) – ζk(ū)]+ as a test function in problem (Pε), by (H) we

have∫
�

eγθ (ūε)a(x, ūε ,∇ūε)∇[
ζk(ūε) – ζk(ū)

]
+ dx

+ ε

∫
�

eγθ (ūε)|∇uε|p–∇uε∇
[
ζk(ūε) – ζk(ū)

]
+ dx

+
∫

�

β(|ūε|)
α(|ūε|) + θ

eγθ (ūε)[ζk(ūε) – ζk(ū)
]

+α
(|ūε|

)|∇ūε|p dx
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+ ε

∫
�

β(|ūε|)
α(|ūε|) + θ

eγθ (ūε)[ζk(ūε) – ζk(ū)
]

+|∇uε|p–∇uε∇ūε dx

+
∫

�

Fε(x, ūε ,∇ūε)eγθ (ūε )[ζk(ūε) – ζk(ū)
]

+ dx

≤
∫

�

fεeγθ (ūε)[ζk(ūε) – ζk(ū)
]

+ dx. (.)

It is easy to see that the fourth term of (.) is non-negative. So letting θ tend to zero, the
above inequality leads to

I(ε) + I(ε) ≤ I(ε), (.)

where

I(ε) =
∫

�

eγ (ūε)a(x, ūε ,∇ūε)∇[
ζk(ūε) – ζk(ū)

]
+ dx,

I(ε) = ε

∫
�

eγ (ūε)|∇uε|p–∇uε∇
[
ζk(ūε) – ζk(ū)

]
+ dx,

I(ε) =
∫

�

fεeγ (ūε)[ζk(ūε) – ζk(ū)
]

+ dx.

Now we estimate all the terms of (.).
Estimate of I(ε). Using (.), (.), and the Hölder inequality, we conclude that

∣∣I(ε)
∣∣ ≤ εeγ (M)

(∫
�

|∇uε|p dx
) p–

p
[(∫

�

∣∣∇ζk(ūε)
∣∣p dx

) 
p

+
(∫

�

∣∣∇ζk(ū)
∣∣p dx

) 
p
]

.

Hence, by (.) we easily get

lim
ε→

I(ε) = . (.)

Estimate of I(ε). By (.), (.), and the Lebesgue dominated convergence theorem,
we infer that

lim
ε→

I(ε) = . (.)

Estimate of I(ε). Since a(x, s, ) =  for a.e. x ∈ � and every s ∈R, we obtain

I(ε) =
∫

�k
ε

eγ (ūε)a(x, ūε ,∇ūε) · ∇[
ūε – ζk(ū)

]
+ dx

+
∫

�k
ε

eγ (ūε)a(x, ūε ,∇ūε) · ∇[
–k – ζk(ū)

]
+ dx

= Ī(ε) + Ī(ε), (.)

where

�k
ε = {x ∈ � : ūε < k}, �k

ε = {x ∈ � : ūε ≥ k}.



Zou Journal of Inequalities and Applications  (2015) 2015:294 Page 11 of 23

For the term Ī(ε), we can write

Ī(ε) =
∫

�k
ε

eγ (ūε)[a
(
x, ζk(ūε),∇ζk(ūε)

)
– a

(
x, ζk(ūε),∇ζk(ū)

)] · ∇[
ζk(ūε) – ζk(ū)

]
+ dx

+
∫

�k
ε

eγ (ūε)a
(
x, ζk(ūε),∇ζk(ū)

) · ∇[
ζk(ūε) – ζk(ū)

]
+ dx. (.)

Collecting (.), (.), (.), and (.), it is easy to verify that

lim
ε→

∫
�k

ε

eγ (ūε)a
(
x, ζk(ūε),∇ζk(ū)

) · ∇[
ζk(ūε) – ζk(ū)

]
+ dx = . (.)

Using (.), (.), (H), and (H), we find that

lim
ε→

Ī(ε) ≥ lim
ε→

∫
�k

ε

[
a
(
x, ζk(ūε),∇ζk(ūε)

)
– a

(
x, ζk(ūε),∇ζk(ū)

)]
· ∇[

ζk(ūε) – ζk(ū)
]

+ dx

= lim
ε→

∫
�

[
a
(
x, ζk(ūε),∇ζk(ūε)

)
– a

(
x, ζk(ūε),∇ζk(ū)

)]
· ∇[

ζk(ūε) – ζk(ū)
]

+ dx,

where we have used the fact a(x, s, ) =  for a.e. x ∈ �.
For the term Ī(ε), it is easy to get

lim
ε→

Ī(ε) = .

The above two convergence results show that

lim
ε→

I(ε) ≥ lim
ε→

∫
�

[
a
(
x, ζk(ūε),∇ζk(ūε)

)
– a

(
x, ζk(ūε),∇ζk(ū)

)]
· ∇[

ζk(ūε) – ζk(ū)
]

+ dx. (.)

Substituting (.), (.), and (.) into (.), we conclude

lim
ε→

∫
�

[
a
(
x, ζk(ūε),∇ζk(ūε)

)
– a

(
x, ζk(ūε),∇ζk(ū)

)]
· ∇[

ζk(ūε) – ζk(ū)
]

+ dx ≤ . (.)

Now choosing ρε
θ = –eγθ (ūε)[ζk(ūε)–ζk(ū)]+ as a test function in problem (Pε), by the same

arguments as in the proof of (.) we arrive at

lim
ε→

∫
�

–
[
a
(
x, ζk(ūε),∇ζk(ūε)

)
– a

(
x, ζk(ūε),∇ζk(ū)

)]
· ∇[

ζk(ūε) – ζk(ū)
]

– dx ≤ . (.)

As a consequence of (.) and (.), we have

lim
ε→

∫
�

[
a
(
x, ζk(ūε),∇ζk(ūε)

)
– a

(
x, ζk(ūε),∇ζk(ū)

)] · ∇[
ζk(ūε) – ζk(ū)

]
dx ≤ .
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Then, arguing as in [], we derive that

∇ζk(ūε) → ∇ζk(ū) strongly in
(
Lp(�)

)N and a.e. in �. (.)

Step : For any fixed k > , let us define

ζ̄k(s) = min{s, –k} = –k + (s + k)–, ∀s ∈ R.

Proceeding as in Step , taking ρε
θ = eγθ (ūε)[ζ̄k(ūε) – ζ̄k(ū)]+ and ρε

θ = –e–γθ (ūε )[ζ̄k(ūε) –
ζ̄k(ū)]– as two test functions in problem (Pε), we obtain

∇ ζ̄k(ūε) → ∇ ζ̄k(ū) strongly in
(
Lp(�)

)N and a.e. in �. (.)

By (.) and (.), it follows that

χ{|ūε |≥k}∇ūε → χ{|ū|≥k}∇ū strongly in
(
Lp(�)

)N and a.e. in �. (.)

In the following, we prove that u is a weak solution to problem (P).
Since uε is a weak solution to problem (P), it follows that

∫
�

a(x, ūε ,∇ūε)∇v dx + ε

∫
�

|∇uε|p–∇uε∇v dx +
∫

�

Fε(x, ūε ,∇ūε)v dx

=
∫

�

fεv dx, ∀v ∈ W ,p
 (�) ∩ L∞(�). (.)

Concerning the third term on the left-hand side of (.), we rewrite it as

∫
�

F(x, ūε ,∇ūε)υ dx

=
∫

{x∈�:|ūε |>k}
F(x, ūε ,∇ūε)υ dx +

∫
{x∈�:|ūε |≤k}

F(x, ūε ,∇ūε)υ dx

= Iε + Iε for any fixed k > . (.)

To take the limits in Iε , we next show that

F(x, ūε ,∇ūε)χ{|ūε |>k} → F(x, ū,∇ū)χ{|ū|>k} strongly in L(�). (.)

Indeed, by (.) and (.), we already know that F(x, t, ūε ,∇ūε)χ{|ūε |>k} → F(x, t, ū,
∇ū)χ{|ū|>k} almost everywhere in �, it suffices to prove the equi-integrability of this se-
quence and then apply Vitali’s convergence theorem. Using Theorem . and (H), we get

∣∣F(x, ūε ,∇ūε)χ{|ūε |>k}
∣∣ ≤ C|∇ūε|pχ{|ūε |>k},

where C is a positive constant independent of ε and k. Then the equi-integrability of
|∇ūε|pχ{|ūε |>k}, which follows from (.), indicates that of F(x, ūε ,∇ūε)χ{|ūε |>k}. Therefore,
(.) is proved.
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As a conclusion, we have

lim
ε→

Iε =
∫

{x∈�:|ū|>k}
F(x, ū,∇ū)υ dx,

so that

lim
k→

lim
ε→

Iε =
∫

�

F(x, ū,∇ū)υ dx. (.)

Moreover, by assumption (H) and (.) we get

|Iε| ≤ max
≤s≤k

β(s)
∫ ∫

{(x,t)∈Qτ :|ūε(x,t)|≤k}

[|∇ūε|p + h(x, t)
]|υ|dx dt ≤ C max

≤s≤k
β(s),

where C is a positive constant independent of ε and k. Therefore,

lim
k→

lim
ε→

Iε = , (.)

since β is a continuous function from [, +∞) into [, +∞) and β() = .
It follows from (.), (.), and (.) that

lim
ε→

∫
�

F(x, ūε ,∇ūε)υ dx =
∫

�

F(x, ū,∇ū)υ dx. (.)

Similarly, we have

lim
ε→

∫
�

a(x, ūε ,∇ūε)∇v dx =
∫

�

a(x, ū,∇ū)∇v dx. (.)

Furthermore, the same argument as (.) shows that

lim
ε→

ε

∫
�

|∇uε|p–∇uε∇v dx = . (.)

Finally, it is easy to see that

lim
ε→

∫
�

fεv dx =
∫

�

fv dx. (.)

Now letting ε tend to zero, from (.)-(.), we deduce that ū satisfies (.), with u
replaced by ū. Thus, the proof is finished. �

4 Existence of renormalized solution to problem (P)
Proof of Theorem . By the proof of Theorem ., we deduce that there exists at least one
weak solution uε satisfying uε ∈ W ,p

 (�) ∩ L∞(�) such that

ε

∫
�

|∇uε|p–∇uε∇v dx +
∫

�

a
(
x, g(uε),∇g(uε)

)∇v dx

+
∫

�

Fε

(
x, g(uε),∇g(uε)

)
v dx =

∫
�

fεv dx, ∀v ∈ W ,p
 (�), (.)
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where fε satisfy

fε ∈ C∞
 (�) such that fε → f strongly in L(�) as ε → .

As before, set ūε = g(uε). For any given l > s and l̄ = g–(l), let us take v = eγ̃θ (|uε |)Tl̄(uε)
in (.), where s is defined as in the proof of Theorem .. Then sending θ tend to zero,
using (H)-(H) and the fact β

α
∈ L(, +∞), it follows that

ε

∫
�

∣∣∇Tl̄(uε)
∣∣p dx +

∫
�

∣∣∇Tl(ūε)
∣∣p dx ≤ C, (.)

where C is a positive constant independent of ε.
Hence, by the Sobolev space embedding theorem, there exist a measurable function ū

and a subsequence (still denoted by {ūε}), such that

ūε → ū a.e. in � (.)

and

Tl(ūε) ⇀ Tl(ū) weakly in W ,p
 (�). (.)

Step .. In this step, we prove the following result:

lim
n→∞ lim

ε→

∫
{x∈�:n≤|ūε (x)|≤n+}

a(x, ūε ,∇ūε)∇ūε dx = . (.)

For any integer n > , define ρn by

ρn(r) = Tn+(r) – Tn(r), ∀r ∈R.

Obviously, we have

 < |ρn| ≤  and ρn(r) →  for any r as n → ∞. (.)

Taking v = eγθ (|ūε |)ρn(ūε) in (.), we get

∫
�

eγθ (|ūε |)a(x, ūε ,∇ūε)∇ρn(ūε) dx +
∫

�

ρn(ūε)eγθ (|ūε |) β(|ūε|)
α(|ūε|) + θ

a(x, ūε ,∇ūε)∇ūε dx

+
∫

�

ε|∇uε|p–∇uε∇
(
eγθ (|ūε |)ρn(ūε)

)
dx +

∫
�

Fε(x, ūε ,∇ūε)eγθ (|ūε |)ρn(ūε) dx

=
∫

�

fεeγθ (|ūε |)ρn(ūε) dx. (.)

Passing to the limit as θ tend to zero in (.), it follows from (H) and (H) that

∫
{x∈�:n≤|ūε (x)|≤n+}

eγ (|ūε |)a(x, ūε ,∇ūε)∇ūε dx ≤
∫

�

fεeγ (|ūε |)ρn(ūε) dx. (.)
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Let ε →  and then n → ∞ in (.). Recalling that β

α
∈ L(R+), using (.) we get

lim
ε→

∫
{x∈�:n≤|ūε (x)|≤n+}

a(x, ūε ,∇ūε)∇ūε dx ≤
∫

�

feγ (|ū|)ρn(ū) dx. (.)

It is easy to check that limn→∞
∫
�

feγ (|ū|)ρn(ū) dx = . Thus, passing to the limit as n → ∞
in (.), the desired result (.) follows immediately.

Step .. For any fixed k >  and l > max{k, s}, we denote

ζ l
k(s) = max

{
Tl(s), k

}
= k +

(
Tl(s) – k

)
+, ∀s ∈ R.

Then we have, in view of (.) and (.),

ζ l
k(ūε) ⇀ ζ l

k(ū) weakly in W ,p
 (�). (.)

Let λ be a positive number to be determined, denote

ϕ(s) = eλs – , ∀s ∈R

and

ρε
θ = eγθ (ūε)ϕ

((
ζ l

k(ūε) – ζ l
k(ū)

)
+

)
e–γθ (ζ l

k (ūε)),

where γθ is defined as in (.). We now choose a sequence of increasing function Sn ∈
C∞(R) such that

Sn(r) =  for |r| ≤ n; supp Sn ⊂ [–n – , n + ];
∥∥S′

n
∥∥

L∞(R) ≤ . (.)

Taking v = Sn(ūε)ρε
θ in (.), we obtain

Î(θ , ε, n) + Î(θ , ε, n) + Î(θ , ε, n) + Î(θ , ε, n) + Î(θ , ε, n)

≤ Î(θ , ε, n) + Î(θ , ε, n) + Î(θ , ε, n) + Î(θ , ε, n), (.)

where

Î(θ , ε, n) =
∫

�

Sn(ūε)eγθ (ūε )–γθ (ζ l
k (ūε ))ϕ′((ζ l

k(ūε) – ζ l
k(ū)

)
+

)
a(x, ūε ,∇ūε)

· ∇((
ζ l

k(ūε) – ζ l
k(ū)

)
+

)
dx,

Î(θ , ε, n) = ε

∫
�

Sn(ūε)eγθ (ūε )–γθ (ζ l
k (ūε))ϕ′((ζ l

k(ūε) – ζ l
k(ū)

)
+

)|∇uε|p–∇uε

· ∇((
ζ l

k(ūε) – ζ l
k(ū)

)
+

)
dx,

Î(θ , ε, n) =
∫

�

Sn(ūε)α
(|ūε|

) β(|ūε|)
α(|ūε|) + θ

|∇ūε|pρε
θ dx,

Î(θ , ε, n) =
∫

�

S′
n(ūε)a(x, ūε ,∇ūε)∇ūερ

ε
θ dx,
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Î(θ , ε, n) = ε

∫
�

S′
n(ūε)|∇uε|p–∇uε∇ūερ

ε
θ dx,

Î(θ , ε, n) =
∫

�

Sn(ūε)β
(|ūε|

)|∇ūε|pρε
θ dx,

Î(θ , ε, n) =
∫

�

Sn(ūε)
β(|ζ l

k(ūε)|)
α(|ζ l

k(ūε)|) + θ
ϕ
((

ζ l
k(ūε) – ζ l

k(ū)
)

+

)
a(x, ūε ,∇ūε)∇ζ l

k(ūε) dx,

Î(θ , ε, n) = ε

∫
�

Sn(ūε)
β(|ζ l

k(ūε)|)
α(|ζ l

k(ūε)|) + θ
ϕ
((

ζ l
k(ūε) – ζ l

k(ū)
)

+

)|∇uε|p–∇uε∇ζ l
k(ūε) dx,

Î(θ , ε, n) =
∫

�

Sn(ūε)|fε|ρε
θ dx.

Limit behaviors of Î(θ , ε, n), Î(θ , ε, n), and Î(θ , ε, n). Thanks to (.), we have

lim
θ→

Î(θ , ε, n) = ε

∫
�

S′
n(ūε)eγ (Tn+(ūε ))–γ (ζ l

k (ūε))ϕ′((ζ l
k(ūε) – ζ l

k(ū)
)

+

)
× ∣∣∇Tn+(uε)

∣∣p–∇Tn+(uε) · ∇((
ζ l

k(ūε) – ζ l
k(ū)

)
+

)
dx,

and thus

∣∣∣ lim
θ→

Î(θ , ε, n)
∣∣∣ ≤ εC

∫
�

∣∣∇Tn+(uε)
∣∣p–(∣∣∇ζ l

k(ūε)
∣∣ +

∣∣∇ζ l
k(ū)

∣∣)dx

≤ εC
∥∥∇Tn+(uε)

∥∥p–
Lp(�)

[∥∥∇ζ l
k(ūε)

∥∥
Lp(�) +

∥∥∇ζ l
k(ū)

∥∥
Lp(�)

]
,

where C is a positive constant independent of ε. Therefore, using (.) we get

lim
ε→

lim
θ→

Î(θ , ε, n) = . (.)

Similarly, we have

lim
ε→

lim
θ→

Î(θ , ε, n) =  (.)

and

lim
ε→

lim
θ→

Î(θ , ε, n) = . (.)

Limit behaviors of Î(θ , ε, n) and Î(θ , ε, n). Since

Î(θ , ε, n) =
∫

{x∈�:ūε (x) �=}
S′

n(ūε)α
(∣∣Tn+(ūε)

∣∣) β(|Tn+(ūε)|)
α(|Tn+(ūε)|) + θ

× ∣∣∇Tn+(ūε)
∣∣p

ρε
θ dx,

we get

lim
θ→

Î(θ , ε, n) =
∫

�

S′
n(ūε)ϕ

((
ζ l

k(ūε) – ζ l
k(ū)

)
+

)
eγ (ūε)–γ (ζ l

k (ūε ))β
(|ūε|

)|∇ūε|p dx. (.)
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As far as Î(θ , ε, n) is concerned, we have

lim
θ→

Î(θ , ε, n) =
∫

�

S′
n(ūε)ϕ

((
ζ l

k(ūε) – ζ l
k(ū)

)
+

)
eγ (ūε)–γ (ζ l

k (ūε ))β
(|ūε|

)|∇ūε|p dx. (.)

Limit behavior of Î(θ , ε, n). From (.) and (.), it follows that

lim
n→∞ lim

ε→
lim
θ→

∣∣Î(θ , ε, n)
∣∣ = . (.)

Limit behavior of Î(θ , ε, n). For the term Î(θ , ε, n), we have

lim
θ→

Î(θ , ε, n) =
∫

�

S′
n(ūε)

β(|ζ l
k(ūε)|)

α(|ζ l
k(ūε)|)ϕ

((
ζ l

k(ūε) – ζ l
k(ū)

)
+

)
a(x, ūε ,∇ūε)∇ζ l

k(ūε) dx

≤ I(ε, n) + I(ε, n) + I(ε, n), (.)

where

I(ε, n) = max
s∈[k,l]

β(|s|)
α(|s|)

∫
�

[
a
(
x, ζ l

k(ūε),∇ζ l
k(ūε)

)
– a

(
x, ζ l

k(ūε),∇ζ l
k(ū)

)]
· ∇(

ζ l
k(ūε) – ζ l

k(ū)
)

+ϕ
((

ζ l
k(ūε) – ζ l

k(ū)
)

+

)
S′

n(ūε) dx,

I(ε, n) =
∫

�

β(|ζ l
k(ūε)|)

α(|ζ l
k(ūε)|) a

(
x, ζ l

k(ūε),∇ζ l
k(ū)

)
· ∇(

ζ l
k(ūε) – ζ l

k(ū)
)

+ϕ
((

ζ l
k(ūε) – ζ l

k(ū)
)

+

)
S′

n(ūε) dx

and

I(ε, n) =
∫

�

β(|ζ l
k(ūε)|)

α(|ζ l
k(ūε)|) a

(
x, ζ l

k(ūε),∇ζ l
k(ūε)

)∇ζ l
k(ū)

× ϕ
((

ζ l
k(ūε) – ζ l

k(ū)
)

+

)
S′

n(ūε) dx.

Combining (.) with (.), we infer that

lim
ε→

I(ε, n) =  (.)

and

lim
ε→

I(ε, n) = . (.)

Substituting (.) and (.) into (.), we obtain

lim
ε→

lim
θ→

Î(θ , ε, n) ≤ lim
ε→

I(ε, n). (.)

Limit behavior of Î(θ , ε, n). It is straightforward that

lim
n→∞ lim

ε→
lim
θ→

Î(θ , ε, n) = . (.)
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Limit behavior of Î(θ , ε, n). Note that a(x, s, ) =  for a.e. x ∈ � and every s ∈ R, and we
get

lim
θ→

Î(θ , ε, n)

=
∫

�k
ε

S′
n(ūε)ϕ′((ζ l

k(ūε) – ζ l
k(ū)

)
+

)
a(x, ūε ,∇ūε) · ∇(

ζ l
k(ūε) – ζ l

k(ū)
)

+ dx

+
∫

�k
ε

S′
n(ūε)eγ (ūε)–γ (l)ϕ′((l – ζ l

k(ū)
)

+

)
a(x, ūε ,∇ūε) · ∇(

l – ζ l
k(ū)

)
+ dx

+
∫

�k
ε

S′
n(ūε)eγ (ūε)–γ (k)ϕ′((k – ζ l

k(ū)
)

+

)
a(x, ūε ,∇ūε) · ∇(

k – ζ l
k(ū)

)
+ dx

= Î(ε) + Î(ε) + Î(ε), (.)

where

�k
ε = {x ∈ � : k < ūε < l},

�k
ε = {x ∈ � : ūε ≥ l},

�k
ε = {x ∈ � : ūε ≤ k}.

Using (.), (.), and (.), it is clear that

lim
ε→

Î(ε) =  (.)

and

lim
ε→

Î(ε) = . (.)

Note that a(x, s, ) =  for a.e. x ∈ � and every s ∈ R, the term Î(ε) can be rewritten as
follows:

Î(ε) = J(ε) + J(ε),

where

J(ε) =
∫

�

S′
n(ūε)

[
a
(
x, ζ l

k(ūε),∇ζ l
k(ūε)

)
– a

(
x, ζ l

k(ūε),∇ζ l
k(ū)

)]
· ∇((

ζ l
k(ūε) – ζ l

k(ū)
)

+

)
ϕ′((ζ l

k(ūε) – ζ l
k(ū)

)
+

)
dx,

J(ε) =
∫

�

S′
n(ūε)a

(
x, ζ l

k(ūε),∇ζ l
k(ū)

)
· ∇((

ζ l
k(ūε) – ζ l

k(ū)
)

+

)
ϕ′((ζ l

k(ūε) – ζ l
k(ū)

)
+

)
dx.

By (.), (.), and (.), we find that

lim
ε→

J(ε) = . (.)



Zou Journal of Inequalities and Applications  (2015) 2015:294 Page 19 of 23

As a direct consequence of (.)-(.), we have

lim
ε→

lim
θ→

Î(θ , ε, n) = lim
ε→

J(ε). (.)

Choosing λ =  maxs∈[k,l]
β(|s|)
α(|s|) in the definition of ϕ, and then combining the limit behav-

iors of Î(θ , ε, n)-Î(θ , ε, n), we get

lim
n→∞ lim

ε→

∫
�

S′
n(ūε)

[
a
(
x, ζ l

k(ūε),∇ζ l
k(ūε)

)
– a

(
x, ζ l

k(ūε),∇ζ l
k(ū)

)]
· ∇((

ζ l
k(ūε) – ζ l

k(ū)
)

+

)
ϕ′((ζ l

k(ūε) – ζ l
k(ū)

)
+

)
dx ≤ ,

which yields

lim
n→∞ lim

ε→

∫
�

S′
n(ūε)

[
a
(
x, ζ l

k(ūε),∇ζ l
k(ūε)

)
– a

(
x, ζ l

k(ūε),∇ζ l
k(ū)

)]
· ∇((

ζ l
k(ūε) – ζ l

k(ū)
)

+

)
dx ≤ . (.)

Step .. Choosing v = –Sn(ūε)e–γθ (ūε)+γθ (ζ l
k (ūε ))ϕ((ζ l

k(ūε) – ζ l
k(ū))–) as a test function in

(.), then arguing as before, we have

lim
n→∞ lim

ε→

∫
�

S′
n(ūε)

[
a
(
x, ζ l

k(ūε),∇ζ l
k(ūε)

)
– a

(
x, ζ l

k(ūε),∇ζ l
k(ū)

)]
· ∇((

ζ l
k(ūε) – ζ l

k(ū)
)

–

)
dx ≥ . (.)

It follows from (.) and (.) that

lim
n→∞ lim

ε→

∫
�

S′
n(ūε)

[
a
(
x, ζ l

k(ūε),∇ζ l
k(ūε)

)
– a

(
x, ζ l

k(ūε),∇ζ l
k(ū)

)]
· ∇(

ζ l
k(ūε) – ζ l

k(ū)
)

dx ≤ . (.)

Taking into account that S′
n(ūε)a(x, ζ l

k(ūε),∇ζ l
k(ūε)) = a(x, ζ l

k(ūε),∇ζ l
k(ūε)) for n > l, using

(.) we get

lim
ε→

∫
�

a
(
x, ζ l

k(ūε),∇ζ l
k(ūε)

) · ∇(
ζ l

k(ūε) – ζ l
k(ū)

)
dx ≤ ,

which yields

lim
ε→

∫
�

[
a
(
x, ζ l

k(ūε),∇ζ l
k(ūε)

)
– a

(
x, ζ l

k(ūε),∇ζ l
k(ū)

)] · ∇(
ζ l

k(ūε) – ζ l
k(ū)

)
dx = . (.)

Then, arguing as in [], we derive

∇ζ l
k(ūε) → ∇ζ l

k(ū) strongly in
(
Lp(�)

)N and a.e. in �. (.)

Step .. For any fixed l > k > , we denote

ζ̄ l
k(s) = min

{
Tl(s), –k

}
= –k –

(
Tl(s) + k

)
–, ∀s ∈ R.
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Choosing v = Sn(ūε)eγθ (ūε)–γθ (ζ̄ l
k (ūε))ϕ((ζ̄ l

k(ūε) – ζ̄ l
k(ū))+) as a test function in (.), arguing

as before we obtain

lim
n→∞ lim

ε→

∫
�

S′
n(ūε)

[
a
(
x, ζ̄ l

k(ūε),∇ ζ̄ l
k(ūε)

)
– a

(
x, ζ̄ l

k(ūε),∇ ζ̄ l
k(ū)

)]
· ∇((

ζ̄ l
k(ūε) – ζ̄ l

k(ū)
)

+

)
dx ≤ .

Next choosing v = –Sn(ūε)eγθ (ζ̄ l
k (ūε ))–γθ (ūε)ϕ((ζ̄ l

k(ūε) – ζ̄ l
k(ū))–) as a test function in (.), ap-

plying the same argument we get

lim
n→∞ lim

ε→

∫
�

S′
n(ūε)

[
a
(
x, ζ̄ l

k(ūε),∇ ζ̄ l
k(ūε)

)
– a

(
x, ζ̄ l

k(ūε),∇ ζ̄ l
k(ū)

)]
· ∇((

ζ̄ l
k(ūε) – ζ̄ l

k(ū)
)

–

)
dx ≥ .

Proceeding as in Step ., we infer that

∇ ζ̄ l
k(ūε) → ∇ ζ̄ l

k(ū) strongly in
(
Lp(�)

)N and a.e. in �. (.)

As a consequence of (.) and (.), we have

χ{|ūε |>k}∇Tl(ūε) → χ{|ū|>k}∇Tl(ū) strongly in
(
Lp(�)

)N and a.e. in �. (.)

Step .. In this step we prove that ū satisfies (.), where u is replaced by ū.
For any fixed m > k, one has

∫
{x∈�:m≤|ūε (x)|≤m+}

a(x, ūε ,∇ūε)∇ūε dx

=
∫

�

a(x, ūε ,∇ūε)
[∇Tm+(ūε) – ∇Tm(ūε)

]
dx. (.)

Thus, passing to the limit as ε tends to zero in (.), we deduce that, for fixed m > k ≥ ,

lim
ε→

∫
{x∈�:m≤|ūε (x)|≤m+}

a(x, ūε ,∇ūε)∇ūε dx

=
∫

�

a(x, ū,∇ū)
[∇Tm+(ū) – ∇Tm(ū)

]
dx

=
∫

{x∈�:m≤|ū|≤m+}
a(x, ū,∇ū)∇ū dx. (.)

Taking the limit as m tends to +∞ in (.) and using (.), we conclude that ū satisfies
(.).

In the following, we prove that ū satisfies (.). Indeed, by (.), we have

∫
�

h(ūε)a(x, ūε ,∇ūε)∇υ dx +
∫

�

εh(ūε)|∇uε|p–∇uε∇υ dx

+
∫

�

h′(ūε)a(x, ūε ,∇ūε)∇ūευ dx
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+
∫

�

εh′(ūε)|∇uε|p–∇uε∇ūευ dx

+
∫

�

h(ūε)Fε(x, ūε ,∇ūε)υ dx

=
∫

�

h(ūε)fευ dx (.)

for any given υ ∈ W ,∞(�) and h ∈ W ,∞(R) such that supp h ⊆ [–l, l] for some l > .
Now we first analyze the fifth term on the left-hand side of (.). Recall that supp h ⊆

[–l, l], we get

h(ūε)F(x, ūε ,∇ūε) = h(ūε)F
(
x, Tl(ūε),∇Tl(ūε)

)
.

Therefore, for any k satisfying  < k < l, one has

∫
�

h(ūε)F(x, ūε ,∇ūε)υ dx

=
∫

{x∈�:|ūε |>k}
h(ūε)F

(
x, Tl(ūε),∇Tl(ūε)

)
υ dx

+
∫

{x∈�:|ūε |≤k}
h(ūε)F

(
x, Tl(ūε),∇Tl(ūε)

)
υ dx

= Jε + Jε . (.)

Similarly to the proof of (.) and (.), using (.) and (.) we obtain

lim
k→

lim
ε→

Jε =
∫

�

h(ū)F
(
x, Tl(ū),∇Tl(ū)

)
υ dx

=
∫

�

h(ū)F(x, ū,∇ū)υ dx (.)

and

lim
k→

lim
ε→

Jε = , (.)

which imply that

lim
ε→

∫
�

h(ūε)F(x, ūε ,∇ūε)υ dx =
∫

�

h(ū)F(x, ū,∇ū)υ dx. (.)

Similarly, we have

lim
ε→

∫
�

h′(ūε)a(x, ūε ,∇ūε)∇ūευ dx =
∫

�

h′(ū)a(x, ū,∇ū)∇ūυ dx (.)

and

lim
ε→

∫
�

h(ūε)aε(x, ūε ,∇ūε)∇υ dx =
∫

�

h(ū)a(x, ū,∇ū)∇υ dx. (.)
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As far as the second term of the left-hand side of (.) is concerned, by (.) we easily
get

∣∣∣∣
∫

�

εh(ūε)|∇uε|p–∇uε∇υ dx
∣∣∣∣

=
∣∣∣∣
∫

�

εh(ūε)
∣∣∇Tl̃(uε)

∣∣p–∇Tl̃(uε)∇υ dx
∣∣∣∣

≤ ε sup
σ∈[–l,l]

∣∣h(σ )
∣∣∥∥∇Tl̃(uε)

∥∥p–
Lp(�)‖∇υ‖Lp(�), where l̃ = g–(l),

thus

lim
ε→

∫
�

εh(ūε)|∇uε|p–∇uε∇υ dx = . (.)

Reasoning as in (.), one has

lim
ε→

∫
�

εh′(ūε)|∇uε|p–∇uε∇ūευ dx = . (.)

Finally, it is clear that

lim
ε→

∫
�

h(ūε)fευ dx =
∫

�

h(ū)f υ dx. (.)

Then, letting ε tend to zero in (.), we conclude from (.)-(.) that ū satisfies (.).
Hence, ū is a renormalized solution to problem (P). �
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