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1 Introduction
Random metric theory is based on the idea of randomizing the classical space theory of
functional analysis. All the basic notions such as random normed modules, random inner
product modules and random locally convex modules, together with their random conju-
gate spaces, were naturally presented by Guo in the course of the development of random
functional analysis [–]. In the last ten years, random metric theory and its applications
in the theory of conditional risk measures have undergone a systematic and deep develop-
ment [–]. Especially after , in [] Guo gives the relations between the basic results
currently available derived from two kinds of topologies, namely the (ε,λ)-topology and
the locally L-convex topology. In [], Guo gives some basic results on L-convex analy-
sis together with some applications to conditional risk measures and studies the relations
among three kinds of conditional convex risk measures. These results pave the way for
further research of the random metric theory and conditional convex risk measures.

In , Clark presented Clark’s fixed pointed theorem []. It has been applied in many
fields such as optimization theory, different equations, and fixed point theory. Based on
the recent work of random metric theory, in this paper, we establish Clark’s fixed pointed
theorem on complete random normed modules under two kinds of topologies. A ran-
dom normed module is a random generalization of an ordinary normed space. Different
from ordinary normed spaces, random normed modules possess the rich stratification
structure, which is introduced in this paper. It is this kind of rich stratification structure
that makes the theory of random normed modules deeply developed and also becomes
the most useful part of random metric theory. When the probability (�,F , P) is trivial,
namely F = {∅,�}, our results reduce to the classical Clark’s fixed pointed theorem. So
the extension of our results is nontrivial.
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The reminder of this article is organized as follows. In Section  we briefly recall some
necessary notions and facts. In Section  we present and prove our main results.

2 Preliminary
Throughout this paper, (�,F , P) denotes a probability space, K the real number field R or
the complex number field C, N the set of positive integers, L̄(F ) the set of equivalence
classes of extended real-valued random variables on � and L(F , K) the algebra of equiva-
lence classes of K-valued F -measurable random variables on � under the ordinary scalar
multiplication, addition and multiplication operations on equivalence classes, denoted by
L(F ) when K = R.

The pleasant properties of the complete lattice L̄(F ) (see the introduction for the no-
tation L̄(F )) are summarized as follows.

Proposition . ([]) For every subset A of L̄(F ), there exist countable subsets {an | n ∈
N} and {bn | n ∈ N} of A such that

∨
n≥ an = ∨A and

∧
n≥ bn = ∧A. Further, if A is directed

(dually directed) with respect to ≤, then the above {an | n ∈ N} (accordingly, {bn | n ∈ N})
can be chosen as nondecreasing (correspondingly, nonincreasing) with respect to ≤.

Specially, L
+(F ) = {ξ ∈ L(F ) | ξ ≥ }, L

++(F ) = {ξ ∈ L(F ) | ξ >  on �}.
As usual, ξ > η means ξ ≥ η and ξ �= η, whereas ξ > η on A means ξ(ω) > η(ω) a.s. on A

for any A ∈F and ξ and η in L̄(F ), where ξ and η are arbitrarily chosen representatives
of ξ and η, respectively.

For any A ∈ F , Ac denotes the complement of A, Ã = {B ∈ F | P(A�B) = } denotes the
equivalence class of A, where � is the symmetric difference operation, IA the characteristic
function of A, and ĨA is used to denote the equivalence class of IA; given two ξ and η in
L̄(F ), and A = {ω ∈ � : ξ �= η}, where ξ and η are arbitrarily chosen representatives of
ξ and η respectively, then we always write [ξ �= η] for the equivalence class of A and I[ξ �=η]

for ĨA. One can also understand the implication of such notations as I[ξ≤η], I[ξ<η] and I[ξ=η].
For an arbitrarily chosen representative ξ of ξ ∈ L(F , K), define two F -measurable

random variables (ξ)– and |ξ| by (ξ)–(ω) = 
ξ(ω) if ξ(ω) �= , and (ξ)–(ω) =  other-

wise, and by |ξ|(ω) = |ξ(ω)|, ∀ω ∈ �. Then the equivalence class ξ– of (ξ)– is called
the generalized inverse of ξ and the equivalence class |ξ | of |ξ| is called the absolute value
of ξ . It is clear that ξ · ξ– = I[ξ �=].

Definition . ([]) An ordered pair (E,‖ · ‖) is called a random normed space (briefly,
an RN space) over K with base (�,F , P) if E is a linear space and ‖ · ‖ is a mapping from
E to L

+(F ) such that the following three axioms are satisfied:
() ‖x‖ =  if and only if x = θ (the null vector of E);
() ‖αx‖ = |α|‖x‖, ∀α ∈ K and x ∈ E;
() ‖x + y‖ ≤ ‖x‖ + ‖y‖, ∀x, y ∈ E,

where the mapping ‖ · ‖ is called the random norm on E and ‖x‖ is called the random
norm of a vector x ∈ E.

In addition, if E is left module over the algebra L(F , K) such that the following is also
satisfied:

() ‖ξx‖ = |ξ |‖x‖, ∀ξ ∈ L(F , K) and x ∈ E,
then such an RN space is called an RN module over K with base (�,F , P) and such a
random norm ‖ · ‖ is called an L-norm on E.
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There are two important topologies in random metric theory as follows.

Proposition . ([]) Let (E,‖ · ‖) be an RN module over K with base (�,F , P). For any
real numbers ε > ,  < λ < , let Nθ (ε,λ) = {x ∈ E | P{ω ∈ � | ‖x‖(ω) < ε} >  – λ} and Uθ =
{Nθ (ε,λ) | ε > ,  < λ < }, then Uθ is a local base at θ of some Hausdorff linear topology,
called the (ε,λ)-topology induced by ‖ · ‖. Further, we have the following statements:

() L(F , K) is a topological algebra over K endowed with its (ε,λ)-topology, which is
exactly the topology of convergence in probability P;

() E is a topological module over the topological algebra L(F , K) when E and L(F , K)
are endowed with their respective (ε,λ)-topologies;

() A net {xα ,α ∈ ∧} in E converges in the (ε,λ)-topology to x ∈ E iff {‖xα – x‖,α ∈ ∧}
converges in probability P to .

From now on, for all RN modules, (ε,λ)-topology is denoted by Tε,λ.

Proposition . ([]) Let (E,‖ · ‖) be an RN module over K with base (�,F , P). For any
ε ∈ L

++(F ), let B(ε) = {x ∈ E | ‖x‖ ≤ ε} and Uθ = {B(ε) | ε ∈ L
++(F )}. A set G ⊂ E is called

Tc-open if for every x ∈ G there exists some B(ε) ∈ Uθ such that x + B(ε) ⊂ G. Let Tc be the
family of Tc-open subsets, then Tc is a Hausdorff topology on E, called the locally L-convex
topology induced by ‖ · ‖. Further, the following statements are true:

() L(F , K) is a topological ring endowed with its locally L-convex topology;
() E is a topological module over the topological ring L(F , K) when E and L(F , K) are

endowed with their respective locally L-convex topologies;
() A net {xα ,α ∈ ∧} in E converges in the locally L-convex topology to x ∈ E iff

{‖xα – x‖,α ∈ ∧} converges in the locally L-convex topology of L(F , K) to θ .

From now on, for all RN modules, locally L-convex topology is denoted by Tc . Since Tc

is not necessarily a linear topology as proved in [], but (E,Tc) is always a topological group
with respect to the addition operation for any RN module (E,‖ · ‖), and hence Tc-Cauchy
nets and Tc-completeness are still well defined.

Let (E,‖ · ‖) be an RN module over K with base (�,F , P), pA = ĨA · p is called the A-
stratification of p for each given A ∈ F and p in E. The so-called stratification structure
of E means that E includes every stratification of an element in E. Clearly, pA = θ when
P(A) =  and pA = p when P(� \ A) = , which are both called trivial stratifications of p.
Further, when (�,F , P) is a trivial probability space, every element in E has merely two
trivial stratifications since F = {�,∅}; when (�,F , P) is arbitrary, every element in E can
possess arbitrarily many nontrivial intermediate stratifications. It is this kind of rich strat-
ification structure of RN modules that makes the theory of RN modules deeply developed
and also becomes the most useful part of random metric theory.

To introduce the main results of this paper, let us first recall the definition of the count-
able concatenation property as follows.

Definition . ([]) Let E be a left module over the algebra L(F , K). A formal sum
∑

n∈N ĨAn xn is called a countable concatenation of a sequence {xn | n ∈ N} in E with re-
spect to a countable partition {An | n ∈ N} of � to F . Moreover, a countable concatena-
tion

∑
n∈N ĨAn xn is well defined or

∑
n∈N ĨAn xn ∈ E if there is x ∈ E such that ĨAn x = ĨAn xn,

∀n ∈ N . A subset G of E is said to have the countable concatenation property if every
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countable concatenation
∑

n∈N ĨAn xn with xn ∈ G for each n ∈ N still belongs to G, namely
∑

n∈N ĨAn xn is well defined and there exists x ∈ G such that x =
∑

n∈N ĨAn xn.

Definition . ([]) Let E be a left module over the algebra L(F ) and f be a function
from E to L̄(F ), then

() f is L(F )-convex if f (ξx + ( – ξ )y) ≤ ξ f (x) + ( – ξ )f (y) for all x and y in E and
ξ ∈ L

+(F ) such that  ≤ ξ ≤ . (Here, we make the convention that  · (±∞) =  and
∞ – ∞ = ∞!)

() f is said to have the local property if ĨAf (x) = ĨAf (ĨAx) for all x ∈ E and A ∈F .

Now, we introduce a kind of lower semicontinuity for L̄-valued functions, which is very
suitable for the study of conditional risk measures [].

Definition . ([]) Let (E,‖ · ‖) be an RN module over R with base (�,F , P). A function
f : E → L̄(F ) is called Tε,λ-lower semicontinuous if epi(f ) := {(x, r) ∈ E × L(F ) | f (x) ≤ r}
is closed in (E,Tε,λ) × (L(F ),Tε,λ). A function f : E → L̄(F ) is called Tc-lower semicon-
tinuous if epi(f ) is closed in (E,Tc) × (L(F ),Tc).

Let E be a left module over the algebra L(F , K), a nonempty subset M of E is called
L(F )-convex if ξx + ηy ∈ M for any x and y ∈ M and ξ and η ∈ L

+(F ) such that ξ + η = .
It is well known from [] that f : E → L̄(F ) is L(F )-convex iff f has the local property

and epi(f ) is L(F )-convex.

3 Main results
The main results in this section are Theorem . and . below. To introduce them, we
first give some necessary notions and terminology.

Definition . Let E be a left module over the algebra L(F ). A nonempty subset K of E
is called a random cone of E if ξ · x ∈ K , ∀ξ ∈ L

+(F ), x ∈ K .

Definition . Let K be a random cone of an L(F )-module E. K is called
() L(F )-convex if x + x ∈ K , ∀x, x ∈ K ;
() pointed if x ∈ K , –x ∈ K ⇒ x = .

Lemma . Let (E,‖ · ‖) be an RN module over R with base (�,F , P) and α ∈ L
++(F ) with

 < α < . Define Kα := {(x, r) ∈ E × L(F ) : α‖x‖ ≤ –r}. Then Kα is a Tε,λ-closed L(F )-
convex random cone.

Further, if E has the countable concatenation property, then Kα has the countable con-
catenation property.

Proof It is easy to see that Kα is L(F )-convex and Tε,λ-closed.
Let {(xn, rn), n ∈ N} be in Kα , namely α‖xn‖ ≤ –rn, ∀n ≥ . For any countable partition

{An, n ≥ } of � toF , it follows that α‖∑k
n= ĨAn ·xn‖ ≤ α ·∑k

n= ‖ĨAn ·xn‖ ≤ ∑k
n=(–ĨAn ·rn).

By the countable concatenation properties of E and L(F ), one can have α‖∑∞
n= ĨAn ·xn‖ ≤

∑∞
n=(–ĨAn · rn), namely

∑∞
n= ĨAn (xn, rn) ∈ Kα . �

Remark . If K is a pointed and L(F )- convex random cone of an L(F )-module E,
then we can define a partial ordering ‘≤K ’, namely x ≤K y ⇔ y – x ∈ K . And the partial
ordering satisfies:
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() x ≤K y ⇔ λx ≤K λy, ∀λ ∈ L
+(F );

() x ≤K y ⇒ x + z ≤K y + z, ∀x, y, z ∈ E.

In classical metric spaces, the following result Lemma . is clear. But when we come to
RN modules, it is not easy to be proved.

Lemma . ([]) Let (E,‖·‖) be an RN module over R with base (�,F , P), G ⊂ E be a subset
with the countable concatenation property and f : E → L̄(F ) have the local property. If f |G
is proper and bounded from below on G (resp., bounded from above on G), then, for each
ε ∈ L

++(F ), there exists xε ∈ G such that f (xε) ≤ ∧f (G) + ε (accordingly, f (xε) ≥ ∨f (G) – ε).

Lemma . Let (E,‖ · ‖) be a Tε,λ-complete RN module over R with base (�,F , P), A ⊂
E × L(F ) be a nonempty Tε,λ-closed subset such that A has the countable concatena-
tion property. If α ∈ L

++(F ) with  < α <  and
∧{r ∈ L(F ) : (x, r) ∈ A} = , then for each

(x, r) ∈ A, there exists (x̄, r̄) ∈ A such that:
() (x̄, r̄) ∈ A ∩ [Kα + (x, r)];
() (x̄, r̄) = A ∩ [Kα + (x̄, r̄)].

Proof Define a function f : E × L(F ) → L(F ) by f (x, r) = r, ∀(x, r) ∈ E × L(F ). And
define a mapping ‖ · ‖∗ : E × L(F ) → L

+(F ) by ‖x‖∗ = ‖ξ‖ ∨ |r|, ∀x = (ξ , r) ∈ E × L(F ).
It is easy to check that (E × L(F ),‖ · ‖∗) is an RN space.
Furthermore, E × L(F ) is an RN module if we define a module multiplication · : L(F ) ·

(E × L(F )) → E × L(F ) by γ · (ξ , r) = (γ ξ ,γ r), ∀γ ∈ L(F ), ∀(ξ , r) ∈ E × L(F ).
For each x = (ξ , r) ∈ E × L(F ), it follows that IB · f (IB · x) = IB · f (IB · (ξ , r)) = IB · f (IB · ξ ,

IB · r) = IB · (IB · r) = IB · r = IB · f (x), ∀B ∈F , which means f has the local property.
Since E has the countable concatenation property, by Lemma . Kα has the countable

concatenation property. Further, since A has the countable concatenation property, it im-
plies that A ∩ [Kα + (x, r)], ∀(x, r) ∈ E × L(F ) has the countable concatenation property.

Obviously,
∧{r ∈ L(F ) : (x, r) ∈ A} =  implies that f is bounded from below on A.

Lemma . yields a sequence {(xn, rn) : n ≥ } such that (xn+, rn+) ∈ An = A ∩ [Kα +
(xn, rn)] and rn+ = f (xn+, rn+) < ∧f (An) + 

n+ , ∀n ≥ .
One can have An+ ⊂ An, ∀n ≥ , which follows from Kα + (xn+, rn+) ⊂ Kα + [Kα +

(xn, rn)] = Kα + (xn, rn).
We now prove that {xn, n ≥ } and {rn, n ≥ } are Tε,λ-Cauchy sequences of E and L(F ),

respectively.
For each (y, s) ∈ An, it is easy to see s ≥ ∧f (An) and (y, s) ∈ Kα + (xn, rn), namely α‖y –

xn‖ ≤ rn – s. Thus one can have α‖y – xn‖ ≤ rn – s ≤ ∧f (An–) + 
n – s ≤ ∧f (An) + 

n –
s ≤ 

n , ∀(xn, rn) ∈ An–, (y, s) ∈ An. Then it follows that α‖y – y‖ ≤ α‖y – xn‖ + α‖y –
xn‖ ≤ 

n and |s – s| ≤ |s – rn| + |rn – s| ≤ 
n , ∀(y, s), (y, s) ∈ An. Hence diam(An) :=

∨
(y,s),(y,s)∈An ‖(y, s) – (y, s)‖∗ =

∨
(y,s),(y,s)∈An (‖y – y‖ ∨ |s – s|) ≤ 

nα
→  in the

(ε,λ)-topology as n → ∞. Since for each ε ∈ R with ε >  and each λ ∈ R with  < λ < ,
there exists N such that P{w : 

nα
(w) ≤ ε} >  –λ, ∀n ≥ N , then ‖(xn, rn) – (xm, rm)‖∗ = ‖xn –

xm‖ ∨ |rn – rm| ≤ diam(AN ) ≤ 
Nα

, ∀m, n ≥ N . Therefore P{w : ‖xn – xm‖(w) ≤ ε} ≥ P{w :


Nα
(w) ≤ ε} >  – λ, ∀m, n ≥ N , which verifies that {xn, n ≥ } is a Tε,λ-Cauchy sequence

of E. Similarly, {rn, n ≥ } is a Tε,λ-Cauchy sequence of L(F ).
Since E and L(F ) are both Tε,λ-complete, there exist x̄ ∈ E and r̄ ∈ L(F ) such that

{xn : n ∈ N} converges in the (ε,λ)-topology to x̄ and {rn : n ∈ N} converges in the (ε,λ)-
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topology to r̄, which implies {(xn, rn) : n ∈ N} converges in the (ε,λ)-topology to (x̄, r̄).
Both A and Kα are Tε,λ-closed, so An = A ∩ [Kα + (xn, rn)], ∀n ≥  is also Tε,λ-closed. From
An+ ⊂ An, ∀n ≥ , one can have (x̄, r̄) ∈ ⋂∞

n= An.
For each (x̂, r̂) ∈ ⋂∞

n= An, (x̂, r̂) ∈ An implies ‖x̂ – xn‖ ≤ 
αn , ∀(xn, rn) ∈ An–. Then it fol-

lows that {xn : n ∈ N} converges in the (ε,λ)-topology to x̂. Similarly, we can prove that
{rn : n ∈ N} converges in the (ε,λ)-topology to r̂. Since Tε,λ is Hausdorff on E and L(F ),
one can have (x̄, r̄) = (x̂, r̂). Thus we have {(x̄, r̄)} =

⋂∞
n= An.

From (x̄, r̄) ∈ A, () is proved.
If (y, s) ∈ A ∩ [Kα + (x̄, r̄)], then (y, s) ∈ ⋂∞

n= An, which follows from Kα + (x̄, r̄) ⊂ Kα +
[Kα + (xn, rn)] = Kα + (xn, rn), ∀n ≥ . Hence (y, s) = (x̄, r̄), namely (x̄, r̄) = A ∩ [Kα + (x̄, r̄)].
Thus () is proved. �

To prove Theorem . below, we need Lemma ., which is very easy and thus its proof
is omitted.

Lemma . Let (E,‖ · ‖) be an RN module over R with base (�,F , P) such that E has
the countable concatenation property, and let f : E → L(F ) have the local property. Then
epi(f ) has the countable concatenation property.

Theorem . Let (E,‖ · ‖) be a Tε,λ-complete RN module over R with base (�,F , P), G be a
Tε,λ-closed subset of E, ε ∈ L

++(F ) and ϕ : G → L̄(F ) be proper, Tε,λ-lower semicontinuous
and bounded from below on G. Then for each point x ∈ G satisfying ϕ(x) ≤ ∧ϕ(G)+ε and
each α ∈ L

++(F ), there exists z ∈ G such that the following are satisfied:
() ϕ(z) ≤ ϕ(x) – α‖z – x‖;
() ‖z – x‖ ≤ α– · ε;
() for each x ∈ G such that x �= z, ϕ(x) � ϕ(z) – α‖x – z‖.

Proof We can, without loss of generality, suppose
∧{ϕ(x), x ∈ E} = . Then ϕ(x) ≤ ε,

∀ε ∈ L
++(F ).

Since ϕ is Tε,λ-l.s.c , it follows that epi(ϕ) is closed in (E, Tε,λ) × (L(F ), Tε,λ).
Take A = epi(ϕ) and (x, r) = (x,ϕ(x)) ∈ A.
By Lemma ., A has the countable concatenation property.
According to Lemma ., there exists (z, r) ∈ A such that:
(a) (z, r) ∈ A ∩ [Kα + (x,ϕ(x))];
(b) (z, r) = A ∩ [Kα + (z, r)].
From (a), one can have α‖z – x‖ ≤ ϕ(x) – r ≤ ϕ(x) – ϕ(z) ≤ ϕ(x) ≤ ε, which yields ()

and ().
Now, we prove () as follows.
We can deduce ϕ(z) = r. Otherwise, one can have (z, r) �= (z,ϕ(z)). By (b), we have

(z,ϕ(z)) ∈̄Kα +(z, r), namely  ≤ r –ϕ(z) does not hold. That is in contradiction to (z, r) ∈ A.
() is obvious, when ϕ(x) = ∞. If ϕ(x) < ∞ and x �= z, then (x,ϕ(x)) �= (z,ϕ(z)) = (z, r).

From (b), one can have (x,ϕ(x)) ∈̄Kα + (z,ϕ(z)), namely α‖x – z‖ � ϕ(z) – ϕ(x). �

Theorem . Let (E,‖ · ‖) be a Tε,λ-complete RN module over R with base (�,F , P), φ :
E → L̄(F ) be a proper Tε,λ-lower semicontinuous function which is bounded from below,
and T : E → E be a mapping such that φ(Tu) + ‖Tu – u‖ ≤ φ(u), ∀u ∈ E. Then T has a
fixed point.
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Proof It follows from Theorem . that there exists some point z ∈ E, for every x �= z,
there exists Ax ∈ F such that P(Ax) >  and α · ‖x – z‖ > ψ(z) – ψ(x) on Ax. We deduce
that Tz = z. If Tz �= z holds, it follows from Theorem . that there exists ATz ∈ F such
that P(ATz) >  and α · ‖Tz – z‖ > ψ(z) – ψ(Tz) on ATz , which is in contradiction with
α · ‖u – Tu‖ ≤ ψ(u) – ψ(Tu), ∀u ∈ E. �

In , Clark presented Clark’s fixed point theorem [], which means that in a com-
plete metric space, ‘directional contraction’ admits a fixed point. Now we establish ran-
dom version of Clark’s fixed point theorem on a Tε,λ-complete RN module, namely The-
orem . below.

Theorem . Let (E,‖ · ‖) be a Tε,λ-complete RN module over R with base (�,F , P), λ ∈
L

++(F ) with  < λ <  on � and f : E → E be a Tε,λ-continuous function with the local
property. If for each v ∈ E, there exists x ∈ E satisfying x �= v and

() ‖v – x‖ + ‖f (v) – x‖ = ‖v – f (v)‖;
() ‖f (v) – f (x)‖ ≤ λ‖v – x‖.

Then f has a fixed point.

Proof Define a function g : E → E by g(v) = x, when f (v) �= v and g(v) = v, when f (v) = v.
It is obvious that f and g have the same fixed points.

Define a function φ : E → L(F ) by φ(v) = ( –λ)– · ‖v – f (v)‖. Since f is Tε,λ-continuous,
φ is Tε,λ-continuous. Thus we have φ is Tε,λ-l.s.c. From the local property of f , it follows
that IA · φ(IA · v) = IA · ( – λ)– · ‖IAv – f (IAv)‖ = ( – λ)– · ‖IAv – IAf (v)‖ = IA · φ(v), ∀v ∈ E,
A ∈F , which means φ has the local property. Clearly,  is the lower bound of φ.

In order to prove that g has a fixed point, we only need to prove ‖v–g(v)‖ ≤ φ(v)–φ(g(v))
by Theorem ..

If v = g(v), it is obvious that ‖v – g(v)‖ ≤ φ(v) – φ(g(v)) .
If v �= g(v), then g(v) = x. By () and (), one can have  ≤ λ‖v – x‖ – ‖f (v) – f (x)‖ ≤

λ‖v – x‖ – ‖f (x) – x‖ + ‖x – f (v)‖ ≤ (λ – )‖v – x‖ – ‖f (x) – x‖ + ‖v – f (v)‖, which
means ‖v – g(v)‖ ≤ φ(v) – φ(g(v)). �

To obtain Clark’s fixed point theorem under the locally L-convex topology, we need the
following key results obtained in [, ].

Proposition . ([]) Let (E,‖ · ‖) be an RN module over K with base (�,F , P). Then E is
Tε,λ-complete if and only if E is Tc-complete and has the countable concatenation property.

Proposition . ([]) Let (E,‖ · ‖) be an RN module over R with base (�,F , P) such that
E has the countable concatenation property, let f : E → L̄(F ) be a function with the local
property. Then f is Tε,λ-lower semicontinuous iff f is Tc-lower semicontinuous.

From both the relations of completeness of a random normed module and lower semi-
continuity of a function under Tc and Tε,λ, we can obtain Clark’s fixed point theorem under
the topology Tc as follows.

Theorem . Let (E,‖ · ‖) be a Tc-complete RN module over R with base (�,F , P) such
that E has the countable concatenation property, λ ∈ L

++(F ) with  < λ <  on � and f :
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E → E be a Tc-continuous function with the local property. If for each v ∈ E, there exists
x ∈ E satisfying x �= v and

() ‖v – x‖ + ‖f (v) – x‖ = ‖v – f (v)‖;
() ‖f (v) – f (x)‖ ≤ λ‖v – x‖.

Then f has a fixed point.

Remark . From the results above, it is easy to see that Clark’s fixed point theorem on
complete RN modules is essentially independent of a special choice of Tc and Tε,λ. It is an
algebra result.

When the base space (�,F , P) of the RN module is trivial, namely F = {∅,�}, our re-
sult automatically degenerates to the classical Danes̆ theorem. So our result is a nontrivial
random extension.
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