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Abstract
In this paper, by using the concept of gH-differentiability and the Kulisch-Miranker
order on intervals, we investigate some Gronwall type inequalities for interval-valued
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functions. Our results unify and extend some continuous inequalities and for discrete
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1 Introduction
In  Gronwall [] proved that if p and f are real-valued continuous functions defined
on J , where J is an interval in R, t ∈ J , and f is differentiable in the interior J of J , then

d
dt

f (t) ≤ p(t)f (t) for t ∈ J

implies

f (t) ≤ f (t) exp

(∫ t

t

p(s) ds
)

for t ∈ J .

In , Bellman [] generalized the results as follows: if

f (t) ≤ q(t) +
∫ t

t

p(s)f (s) ds for t ∈ J ,

then

f (t) ≤ q(t) +
∫ t

t

q(s)p(s) exp

(∫ t

s
p(τ ) dτ

)
ds for t ∈ J ,

where J is an interval in R, t ∈ J , and f , p, q ∈ C(J ,R+). If in addition q(t) is nondecreasing,
then the last inequality becomes

f (t) ≤ q(t) exp

(∫ t

t

p(s) ds
)

for t ∈ J .
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Since the discovery of these inequalities much work has been done, and many papers
which deal with new proofs, various generalizations and extensions have appeared in the
literature. The above Gronwall-Bellman type inequalities are important tools to obtain
various estimates in the theory of differential equations; see e.g. [–] and [].

There are several mathematical models to study the behavior of the real-world systems
such as: static or dynamic, linear or nonlinear, continuous or discrete, deterministic or
probabilistic. In many cases the knowledge of the parameters of a real-world system is
imprecise or uncertain because, generally, we cannot observe or measure with accuracy
these parameters. In these situations, the parameters cannot be represented by real num-
bers. This shortcoming is overcome using fuzzy or interval models. Interval analysis is
based on the representation of an uncertain variable as an interval of real numbers.

Interval analysis is a particular case and it has relevant applications in the treatment of
the uncertainty that appears in the modeling of some real-world problems []. In this di-
rection, recently several classical integral inequalities have been extended to the interval-
valued context, for instance by using the concept of gH-differentiability the authors in []
shows an Ostrowski’s inequality for interval-valued functions.

It is well known that the dynamic inequalities play important roles in the development
of the qualitative theory of dynamic equations on time scales. The study of dynamic equa-
tions on time scales which goes back to its founder Hilger [] has become an area of math-
ematics and recently has received a lot of attention. Recently, Luplescu in [] developed
a calculus for interval-valued functions on time scales, using the concept of a generalized
Hukuhara difference provided by Markov [].

In this paper, we investigate some Gronwall type inequalities for interval-valued func-
tions on time scales, which generalize some inequalities from [, ] and extend some
Gronwall inequalities for interval-valued functions [] for interval-valued functions on
time scales.

2 Preliminaries
In what follows, we recall some notions about the time scale analysis. An extensive study of
the analysis on time scales can be found in []. Also, we outline some recent and necessary
notions about differentiation of interval-valued functions. A time scale, denoted by T, is
an arbitrary, non-empty closed subset of real numbers. The operator σ : T → T called
the forward jump operator is defined by σ (t) := inf{s ∈ T, s > t}. The step size function
μ : T → R+ is given by μ(t) := σ (t) – t. We say a point t ∈ T is right dense if μ(t) = ,
and right scattered if μ(t) > . Furthermore, a point t ∈ T is said to be left dense if ρ(t) :=
sup{s ∈ T, s < t} = t and left scattered if ρ(t) < t. If T has a left-scattered maximum M, then
T

k = T– {M}; otherwise set Tk = T. Moreover, the delta derivative of a function f : T →R

at a point t ∈ T
k is defined by

f �(t) = lim
s→t

s �=σ (t)

f (σ (t)) – f (s)
σ (t) – s

.

A function f is called rd-continuous provided that it is continuous at right-dense points
in T, and has finite limit at left-dense points, and the set of rd-continuous functions are
denoted by Crd(T,R). The set of functions C

rd(T,R) includes the functions f whose deriva-
tive is in Crd(T,R) too. For s, t ∈ T and a function f ∈ Crd(T,R), the �-integral is defined
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to be
∫ t

s
f (τ )�τ = F(t) – F(s),

where F ∈ C
rd(T,R) is an anti-derivative of f , i.e., F� = f on T

k .
A function f ∈ Crd(T,R) is called regressive if  + μ(t)f (t) �=  for all t ∈ T

k , and f ∈
Crd(T,R) is called positively regressive if  + μ(t)f (t) >  on T

k . The set of regressive func-
tions and the set of positively regressive functions are denoted by R(T,R) and R+(T,R),
respectively.

Let f ∈ R(T,R) and s ∈ T, then the generalized exponential function ef (·, s) on a time
scale T is defined to be the unique solution of the following initial value problem:

{
x�(t) = f (t)x(t),
x(s) = .

For h ∈ R
+, set Ch := {z ∈ C : z �= –/h}, Zh := {z ∈ C : –π/h < Im(z) ≤ π/h}, and

C := Z := C. For h ∈ R
+
 and z ∈ Ch, the cylinder transformation ξh : Ch → Zh is defined

by

ξh(z) :=

{
z, h = ,

h Log( + zh), h > ,

and the exponential function can also be written in the form

ef (t, s) := exp

{∫ t

s
ξμ(τ )

(
f (τ )

)
�τ

}
for s, t ∈ T.

For further details as regards these notions one may consult [].
Let KC be the set of all non-empty compact intervals of the real line R. Also K+

C =
{[a, b] ∈ KC :  ≤ a ≤ b}. If [a–, a+], [b–, b+] ∈ KC , then the usual interval operations, i.e.,
Minkowski addition and scalar multiplication, are defined by

[
a–, a+]

+
[
b–, b+]

=
[
a– + b–, a+ + b+]

and

λ
[
a–, a+]

=

⎧⎪⎨
⎪⎩

[λa–,λa+] if λ > ,
{} if λ = ,
[λa+,λa–] if λ < ,

respectively. If λ = –, then (–)[a–, a+] = –[a–, a+] = [–a+, –a–].
Also, the Kulisch-Miranker order for [a–, a+], [b–, b+] ∈KC is defined as follows []:

[
a–, a+] ≤ [

b–, b+]
if and only if a– ≤ b– and a+ ≤ b+. ()

For two intervals [a–, a+], [b–, b+] ∈ KC , the generalized Hukuhara difference (gH-
difference for short) is defined as follows [, ]:

[
a–, a+] �g

[
b–, b+]

=
[
min

{
a– – b–, a+ – b+}

, max
{

a– – b–, a+ – b+}]
. ()
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For A = [a–, a+] ∈ KC , len(A) = a+ – a– is called the length of interval A. Then, for A =
[a–, a+] and B = [b–, b+], we have

A �g B =

{
[a– – b–, a+ – b+] if len(A) ≥ len(B),
[a+ – b+, a– – b–] if len(A) < len(B).

()

If A, B, C ∈KC then

A �g B = C ⇐⇒
{

A = B + C if len(A) ≥ len(B),
B = A + (–C) if len(A) < len(B).

()

A metric structure, the Hausdorff-Pompeiu distance D : KC ×KC → [,∞) defined by
D(A, B) = max{|a– – b–|, |a+ – b+|}, where A = [a–, a+] and B = [b–, b+], is given, satisfying

(D) D(A, B) =  ⇐⇒ A = B,

(D) D(λA,λB) = |λ|D(A, B) for all λ ∈R,

(D) D(A + C, B + C) = D(A, B),

(D) D(A + B, C + D) ≤ D(A, C) + D(B, D),

(D) D(A, B) = D
(
A �g B, {}).

Also, (KC , D) is a complete and separable metric space. Moreover, the limits and continuity
can be characterized, in the metric space (KC , D), by the gH-difference.

Next we recall the basics of the calculus of interval-valued functions on time scales
(see []).

An interval-valued function F : T → KC has a T-limit A ∈ KC at t ∈ T if for every
ε > , there exists δ >  such that D(F(t) �g A, {}) ≤ ε for all t ∈ UT(t, δ). If F has a
T-limit A ∈ KC at t ∈ T, then it is unique and is denoted by T-limt→t F(t). An interval-
valued function F : T → KC is continuous at t ∈ T, if T-limt→t F(t) ∈ KC exists and
T-limt→t F(t) = F(t), that is, T-limt→t F(t) �g F(t) = {}. An interval-valued function
F : T → KC is called regulated if its right-sided T-limits (in KC) exist at all right-dense
points inT, and its left-sidedT-limits (inKC) exist at all left-dense points inT. An interval-
valued function F : T → KC is called rd-continuous if it is continuous at all right-dense
points in T and its left-sided T-limits (in KC) exist at all left-dense points in T.

It is quite obvious that if F : T → KC , such that F(t) = [f –(t), f +(t)], then F is con-
tinuous (regulated, rd-continuous) if and only if f – and f + are continuous (regulated,
rd-continuous). It follows that a continuous interval-valued function is rd-continuous, and
a rd-continuous interval-valued function is regulated.

Let F : T→KC and t ∈ T
κ . We define F�(t) ∈KC (provided it exists) with the property

that for every ε > , there is δ >  such that

D
(
F
(
σ (t)

) �g F(s),
[
σ (t) – s

]
F�(t)

) ≤ ε
∣∣σ (t) – s

∣∣ ()

for all s ∈ UT(t, δ). We call F�(t) the delta generalized Hukuhara derivative (�gH-derivative
for short) of F at t. Moreover, we say that F is delta generalized Hukuhara differentiable
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(�gH-differentiable for short) on T
κ if F�(t) ∈KC exists at each point t ∈ T

κ . The interval-
valued function F� : Tκ →KC is called the �gH-derivative of F on T

κ .
Obviously, if F : T → KC is a constant interval-valued function given by F(t) = A ∈ KC ,

then F�(t) = {} for all t ∈ T
κ .

Theorem . ([]) Assume that F : T → KC is a given interval-valued function and let
t ∈ T

κ . Then we have the following:

(i) If F : T →KC is �gH-differentiable at t ∈ T
κ then it is continuous at t.

(ii) If F is continuous at t and t is right scattered, then F is �gH-differentiable at t with

F�(t) =
F(σ (t)) �g F(t)

μ(t)
.

(iii) If t is right dense, then F is �gH-differentiable at t if and only if the T-limit

T-lim
s→t

F(t) �g F(s)
t – s

exists. In this case

F�(t) = T-lim
s→t

F(t) �g F(s)
t – s

.

(iv) If F is �gH-differentiable at t, then

F
(
σ (t)

) �g F(t) = μ(t)F�(t).

Theorem . Let F : T → KC be such that F(t) = [f –(t), f +(t)], t ∈ T. If the real-valued
functions f – and f + are �-differentiable at t ∈ T

κ , then F is �gH-differentiable at t ∈ T
κ

and

F�(t) =
[
min

{(
f –)�(t),

(
f +)�(t)

}
, max

{(
f –)�(t),

(
f +)�(t)

}]
. ()

Remark . The converse of Theorem . does not true, that is, the �gH-differentiability
of F does not imply the �-differentiability of f – and f + (see [, ]).

As a consequence of Theorem ., we have, if g : T→ R be a �-differentiable at t ∈ T
κ ,

C = [a, b], a < b, be a constant interval and F : T → KC be an interval-valued function
given by F(t) = Cg(t). Then F is �gH-differentiable at t ∈ T

κ and F�(t) = Cg�(t).

Definition . An interval-valued function F : T → KC is l-nondecreasing (l-nonin-
creasing) on T if the real function t �→ len(F(t)) nondecreasing (nonincreasing) on T. If F
is nondecreasing or nonincreasing on T, then we say that F is l-monotone on T.

Theorem . Let F : [a, b]T → KC be such that F(t) = [f –(t), f +(t)], t ∈ [a, b]T. If F is
l-monotone on [a, b]T and �gH-differentiable on [a, b)T, then (f –)�(t) and (f +)�(t) exist
for all t ∈ [a, b)T. Moreover, we have:

(i) F�(t) = [(f –)�(t), (f +)�(t)] for all t ∈ [a, b)T, if F is l-nondecreasing;
(ii) F�(t) = [(f +)�(t), (f –)�(t)] for all t ∈ [a, b)T, if F is l-nonincreasing.
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Theorem . Let F : [a, b]T → KC be l-monotone on [a, b]T and �gH-differentiable on
[a, b)T. We say that F is �,gH-differentiable (or first type Hukuhara differentiable []) on
[a, b)T if

(i) F�(t) =
[(

f –)�(t),
(
f +)�(t)

]
for all t ∈ [a, b)

T
, ()

and �,gH-differentiable (or second type Hukuhara differentiable []) on [a, b)T if

(ii) F�(t) =
[(

f +)�(t),
(
f –)�(t)

]
for all t ∈ [a, b)

T
. ()

Let F : T → KC be an interval-valued function and let P : a = t < t < · · · < tn = b be a
partition of [a, b)T. In each interval [ti–, ti)T, where  ≤ i ≤ n, choose an arbitrary point ξi

and form the sum

S =
n∑

i=

(ti – ti–)F(ξi).

We call S a Riemann �-sum of F corresponding to the partition P.
A bounded interval-valued function F : T → KC is Riemann �-integrable from a to b

(or on [a, b)T) if there is A ∈KC such that for each ε >  there is δ >  such that

D
(
S �g A, {}) < ε

for every Riemann �-sum S of F corresponding to a partition P ∈ P([a, b)T, δ) indepen-
dent of the way in which we choose ξi ∈ [ti–, ti)T, i = , , . . . , n. It is easily seen that A ∈KC

is unique. A ∈KC is called the Riemann �-integral of F from a to b, and we will denote it
by

∫ b
a F(t)�t.

Theorem . Let F : T →KC be an interval-valued function such that F(t) = [f –(t), f +(t)].
Then F is Riemann �-integrable on [a, b)T if and only if f – and f + are Riemann �-inte-
grable on [a, b)T. Moreover, we have

∫ b

a
F(t)�t =

[∫ b

a
f –(t)�t,

∫ b

a
f +(t)�t

]
.

Proposition . Assume that a, b ∈ T, a < b and F : T → KC is rd-continuous. Then the
integral has the following properties:

(i) If T = R, then
∫ b

a F(t)�t =
∫ b

a F(t) dt = [
∫ b

a f –(t) dt,
∫ b

a f +(t) dt], where the integral on
the right-hand side is the Riemann integral.

(ii) If T consists of isolated points, then

∫ b

a
F(t)�t =

∑
t∈[a,b)T

μ(t)F(t) =
[ ∑

t∈[a,b)T

μ(t)f –(t),
∑

t∈[a,b)T

μ(t)f +(t)
]

.

3 Gronwall type inequalities
Theorem . Let F , Y ∈ Crd([a, b]T,KC) and p ∈R+([a, b]T,R).
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(a) If p(t) ≥  on [a, b]T, Y is �,gH-differentiable on [a, b)T and satisfies the interval
dynamic inequality

Y �(t) ≤ p(t)Y (t) + F(t) for all t ∈ [a, b)
T

, ()

then

Y (t) ≤ ep(t, a)Y (a) +
∫ t

a
ep

(
t,σ (τ )

)
F(t)�τ ()

for all t ∈ [a, b]T.
(b) If p(t) ≤  on [a, b]T, Y is �,gH-differentiable on [a, b)T and satisfies the interval

dynamic inequality, () then () holds, for all t ∈ [a, b]T.

Proof Let Y , F : [a, b]T → KC be interval-valued functions such that Y (t) = [y–(t), y+(t)]
and F(t) = [f –(t), f +(t)] and both are rd-continuous on [a, b]T.

(a) If Y (t) is �,gH-differentiable, then by using Theorem . Y �(t) = [(y–)�(t), (y+)�(t)].
Since p(t) ≥  on [a, b]T we have p(t)Y (t) = [p(t)y–(t), p(t)y+(t)]. By using inequality () we
obtain

[(
y–)�(t),

(
y+)�(t)

] ≤ [
p(t)y–(t) + f –(t), p(t)y+(t) + f +(t)

]
.

Apply the Kulisch-Miranker order (), we have

(
y–)�(t) ≤ p(t)y–(t) + f –(t), ()

(
y+)�(t) ≤ p(t)y+(t) + f +(t). ()

By using Theorem . of [] on () and (), respectively, we obtain

y–(t) ≤ ep(t, a)y–(a) +
∫ t

a
ep

(
t,σ (τ )

)
f –(t)�τ , ()

y+(t) ≤ ep(t, a)y+(a) +
∫ t

a
ep

(
t,σ (τ )

)
f +(t)�τ . ()

Again the Kulisch-Miranker order () on inequalities () and () yields

Y (t) =
[
y–(t), y+(t)

]

≤
[

ep(t, a)y–(a) +
∫ t

a
ep

(
t,σ (τ )

)
f –(τ )�τ , ep(t, a)y+(a)

+
∫ t

a
ep

(
t,σ (τ )

)
f +(τ )�τ

]

=
[
ep(t, a)y–(a), ep(t, a)y+(a)

]

+
[∫ t

a
ep

(
t,σ (τ )

)
f –(τ )�τ ,

∫ t

a
ep

(
t,σ (τ )

)
f +(τ )�τ

]

= ep(t, a)
[
y–(a), y+(a)

]
+

∫ t

a

[
ep

(
t,σ (τ )

)
f –(τ ), ep

(
t,σ (τ )

)
f +(τ )

]
�τ
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= ep(t, a)Y (a) +
∫ t

a
ep

(
t,σ (τ )

)[
f –(τ ), f +(τ )

]
�τ

= ep(t, a)Y (a) +
∫ t

a
ep

(
t,σ (τ )

)
F(τ )�τ .

This proves part (a).
(b) If Y (t) is �,gH-differentiable, then Y �(t) = [(y+)�(t), (y–)�(t)] and as p(t) ≤ , so we

have p(t)Y (t) = [p(t)y–(t), p(t)y+(t)] and the remaining proof follows as (a). �

Corollary . Let Y ∈ Crd([a, b]T,KC) and p ∈R+([a, b]T,R).
(a) If p(t) ≥  on [a, b]T, Y is �,gH-differentiable on [a, b)T and satisfies the interval

dynamic inequality

Y �(t) ≤ p(t)Y (t) for all t ∈ [a, b)
T

, ()

then

Y (t) ≤ ep(t, a)Y (a) ()

for all t ∈ [a, b]T.
(b) If p(t) ≤  on [a, b]T, Y is �,gH-differentiable on [a, b)T and satisfies the interval

dynamic inequality () then () holds, for all t ∈ [a, b]T.

Theorem . Let F , Y ∈ Crd([a, b]T,KC) and p ∈R+([a, b]T,R).
(a) If p(t) ≤  on [a, b]T, Y is �,gH-differentiable on [a, b)T and satisfies the interval

dynamic inequality

Y �(t) ≤ –p(t)Y σ (t) + F(t) for all t ∈ [a, b)
T

, ()

then

Y (t) ≤ e�p(t, a)Y (a) +
∫ t

a
e�p(t, τ )F(t)�τ ()

for all t ∈ [a, b]T.
(b) If p(t) ≥  on [a, b]T, Y is �,gH-differentiable on [a, b)T and satisfies the interval

dynamic inequality () then () holds, for all t ∈ [a, b]T.

Proof Let F , Y : [a, b]T → KC be interval-valued functions such that Y (t) = [y–(t), y+(t)]
and F(t) = [f –(t), f +(t)] and both are rd-continuous on [a, b]T.

(a) If Y (t) is �,gH-differentiable on [a, b)T,then by using Theorem . Y �(t) = [(y–)�(t),
(y+)�(t)]. Since p(t) ≤  on [a, b]T, we have –p(t)Y σ (t) = [–p(t)y–(σ (t)), –p(t)y+(σ (t))]. By
using () we obtain

[(
y–)�(t),

(
y+)�(t)

] ≤ [
–p(t)y–(

σ (t)
)

+ f –(t), –p(t)y+(
σ (t)

)
+ f +(t)

]
.

By using the Kulisch-Miranker order (), we have

(
y–)�(t) ≤ –p(t)y–(

σ (t)
)

+ f –(t), ()
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(
y+)�(t) ≤ –p(t)y+(

σ (t)
)

+ f +(t). ()

Using Theorem . of [] on () and (), it follows that

y–(t) ≤ e�p(t, a)y–(a) +
∫ t

a
e�p(t, τ )f –(t)�τ , ()

y+(t) ≤ e�p(t, a)y+(a) +
∫ t

a
e�p(t, τ )f +(t)�τ . ()

The Kulisch-Miranker order () on () and (), respectively, yields

Y (t) =
[
y–(t), y+(t)

]

≤
[

e�p(t, a)y–(a) +
∫ t

a
e�p(t, τ )f –(t)�τ , e�p(t, a)y+(a)

+
∫ t

a
e�p(t, τ )f +(t)�τ

]

=
[
e�p(t, a)y–(a), e�p(t, a)y+(a)

]

+
[∫ t

a
e�p(t, τ )f –(τ )�τ ,

∫ t

a
e�p(t, τ )f +(τ )�τ

]

= e�p(t, a)
[
y–(a), y+(a)

]
+

∫ t

a

[
e�p(t, τ )f –(τ ), e�p(t, τ )f +(τ )

]
�τ

= e�p(t, a)Y (a) +
∫ t

a
e�p(t, τ )

[
f –(τ ), f +(τ )

]
�τ

= e�p(t, a)Y (a) +
∫ t

a
e�p

(
t,σ (τ )

)
F(τ )�τ .

This proves part (a).
(b) If Y (t) is �,gH-differentiable on [a, b)T, then by using Theorem . and as p(t) ≤ 

we have p(t)Y σ (t) = [p(t)y–(σ (t)), p(t)y+(σ (t))] and the remaining proof follows as (a). �

Theorem . Let F , Y ∈ Crd([a, b]T,KC) and p ∈R+([a, b]T,R).
(a) If p(t) ≥  on [a, b]T, Y is �,gH-differentiable on [a, b)T and satisfies the interval

dynamic inequality

Y �(t) ≤ –p(t)Y σ (t) + F(t) for all t ∈ [a, b]T, ()

then

Y (t) ≥ e�p(t, a)Y (a) +
∫ t

a
e�p

(
t,σ (τ )

)
F(t)�τ ()

for all t ∈ [a, b]T.
(b) If p(t) ≤  on [a, b]T, Y is �,gH-differentiable on [a, b)T and satisfies the interval

dynamic inequality () then it satisfies ().

Theorem . Let F : [a, b]T → KC be an interval-valued function given by F(t) = Xg(t),
where X ∈ K+

C is a constant interval and g : [a, b]T→R be a �-differentiable on [a, b)T
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that satisfies the dynamic inequality

g�(t) ≤ p(t)g(t) ()

then the following hold:

(i) F�(t) ≤ p(t)F(t)

and

(ii) F(t) ≤ F(a)ep(t, a).

Proof (i) g(t) is �-differentiable and so is �gH-differentiable and F�(t) = Xg�(t); by in-
equality ()

F�(t) = Xg�(t) ≤ Xp(t)g(t),

which implies

F�(t) ≤ p(t)F(t).

(ii) Since g(t) satisfies (), by Theorem . of [], we have

g(t) ≤ g(a)ep(t, a).

It follows that

F(t) = Xg(t) ≤ Xg(a)ep(t, a)

and we have

F(t) ≤ F(a)ep(t, a). �

Theorem . Let F , Y ∈ Crd([a, b]T,KC) and p ∈R+([a, b]T,R), p(t) ≥  for all t ∈ [a, b]T,
such that the interval integral inequality

Y (t) ≤ F(t) +
∫ t

a
Y (τ )p(τ )�τ ()

holds for all t ∈ [a, b]T. Then

Y (t) ≤ F(t) +
∫ t

a
ep

(
t,σ (τ )

)
F(τ )p(τ )�τ

for all t ∈ [a, b]T.

Proof Let F , Y : [a, b]T → KC be interval-valued functions such that Y (t) = [y–(t), y+(t)]
and F(t) = [f –(t), f +(t)]. Then from inequality () we obtain

[
y–(t), y+(t)

] ≤
[

f –(t) +
∫ t

a
y–(τ )p(τ )�τ , f +(t) +

∫ t

a
y+(τ )p(τ )�τ

]
.
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The Kulisch-Miranker order () yields

y–(t) ≤ f –(t) +
∫ t

a
y–(τ )p(τ )�τ , ()

y+(t) ≤ f +(t) +
∫ t

a
y+(τ )p(τ )�τ . ()

By using Theorem . of [] on () and (), respectively, we obtain

y–(t) ≤ f –(t) +
∫ t

a
ep

(
t,σ (τ )

)
f –(τ )p(τ )�τ , ()

y+(t) ≤ f +(t) +
∫ t

a
ep

(
t,σ (τ )

)
f +(τ )p(τ )�τ . ()

Again by using the Kulisch-Miranker order () on inequalities () and (), respectively,
we obtain

[
y–(t), y+(t)

] ≤
[

f –(t) +
∫ t

a
ep

(
t,σ (τ )

)
f –(τ )p(τ )�τ , f +(t)

+
∫ t

a
ep

(
t,σ (τ )

)
f +(τ )p(τ )�τ

]
,

Y (t) ≤ F(t) +
∫ t

a
ep

(
t,σ (τ )

)
F(τ )p(τ )�τ .

Thus we have our claim. �

Corollary . Let Y ∈ Crd([a, b]T,KC), p ∈R+([a, b]T,R), p ≥ , and X ∈KC . If

Y (t) ≤ X +
∫ t

a
Y (t)p(t)�t for all t ∈ [a, b]T, ()

then

F(t) ≤ ep(t, a)X for all t ∈ [a, b]T. ()

Proof By taking F(t) = X, in Theorem ., we obtain (). �

Corollary . Let Y ∈ Crd([a, b]T,KC), p ∈R+([a, b]T,R), p ≥ , and it satisfies the inter-
val integral inequality

Y (t) ≤
∫ t

a
Y (t)p(t)�t for all t ∈ [a, b]T,

then

Y (t) ≤ {}

for all t ∈ [a, b]T.
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Theorem . Let F , Q, Y ∈ Crd([a, b]T,KC), p, b ∈ Crd([a, b]T,R), p, b ≥ , and it satisfies
the interval integral inequality

Y (t) ≤ F(t) + b(t)
∫ t

a

[
Y (τ )p(τ ) + Q(t)

]
�τ for all t ∈ [a, b]T, ()

then

Y (t) ≤ F(t) + b(t)
∫ t

a
epb

(
t,σ (τ )

)(
F(τ )p(τ ) + Q(t)

)
�τ

for all t ∈ [a, b]T.

Proof Let F , Q, Y : [a, b]T →KC be interval-valued functions such that F(t) = [f –(t), f +(t)],
Q(t) = [q–(t), q+(t)] and Y (t) = [y–(t), y+(t)]. Then from inequality () we have

[
y–(t), y+(t)

] ≤
[

f –(t) + b(t)
∫ t

a

(
y–(τ )p(τ ) + q–(τ )

)
�τ ,

f +(t) + b(t)
∫ t

a

(
y+(τ )p(τ ) + q+(τ )

)
�τ

]
.

By using the Kulisch-Miranker order () we obtain

y–(t) ≤ f –(t) + b(t)
∫ t

a

(
y–(τ )p(τ ) + q–(τ )

)
�τ , ()

y+(t) ≤ f +(t) + b(t)
∫ t

a

(
y+(τ )p(τ ) + q+(τ )

)
�τ . ()

Applying Theorem . of [] on () and () we obtain

y–(t) ≤ f –(t) + b(t)
∫ t

a
epb

(
t,σ (τ )

)(
f –(τ )p(τ ) + q–(τ )

)
�τ , ()

y+(t) ≤ f +(t) + b(t)
∫ t

a
epb

(
t,σ (τ )

)(
f +(τ )p(τ ) + q+(τ )

)
�τ . ()

From () and (), using the Kulisch-Miranker order () yields

[
y–(t), y+(t)

] ≤
[

f –(t) + b(t)
∫ t

a
epb

(
t,σ (τ )

)[
f –(τ )p(τ ) + q–(τ )

]
�τ ,

f +(t) + b(t)
∫ t

a
epb

(
t,σ (τ )

)[
f +(τ )p(τ ) + q+(τ )

]
�τ

]
,

Y (t) ≤ F(t) + b(t)
∫ t

a
epb

(
t,σ (τ )

)(
F(τ )p(τ ) + Q(τ )

)
�τ .

Thus we have our claim. �

The next corollary is obtained by taking F(t) = Q(t) = {} in Theorem ..
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Corollary . Suppose Y (t) ∈ Crd([a, b]T,KC) and p, b ∈ Crd([a, b]T,R), p, b ≥ , and sat-
isfies the interval integral inequality

Y (t) ≤ b(t)
∫ t

a
Y (τ )p(τ )�τ for all t ∈ [a, b]T,

then

Y (t) ≤ {}

for all t ∈ [a, b]T.

Remark . If b(t) =  in Corollary . then we obtain Corollary ..

Theorem . Let F , Q, Y ∈ Crd([a, b]T,KC), p(t), b(t) ∈ Crd([a, b]T,R), p, b ≥ , and it sat-
isfies the interval integral inequality

Y (t) ≤ F(t) + b(t)
∫ t

a

[
Y σ (τ )p(τ ) + Q(t)

]
�τ for all t ∈ [a, b]T, ()

then

Y (t) ≤ F(t) + b(t)
∫ t

a
e�bσ p(t, τ )

[
Fσ (τ )p(τ ) + Q(t)

]
�τ

for all t ∈ [a, b]T.

Proof Let F , Q, Y : [a, b]T →KC be interval-valued functions such that F(t) = [f –(t), f +(t)],
Q(t) = [q–(t), q+(t)] and Y (t) = [y–(t), y+(t)]. Then from () we have

[
y–(t), y+(t)

] ≤
[

f –(t) + b(t)
∫ t

a

[
y–(

σ (τ )
)
p(τ ) + q–(τ )

]
�τ ,

f +(t) + b(t)
∫ t

a

[
y+(

σ (τ )
)
p(τ ) + q+(τ )

]
�τ

]
.

By the Kulisch-Miranker order () we have

y–(t) ≤ f –(t) + b(t)
∫ t

a

[
y–(

σ (τ )
)
p(τ ) + q–(τ )

]
�τ , ()

y+(t) ≤ f +(t) + b(t)
∫ t

a

[
y+(

σ (τ )
)
p(τ ) + q+(τ )

]
�τ . ()

Applying Theorem . of [] on inequalities () and () we obtain

y–(t) ≤ f –(t) + b(t)
∫ t

a
e�bσ p

(
t,σ (τ )

)[
f –(τ )p(τ ) + q–(τ )

]
�τ , ()

y+(t) ≤ f +(t) + b(t)
∫ t

a
e�bσ p

(
t,σ (τ )

)[
f +(τ )p(τ ) + q+(τ )

]
�τ . ()
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Again using the Kulisch-Miranker order () on inequalities () and () we get

[
y–(t), y+(t)

] ≤
[

f –(t) + b(t)
∫ t

a
e�bσ p

(
t,σ (τ )

)[
f –(τ )p(τ ) + q–(τ )

]
�τ ,

f +(t) + b(t)
∫ t

a
e�bσ p

(
t,σ (τ )

)[
f +(τ )p(τ ) + q+(τ )

]
�τ

]
,

Y (t) ≤ F(t) + b(t)
∫ t

a
e�bσ p(t, τ )

[
Fσ (τ )p(τ ) + Q(t)

]
�τ .

Thus we have our claim. �

Theorem . Suppose F , Y ∈ Crd([a, b]T,KC), F ∈ C
rd([a, b]T,KC), p, b ∈ Crd([a, b]T,R),

p, b ≥  and it satisfies the interval integral inequality

Y (t) ≤ F(t) +
∫ t

a
p(τ )Y (τ )�τ for all t ∈ [a, b]T, ()

then

Y (t) ≤ ep(t, a)F(a) +
∫ t

a
ep

(
t,σ (τ )

)
F�(τ )�τ

for all t ∈ [a, b]T.

Proof Let F , Y : [a, b]T → KC be interval-valued functions such that F(t) = [f –(t), f +(t)]
and Y (t) = [y–(t), y+(t)]. Then from () we have

[
y–(t), y+(t)

] ≤
[

f –(t) +
∫ t

a
y–(τ )p(τ )�τ , f +(t) +

∫ t

a

[
y+(τ )p(τ )

]
�τ

]
.

The Kulisch-Miranker order () yields

y–(t) ≤ f –(t) +
∫ t

a
y–(τ )p(τ )�τ , ()

y+(t) ≤ f +(t) +
∫ t

a
y+(τ )p(τ )�τ . ()

Applying Theorem . of [] on inequalities () and (), respectively, we obtain

y–(t) ≤ ep(t, a)f –(a) +
∫ t

a
ep

(
t,σ (τ )

)(
f –)�(τ )�τ , ()

y+(t) ≤ ep(t, a)f +(t) + b(t)
∫ t

a
ep

(
t,σ (τ )

)(
f +)�(τ )�τ . ()

Again by using the Kulisch-Miranker order () on inequalities () and () we get

[
y–(t), y+(t)

] ≤
[

ep(t, a)f –(a) +
∫ t

a
ep

(
t,σ (τ )

)(
f –)�(τ )�τ ,

ep(t, a)f +(t) + b(t)
∫ t

a
ep

(
t,σ (τ )

)(
f +)�(τ )�τ

]
,
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Y (t) ≤ ep(t, a)F(a) +
∫ t

a
ep

(
t,σ (τ )

)
F�(τ )�τ .

Thus we have our claim. �

We need the following lemma to obtain our next result.

Lemma . (Theorem . of []) Let t ∈ T
κ and assume k : T×T →R is continuous at

(t, t) where t ∈ T
κ with t > t. Also assume that k(t, ·) is rd-continuous on [t,σ (t)]. Suppose

that for each ε >  there exists a neighborhood U of t, independent of τ ∈ [t,σ (t)], such
that

∣∣k(
σ (t), τ

)
– k(s, τ ) – k�t (t, τ )

(
σ (t) – s

)∣∣ ≤ ε
∣∣σ (t) – s

∣∣ for all s ∈ U ,

where k�t denotes the derivative of k with respect to the first variable. Then

g�t (t) =
∫ t

t

k�t (t, τ )�τ + k
(
σ (t), t

)
,

where g(t) =
∫ t

t
k(t, τ )�τ .

Theorem . Suppose F ∈ Crd([a, b]T,K+
C) and u ∈ Crd([a, b]T,R) are non-negative func-

tions, C is a non-negative constant interval. Let k(t, s) be defined in Lemma . such that
k(σ (t), t) and k�t(t, s) are non-negative and rd-continuous for all s, t ∈ [a, b]T with s ≤ t,
and then

F(t) ≤ C +
∫ t

t

u(s)
[

F(s) +
∫ s

t

k(s, τ )F(τ )�τ

]
�s for all t ∈ [a, b]T ()

implies

F(t) ≤
[

 +
∫ t

t

u(s)ep(s, t)�s
]

C for all t ∈ [a, b]T,

where p(t, t) = u(t) + k(σ (t), t) +
∫ t

t
k�t (t, s)�s.

Proof Let F ∈ Crd([a, b]T,KC) so F(t) = [f –(t), f +(t)] and C = [c–, c+]. It follows from ()
that

[
f –(t), f +(t)

] ≤ [
c–, c+]

+
∫ t

t

u(s)
[[

f –(s), f +(s)
]

+
∫ s

t

k(s, τ )
[
f –(τ ), f +(τ )

]
�τ

]
�s

=
[

c– +
∫ t

t

u(s)
[

f –(s) +
∫ s

t

k(s, τ )f –(τ )�τ

]
�s,

c+ +
∫ t

t

u(s)
[

f +(s) +
∫ s

t

k(s, τ )f +(τ )�τ

]
�s

]
.
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Applying the Kulisch-Miranker order (), we have

f –(t) ≤ c– +
∫ t

t

u(s)
[

f –(s) +
∫ s

t

k(s, τ )f –(τ )�τ

]
�s, ()

f +(t) ≤ c+ +
∫ t

t

u(s)
[

f +(s) +
∫ s

t

k(s, τ )f +(τ )�τ

]
�s. ()

By using Theorem . of [] on (), (), respectively, we obtain

f –(t) ≤
(

 +
∫ t

t

u(s)ep(s, t)�s
)

c–,

f +(t) ≤
(

 +
∫ t

t

u(s)ep(s, t)�s
)

c+.

So, the Kulisch-Miranker order () yields

F(t) ≤
[

 +
∫ t

t

u(s)ep(s, t)�s
]

C for all t ∈ [a, b]T,

where p(t, t) = u(t) + k(σ (t), t) +
∫ t

t
k�t (t, s)�s. �

Corollary . Under the same assumption of Theorem .

F(t) ≤ C +
∫ t

t

u(s)
[

F(s) +
∫ s

t

k(s, τ )F(τ )�τ

]
�s for all t ∈ [a, b]T

implies

F(t) ≤ exp

[∫ t

t

u(s)ep(s, t)�s
]

C for all t ∈ [a, b]T.

Remark . If we take k(t, s) =  in Theorem . then we obtain Corollary ..

Letting k(t, s) = h(t)g(t) in Theorem . we obtain the following corollary.

Corollary . Suppose h, g ∈ Crd(T,R) are non-negative functions and h�(t) exists and
is non-negative and rd-continuous and satisfies the interval integral inequality

F(t) ≤ C +
∫ t

t

u(s)
[

F(s) + h(s)
∫ s

t

g(τ )F(τ )�τ

]
�s for all t ∈ T,

then

F(t) ≤
[

 +
∫ t

t

u(s)ep(s, t)�s
]

C

for all t ∈ [a, b]T, where p(t, t) = u(t) + h(σ (t))g(t) + h�(t)
∫ t

t
g(s)�s.

If we take T = R in Theorem . then we have the following corollary.
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Corollary . Suppose F ∈ Crd([a, b]R,KC) and u ∈ Crd(R,R) are non-negative functions,
let C ∈K+

C be a constant interval. Let k(t, s) and kt(t, s) be non-negative and rd-continuous
for s, t ∈ [a, b] and if

F(t) ≤ C +
∫ t

t

u(s)
[

F(s) +
∫ s

t

k(s, τ )F(τ ) dτ

]
ds for all t ≥ t,

then

F(t) ≤
[

 +
∫ t

t

u(s) exp

(∫ s

t

p(τ t) dτ

)
ds

]
C for all t ≥ t,

where p(t, t) = u(t) + k(t, t) +
∫ t

t
∂
∂t k(t,σ ) dσ .

The next result is another version of Theorem . obtained without the condition of
differentiability of k(t, s) with respect to first variable.

Theorem . Suppose F ∈ Crd([a, b]T,KC) and u ∈ Crd(T,R) are non-negative functions,
C is a constant interval. Let k(t, s) be non-negative and rd-continuous for s, t ∈ T with s ≤ t
and

F(t) ≤ C +
∫ t

t

u(s)
[

F(s) +
∫ s

t

k(s, τ )F(τ )�τ

]
�s for all t ∈ [a, b]T,

then

F(t) ≤ eq(t, t)C

for all t ∈ [a, b]T , where q(t, t) = u(t)( +
∫ t

t
k(t, s)�s).

Proof By using Theorem . of [] in ()

f –(t) ≤ eq(t, t)c–,

f +(t) ≤ eq(t, t)c+.

By the Kulisch-Miranker order (), we obtain

F(t) ≤ eq(t, t)C for all t ∈ [a, b]T,

where q(t, t) = u(t)( +
∫ t

t
k(t, s)�s). �

4 Conclusions
In this paper some results as regards Gronwall type inequalities for interval-valued func-
tions, which provide explicit bounds on unknown functions, are presented. The results
can be useful in the study of the uniqueness of the solution for interval-valued differen-
tial equations or interval-valued integro-differential equations. The results also unify and
extend some continuous inequalities and some new results in the discrete case are proved.
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