
Wen et al. Journal of Inequalities and Applications  (2015) 2015:270 
DOI 10.1186/s13660-015-0796-z

R E S E A R C H Open Access

Theory of φ-Jensen variance and its
applications in higher education
JiaJin Wen1, Yi Huang2* and Sui Sun Cheng3

*Correspondence:
olivetreehy@163.com
2Key Laboratory of Pattern
Recognition and Intelligent
Information Processing of Higher
Education Institutions of Sichuan
Province, College of Mathematics
and Computer Science, Chengdu
University, Chengdu, 610106,
P.R. China
Full list of author information is
available at the end of the article

Abstract
This paper introduces the theory of φ-Jensen variance. Our main motivation is to
extend the connotation of the analysis of variance and facilitate its applications in
probability, statistics and higher education. To this end, we first introduce the relevant
concepts and properties of the interval function. Next, we study several
characteristics of the log-concave function and prove an interesting quasi-log
concavity conjecture. Next, we introduce the theory of φ-Jensen variance and study
the monotonicity of the interval function JVarφ ϕ(X[a,b]) by means of the log concavity.
Finally, we demonstrate the applications of our results in higher education, show that
the hierarchical teaching model is ‘normally’ better than the traditional teaching
model under the appropriate hypotheses, and study the monotonicity of the interval
function VarA (X[a,b]).
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1 Introduction
This paper introduces the theory of φ-Jensen variance. Our main motivation is to extend
the connotation of the analysis of variance and facilitate its applications in probability,
statistics and higher education. Our research results have important theoretical signifi-
cance and reference value for the higher education systems. The proofs of these results
are both interesting and difficult. A large number of algebraic, functional analysis, proba-
bility, statistics and inequality theories are used in this paper.

Higher education is an important social activity. One of the interesting problems in
higher education is whether we should advocate a hierarchical teaching model. This prob-
lem is always controversial in educational circles, which has attracted the attention of some
mathematics workers [–]. In this paper, we study the problem from the angle of the
analysis of variance, so as to decide on the superiority or the inferiority of the hierarchical
teaching model and the traditional teaching model. The research methods of the problem
are based on the theory of φ-Jensen variance.

Now we recall the concepts of the hierarchical teaching model and the traditional teach-
ing model as follows [].

The usual teaching model assumes that the scores of each student in a university is
treated as a continuous random variable written as XI , which takes on some value in the
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real interval I = [, ], and its probability density function pI : I → (,∞) is continuous.
Suppose we now divide the students into m classes written as

Class[a, a], Class[a, a], . . . , Class[ai, ai+], . . . , Class[am–, am],

where  = a ≤ a ≤ · · · ≤ am = , m ≥ , and ai, ai+ are the lowest and the highest allow-
able scores of the students of Class[ai, ai+], respectively. Then we say that the set

HTM{a, . . . , am, pI} �
{
Class[a, a], Class[a, a], . . . , Class[am–, am], pI

}
()

is a hierarchical teaching model such that the traditional teaching model, denoted by
HTM{a, am, pI}, is just a special HTM{a, . . . , am, pI} where m = .

If a = –∞, am = ∞, then the HTM{–∞, . . . ,∞, pR} and the HTM{–∞,∞, pR} are called
generalized hierarchical teaching model and generalized traditional teaching model, re-
spectively, where, and in the future, R� (–∞,∞).

In order to study the hierarchical and the traditional teaching models from the angle of
the analysis of variance, we need to recall the definition of the truncated random variable
as follows [].

Let XI ∈ I be a continuous random variable with continuous probability density func-
tion pI : I → (,∞). If XJ ∈ J ⊆ I is also a continuous random variable and its probability
density function is

pJ : J → (,∞), pJ (t) � pI(t)
∫

J pI
, ()

then we say that the random variable XJ is a truncated random variable of the random
variable XI , written as XJ ⊆ XI . If XJ ⊆ XI and J ⊂ I , then we say that the random variable
XJ is a proper truncated random variable of the random variable XI , written as XJ ⊂ XI .
Here I and J are n-dimensional intervals (see Section ).

We point out a basic property of the truncated random variable as follows []: Let XI ∈ I
be a continuous random variable with continuous probability density function pI : I →
(,∞). If XI∗ ⊆ XI , XI∗ ⊆ XI and I∗ ⊆ I∗, then XI∗ ⊆ XI∗ , while if XI∗ ⊆ XI , XI∗ ⊆ XI and
I∗ ⊂ I∗, then XI∗ ⊂ XI∗ .

According to the definitions of the mathematical expectation Eϕ(XJ ) and the variance
Varϕ(XJ ), we easily get

Eϕ(XJ ) �
∫

J
pJϕ =

∫
J pIϕ
∫

J pI
()

and

Varϕ(XJ ) � E
[
ϕ(XJ ) – Eϕ(XJ )

] =
∫

J pIϕ


∫
J pI

–
(∫

J pIϕ
∫

J pI

)

. ()

In the HTM{a, . . . , am, pI}, the scores of each student in Class[ai, ai+] is also a random
variable written as X[ai ,ai+]. Since [ai, ai+] ⊆ I , it is a truncated random variable of the
random variable XI , where i = , , . . . , m – . Assume that the j – i classes

Class[ai, ai+], Class[ai+, ai+], . . . , Class[aj–, aj]
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are merged into one, written as Class[ai, aj]. Since [ai, aj] ⊆ I , we know that X[ai ,aj] is also
a truncated random variable of the random variable XI , where  ≤ i < j ≤ m. In general,
we have

X[ai ,aj] ⊆ X[ai′ ,aj′ ] ⊆ XI , ∀i′, i, j, j′ :  ≤ i′ ≤ i < j ≤ j′ ≤ m. ()

In the HTM{a, . . . , am, pI}, we are concerned with the relationship between the variance
Var X[ai ,aj] and Var XI , so as to decide on the superiority or the inferiority of the hierarchical
and the traditional teaching models. If

Var X[ai ,aj] ≤ Var X[ai′ ,aj], ∀i′, i, j :  ≤ i′ < i < j ≤ m, ()

then we say that the HTM{a, . . . , am, pI} is left increasing. If

Var X[ai ,aj] ≤ Var X[ai ,aj′ ], ∀i, j, j′ :  ≤ i < j < j′ ≤ m, ()

then we say that the HTM{a, . . . , am, pI} is right increasing. If the hierarchical teaching
model is both left and right increasing, i.e.,

Var X[ai ,aj] ≤ Var X[ai′ ,aj′ ] ≤ Var XI , ∀i, j, i′, j′ :  ≤ i′ ≤ i < j ≤ j′ ≤ m, ()

then we say that the hierarchical teaching model is increasing.
If a hierarchical teaching model is increasing, then in view of the usual meaning of the

variance, we tend to think that this hierarchical teaching model is better than the tradi-
tional teaching model. Otherwise, this hierarchical teaching model is probably not worth
promoting.

In this paper, we study the hierarchical and the traditional teaching models from the
angle of the analysis of variance. In other words, we study the monotonicity of the hierar-
chical teaching model, so as to decide on the superiority or the inferiority of the hierarchi-
cal and the traditional teaching models. In particular, we need to find the conditions such
that inequalities (), () and () hold (see Theorem ) by means of the theory of φ-Jensen
variance.

In order to facilitate the description of the theory of φ-Jensen variance, in Section , we
introduce the relevant concepts and properties of the interval functions, in Section , we
study several characteristics of the log-concave function. In particular, we will prove the
interesting quasi-log concavity conjecture in []. In Section , we introduce the theory of
φ-Jensen variance and study the monotonicity of the interval function JVarφ ϕ(X[a,b]) by
means of the log concavity. In Section , we demonstrate the applications of our results in
higher education, show that the hierarchical teaching model is ‘normally’ better than the
traditional teaching model under the appropriate hypotheses, and study the monotonicity
of the interval function VarA (X[a,b]).

2 Interval function
To study the theory of φ-Jensen variance, we need to introduce the relevant concepts and
properties of the interval functions in this section.
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We will use the following notations in this paper.

a � (a, . . . , an), b � (b, . . . , bn), λ � (λ, . . . ,λn),  � (, . . . , ),

λa + ( – λ)b �
(
λa + ( – λ)b, . . . ,λnan + ( – λn)bn

)
,

Δa � (Δa, . . . ,Δan), Δb � (Δb, . . . ,Δbn),

a ≤ b ⇔ a ≤ b, . . . , an ≤ bn.

If a ≤ b and there exists j ∈ {, , . . . , n} such that aj < bj, then we say that a is less than b
or b is greater than a, written as a < b or b > a.

Let Ij ⊆ R, j = , . . . , n, be intervals. Then we say that the set I � I × · · · × In is an n-
dimensional interval, where the product × is the Descartes product.

If a, b ∈ I , then we say that the set

[a, b] �
{
λa + ( – λ)b|λ ∈ [, ]n}

is an n-dimensional generalized closed interval of I .
Clearly, for the n-dimensional generalized closed interval, we have

[a, b] = [a, b] × · · · × [an, bn] = [b, a], ∀a, b ∈R. ()

Let I ⊆R
n be an n-dimensional interval. Then we say that the set

I �
{

[a, b]|a, b ∈ I
}

is a closed interval set of the interval I .
We remark here that the closed interval set I is a convex set, i.e.,

J ∈ I, K ∈ I, θ ∈ [, ] ⇒ ( – θ )J + θK ∈ I, ()

here we define

θ [a, b] � [θa, θb], ∀θ ∈R.

Let I be the closed interval set of the interval I . We say that the mapping G : I → R is
an interval function. The image of the closed interval [a, b] is written as G[a, b], and the
interval function G : I →R can also be expressed as G[a, b] ([a, b] ∈ I).

By (), for the interval function G : I →R, we have

G[a, b] = G[b, a], ∀a, b ∈ I. ()

That is to say, the image G[a, b] of the closed interval [a, b] is a symmetric function.
Let G : I → R be an interval function, and let aj < bj, j = , . . . , n. If

[a, b] ⊂ [a, b + Δb] ⊆ I ⇒ G[a, b] < G[a, b + Δb], ()
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then we say that the interval function G : I →R is right increasing. If

[a, b] ⊂ [a – Δa, b] ⊆ I ⇒ G[a, b] < G[a – Δa, b], ()

then we say that the interval function G : I → R is left increasing. If the interval function
G : I → R is both left increasing and right increasing, i.e.,

[a, b] ⊂ [c, d] ⊆ I ⇒ G[a, b] < G[c, d], ()

then we say that the interval function G : I →R is increasing.
If G or –G is left increasing, then we say that the interval function G : I → R is left

monotonous. If G or –G is right increasing, then we say that the interval function G : I →
R is right monotonous. If G or –G is increasing, then we say that the interval function
G : I → R is monotonous.

We remark here that if an interval function G : I →R , here I is an interval, is increasing,
then the graph of the function

Z = G[x, y], (x, y) ∈ I

looks like a drain or a valley. For example, the interval function

G : [, ] →R, G[x, y] = |x – y|

is increasing, the graph of the function

Z = |x – y|, (x, y) ∈ [, ]

looks like a drain or a valley, see Figure .
If X ∈ I , where I ⊆R

n is an n-dimensional interval, is a continuous random variable, and
its probability density function p : I → (,∞) is continuous, then the interval function

G : I → [, ], G[a, b] �
∫

[a,b]
p

is increasing, where

P
(
X ∈ [a, b]

)
� G[a, b]

Figure 1 The graph of the function z = |x – y|,
(x, y) ∈ [0, 1]2.
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is the probability of the random event ‘X ∈ [a, b]’. In other words,

[a, b] ⊂ [c, d] ⊆ I ⇒  ≤ P
(
X ∈ [a, b]

)
< P
(
X ∈ [c, d]

)≤ . ()

For the monotonicity of the interval function, we have the following proposition.

Proposition  Let G : I → R, where I ⊆ R
n is an n-dimensional interval, be an interval

function, and the partial derivatives of G[a, b] exist, where [a, b] ∈ I . Then we have the
following two assertions.

(I) If

aj < bj ⇒ ∂G[a, b]
∂bj

> , j = , . . . , n, ()

then the interval function G : I →R is right increasing.
(II) If

aj > bj ⇒ ∂G[a, b]
∂bj

< , j = , . . . , n, ()

then the interval function G : I →R is left increasing.

Proof We first prove assertion (I). Let

aj < bj,  ≤ j ≤ n, [a, b] ⊂ [a, b + Δb] ⊆ I,

here Δb > . Hence there exists j ∈ {, . . . , n} such that Δbj > . According to the theory
of analysis and (), we know that the function G[a, b] is strictly increasing with respect
to bj, hence

G[a, b] < G[a, b + Δb].

That is to say, the interval function G : I →R is right increasing. Assertion (I) is proved.
Next we prove assertion (II) as follows. Let

aj < bj,  ≤ j ≤ n, [a, b] ⊂ [a – Δa, b] ⊆ I,

here Δa > . Hence there exists j ∈ {, . . . , n} such that Δaj > .
By (), and using the switch a ↔ b in (), we get

bj > aj ⇒ ∂G[b, a]
∂aj

=
∂G[a, b]

∂aj
< , j = , . . . , n.

Hence

aj < bj ⇒ ∂G[a, b]
∂aj

< , j = , . . . , n.
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That is to say, the function G[a, b] is strictly decreasing with respect to aj, hence

G[a, b] < G[a – Δa, b].

In other words, the interval function G : I →R is left increasing. Assertion (II) is proved.
The proof of Proposition  is completed. �

In Section ., we will demonstrate the applications of Proposition .
As an application of Proposition , we have the following example.

Example  Let X ∈ I , where I is an interval, be a continuous random variable, and let
its probability density function p : I → (,∞) be continuous, as well as let the function
ϕ : I →R be continuous and strictly increasing. Then the interval function

Eϕ(X[a,b]) �

⎧
⎨

⎩

∫ b
a p(x)ϕ(x) dx
∫ b

a p(x) dx
, a �= b,

a, a = b,
∀[a, b] ∈ I ()

is right increasing, and the interval function –Eϕ(X[a,b]) is left increasing, where X[a,b] ⊆ X,
and Eϕ(X[a,b]) is the mathematical expectation of ϕ(X[a,b]).

Proof Let [a, b] ∈ I and a �= b. Then we have

∂Eϕ(X[a,b])
∂b

=
p(b)ϕ(b)

∫ b
a p(x) dx – p(b)

∫ b
a p(x)ϕ(x) dx

[
∫ b

a p(x) dx]

=
p(b)

∫ b
a [ϕ(b) – ϕ(x)]p(x) dx

[
∫ b

a p(x) dx]

> .

By Proposition , Eϕ(X[a,b]) is right increasing and –Eϕ(X[a,b]) is left increasing. This ends
the proof. �

In Section ., we will demonstrate the applications of Example .
Now we introduce the convexity and the concavity of the interval functions as follows.
The interval function G : I →R is said to be convex if

J ∈ I, K ∈ I, θ ∈ [, ] ⇒ ( – θ )GJ + θGK ≥ G
[
( – θ )J + θK

]
, ()

where ( – θ )J + θK ∈ I by (). The interval function G : I → R is said to be concave if –G
is convex.

For example, the interval function

Gγ : R→R, Gγ [x, y] = |x – y|γ , γ ≥ ,

is convex.
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Indeed, since the function |t|γ (t ∈R) is convex, by Jensen’s inequality [–], we know
that for any [a, b] ∈ R, [c, d] ∈R, θ ∈ [, ], we have

( – θ )Gγ [a, b] + θGγ [c, d] = ( – θ )|a – b|γ + θ |c – d|γ

≥ ∣∣( – θ )(a – b) + θ (c – d)
∣∣γ

= Gγ

[
( – θ )[a, b] + θ [c, d]

]
.

We remark here that the interval function G : I →R is convex if and only if the function

G∗ : I →R, G∗(x) � G[a, b]

is convex, where

x = (x, . . . , xn), xi = ai, xn+i = bi,  ≤ i ≤ n,

and the function G∗ is convex if and only if the following Hessian matrix

[
∂G∗(x)
∂xi ∂xj

]

n×n

is non-negative.

3 Log concavity and quasi-log concavity
Convexity and concavity are essential attributes of functions, their research and applica-
tions are important topics in mathematics.

To study the theory of φ-Jensen variance, in this section, we need to study the log con-
cavity and the quasi-log concavity of functions.

3.1 Log concavity
There are many types of convexity and concavity for functions. One of them is the log
concavity which has many applications in probability and statistics.

Recall the definition of a log-concave function [, –] as follows.
The function p : I → (,∞), here I is an n-dimensional interval, is called a log-concave

function if log p is a concave function, i.e.,

p
[
θa + ( – θ )b

]≥ pθ (a)p–θ (b), ∀(a, b) ∈ I,∀θ ∈ [, ]. ()

If – log p is a concave function, then we say that the function p : I → (,∞) is a log-convex
function.

In [], the authors apply the log concavity to study the Roy model, and several interest-
ing results are obtained. In particular, we have the following (see p. in []): If D is a
log concave random variable, then

∂ Var[D|D > d]
∂d

≤  and
∂ Var[D|D ≤ d]

∂d
≥ . ()

Unfortunately, their results did not include the case where D is a truncated random vari-
able.
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In this paper, we apply the log concavity of functions to generalize the inequalities in
() to the case where D is a truncated random variable (see Remark ).

To prepare for the proofs of the results in Section ., we need to study several charac-
teristics of the log-concave function as follows.

For the log-concave function, we can easily get the following Propositions  and  by the
theory of analysis [].

Proposition  Let the function p : I → (,∞), here I is an interval, be differentiable. Then
the function p is a log-concave function if and only if the function (log p)′ is monotone de-
creasing, i.e., if a, b ∈ I , a < b, then we have

(log p)′(a) ≥ (log p)′(b), ()

where (log p)′ is the derivative of the function log p.

Proposition  Let the function p : I → (,∞), here I is an interval, be twice differentiable.
Then the function p is a log-concave function if and only if

(log p)′′(t) ≤  ⇔ p(t)p′′(t) –
[
p′(t)

] ≤ , ∀t ∈ I, ()

where (log p)′′ is the second order derivative of the function log p.

For other characteristics of the log-concave function, we have the following non-trivial
result.

Theorem  Let the function p : I → (,∞), here I is an interval, be differentiable. Then
the function p is a log-concave function if and only if

p(b) – p(a) –
p′(b)
p(b)

∫ b

a
p(t) dt ≥ , ∀(a, b) ∈ I. ()

Proof Assume that the function p is a log-concave function, we prove inequality () as
follows.

We define an auxiliary function as follows:

F : I → (–∞,∞), F(a, b) � p(b) – p(a) – (log p)′(b)
∫ b

a
p(t) dt.

If a = b, then F(a, b) = . Inequality () holds. We assume that b �= a below.
Note that the function p : I → (,∞) is differentiable. By the Cauchy mean value theo-

rem, there exists a real number θ ∈ (, ) such that

p(b) – p(a)
∫ b

a p(t) dt
=

p′[a + θ (b – a)]
p[a + θ (b – a)]

= (log p)′
[
a + θ (b – a)

]
. ()

If a < b, then

a < a + θ (b – a) < b. ()
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Combining with Proposition , () and (), we obtain that

F(a, b)
∫ b

a p(t) dt
= (log p)′

[
a + θ (b – a)

]
– (log p)′(b) ≥ . ()

Since
∫ b

a p(t) dt > , we have F(a, b) ≥  by (). This proves inequality () for the case
where a < b.

If a > b, then

b < a + θ (b – a) < a. ()

Combining with Proposition , () and (), we obtain that

F(a, b)
∫ b

a p(t) dt
= (log p)′

[
a + θ (b – a)

]
– (log p)′(b) ≤ . ()

Since
∫ b

a p(t) dt < , we have F(a, b) ≥  by (). So inequality () is also valid for the last
case.

Next, assume that inequality () holds, we prove that the function p is a log-concave
function as follows.

According to Proposition , we just need to prove () where a, b ∈ I and a < b.
Assume that a, b ∈ I and a < b. By exchanging a ↔ b in (), we get

p(a) – p(b) –
p′(a)
p(a)

∫ a

b
p(t) dt ≥ . ()

By adding () and (), we get

[
(log p)′(a) – (log p)′(b)

] ∫ b

a
p(t) dt ≥ . ()

Since
∫ b

a p(t) dt > , we get () by (). The proof of Theorem  is completed. �

In Sections . and ., we will demonstrate the applications of Theorem .
For the log concavity, we have the following interesting example.

Example  Let the function p : (α,β) → (,∞) be a probability density function of a ran-
dom variable X, and let the probability distribution function of X be

P : (α,β) → [, ], P(x) �
∫ x

α

p(t) dt.

If p : (α,β) → (,∞) is a differentiable log-concave function, then P : (α,β) → [, ] is also
a log-concave function, i.e.,

 ≤ P
[
α < X ≤ ( – θ )a + θb

]≤ [P(α < X ≤ a)
]–θ [P(α < X ≤ b)

]θ ≤ , ()

where (a, b) ∈ (α,β), θ ∈ [, ], and P(α < X ≤ x) � P(x) is the probability of random event
‘α < X ≤ x’.
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Proof Set

p(x) = eψ(x), ∀x ∈ (α,β).

Since p : (α,β) → (,∞) is a differentiable log-concave function, by Proposition , we
know that the function

(log p)′(x) = ψ ′(x), x ∈ (α,β),

is monotone decreasing, hence

ψ ′(x) ≤ ψ ′(t), ∀t : α < t ≤ x,∀x : α < x < β . ()

By

P′(x) = p(x), P′′(x) = p′(x) = ψ ′(x)p(x),

and (), we have

P(x)P′′(x) –
[
P′(x)

] = ψ ′(x)p(x)
∫ x

α

p(t) dt – p(x)

= p(x)
[∫ x

α

ψ ′(x)p(t) dt – p(x)
]

≤ p(x)
[∫ x

α

ψ ′(t)p(t) dt – p(x)
]

= p(x)
[∫ x

α

eψ(t) dψ(t) – p(x)
]

= p(x)
[
eψ(x) – eψ(α+) – p(x)

]

= –p(x)p(α + )

≤ , ∀x ∈ (α,β).

According to Proposition , we know that the function P : (α,β) → [, ] is a log-concave
function. The proof is completed. �

In Section ., we will demonstrate the applications of Example .

3.2 Quasi-log concavity
Now we recall the definitions of the quasi-log concavity and the quasi-log convexity as
follows [].

A differentiable function p : I → (,∞), here I is an interval, is said to be quasi-log con-
cave if

Gp[a, b] �
(∫ b

a
p
)[

p′(b) – p′(a)
]

–
[
p(b) – p(a)

] ≤ , ∀a, b ∈ I. ()

If inequality () is reversed, then the function p : I → (,∞) is said to be quasi-log convex.
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We remark here that the function

Gp : I →R, Gp[a, b] =
(∫ b

a
p
)[

p′(b) – p′(a)
]

–
[
p(b) – p(a)

]

is an interval function. If the function p : I → (,∞) is twice continuously differentiable,
then inequalities in () can be rewritten as

Gp[a, b] �
∫ b

a
p
∫ b

a
p′′ –

(∫ b

a
p′
)

≤ , ∀[a, b] ∈ I. ()

The significance of the quasi-log concavity in the analysis of variance is as follows (see
Theorem . in []): Let XI be a continuous random variable and its probability density
function p : I → (,∞) be twice continuously differentiable. Then the function p : I →
(,∞) is quasi-log concave if and only if

 ≤ Var
[
(log p)′(X[a,b])

]≤ –E
[
(log p)′′(X[a,b])

]
, ∀[a, b] ∈ I. ()

We remark here that for the twice continuously differentiable function, quasi-log con-
cavity implies log concavity, and quasi-log convexity implies log convexity, as well as log
convexity implies quasi-log convexity [].

An interesting conjecture was proposed by Wen et al. in [] as follows.

Corollary  (Quasi-log concavity conjecture []) Let the function p : I → (,∞), here I is
an interval, be differentiable. If p is log concave, then p is quasi-log concave.

Now we prove Corollary  which is a corollary of Theorem .

Proof Let p be differentiable and log concave, and let a, b ∈ I . Without loss of generality,
we may assume that a < b.

Since p is log concave, by Proposition , we have

p′(a)
p(a)

= (log p)′(a) ≥ (log p)′(b) =
p′(b)
p(b)

. ()

Assume that p(b) – p(a) ≥ . By Theorem , we know that () holds. Hence

[
p(b) – p(a)

] ≥ [p(b) – p(a)
]p′(b)

p(b)

∫ b

a
p. ()

According to (), () and
∫ b

a p > , we get

Gp[a, b] �
(∫ b

a
p
)[

p′(b) – p′(a)
]

–
[
p(b) – p(a)

]

≤
(∫ b

a
p
)[

p′(b) – p′(a)
]

–
[
p(b) – p(a)

]p′(b)
p(b)

∫ b

a
p

=
p(b)[p′(b) – p′(a)] – p′(b)[p(b) – p(a)]

p(b)

∫ b

a
p
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=
–p(b)p′(a) + p′(b)p(a)

p(b)

∫ b

a
p

= p(a)
[

p′(b)
p(b)

–
p′(a)
p(a)

]∫ b

a
p

≤ .

That is to say, () holds.
Assume that p(b) – p(a) < . Then p(a) – p(b) > . By the proof of Theorem  we know

that () holds. Hence

[
p(a) – p(b)

] ≥ [p(a) – p(b)
]p′(a)

p(a)

∫ a

b
p. ()

According to (), () and
∫ b

a p > , we get

Gp[a, b] �
(∫ b

a
p
)[

p′(b) – p′(a)
]

–
[
p(b) – p(a)

]

=
(∫ b

a
p
)[

p′(b) – p′(a)
]

–
[
p(a) – p(b)

]

≤
(∫ b

a
p
)[

p′(b) – p′(a)
]

–
[
p(a) – p(b)

]p′(a)
p(a)

∫ a

b
p

=
(∫ b

a
p
)[

p′(b) – p′(a)
]

–
[
p(b) – p(a)

]p′(a)
p(a)

∫ b

a
p

=
p(a)[p′(b) – p′(a)] – p′(a)[p(b) – p(a)]

p(a)

∫ b

a
p

=
p(a)p′(b) – p′(a)p(b)

p(a)

∫ b

a
p

= p(b)
[

p′(b)
p(b)

–
p′(a)
p(a)

]∫ b

a
p

≤ .

That is to say, () still holds. Hence p is quasi-log concave.
We remark here that if the function (log p)′ is strictly decreasing, then the equation in

() holds if and only if a = b. This completes the proof of Corollary . �

Corollary  implies the following interesting corollary.

Corollary  Let the function p : I → (,∞), here I is an interval, be twice continuously
differentiable. Then p is quasi-log concave if and only if p is log concave.

4 Theory of φ-Jensen variance
The covariance and the variance are important qualitative features of random variables.
Indeed, the research and the application of these indexes are important topics in probabil-
ity and statistics. In this section, we generalize the traditional covariance and the variance
of random variables, and define φ-covariance, φ-variance, φ-Jensen variance, φ-Jensen co-
variance, integral variance and γ -order variance. We also study the relationships among
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these ‘variances’. In Section ., we study the monotonicity of the interval function involv-
ing the φ-Jensen variance by means of the log concavity.

In the following discussion, we assume the following.
I is an n-dimensional interval (or n-dimensional, closed and bounded domain in R

n).
The X � (X, . . . , Xn) ∈ I is an n-dimensional continuous random variable, and its proba-
bility density function p : I → (,∞) is continuous. The functions ϕi : I → J and ϕ : I → J
are continuous, where J is an interval and i = , . . . , m, m ≥ . The function φ : J → R is
continuous and non-constant. The φ′(x), φ′′(x) and φ′′′(x) are the derivative, second order
derivative and third order derivative of the function φ(x), respectively.

4.1 φ-Variance
The signed square root of the real number t is defined as

±√t �
√|t| sign(t) ∈R,

where sign(t) is the sign function, which is similar to the function √t.
The functional

Covφ(ϕi,ϕj) � E
[ ±√

φ(ϕi) – φ(Eϕi) · ±
√

φ(ϕj) – φ(Eϕj)
]
,  ≤ i, j ≤ m, ()

is called the φ-covariance of the random variables ϕi(X) and ϕj(X), and the non-negative
functional

Varφϕ � Covφ(ϕ,ϕ) = E
∣∣φ(ϕ) – φ(Eϕ)

∣∣ ()

the φ-variance of the random variable ϕ(X), here the functional

Eϕ �
∫

I
pϕ

is the mathematical expectation of the random variable ϕ(X).
We remark here that [] studied the convergence of the generalized integral

Eφ(ψ + δ) �
∫ ∞


pφ(ψ + δ),

which is a generalized mathematical expectation of the random variable φ[ψ(X) + δ(X)]
in the interval [,∞).

We now define the φ-covariance matrix [Covφ(ϕi,ϕj)]m×m of the random variables
ϕ(X), . . . ,ϕm(X) as follows:

[
Covφ(ϕi,ϕj)

]
m×m �

⎡

⎢⎢⎢⎢
⎣

b, b, · · · b,m

b, b, · · · b,m
...

...
. . .

...
bm, bm, · · · bm,m

⎤

⎥⎥⎥⎥
⎦

m×m

, ()

where

bi,j � Covφ(ϕi,ϕj), i, j = , . . . , m. ()
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For the φ-covariance matrix, we have the following proposition.

Proposition  The φ-covariance matrix [Covφ(ϕi,ϕj)]m×m of the random variables
ϕ(X), . . . ,ϕm(X) is non-negative.

Proof Indeed, if we set

ak � φ(ϕk) – φ(Eϕk), k = , . . . , m, ()

then

bi,j = E
( ±√ai · ±√aj

)
, i, j = , . . . , m.

Hence, for any x = (x, . . . , xm) ∈R
m, we have

E

( m∑

k=

xk
±√ak

)

= E

[ m∑

k=

x
k
( ±√ak

) + 
∑

≤i<j≤m

xixj
( ±√ai · ±√aj

)
]

=
m∑

k=

E
( ±√ak · ±√ak

)
x

k + 
∑

≤i<j≤m

E
( ±√ai · ±√aj

)
xixj

=
m∑

k=

bk,kx
k + 

∑

≤i<j≤m

bi,jxixj

= x
[
Covφ(ϕi,ϕj)

]
m×mxT

≥ .

That is to say, the φ-covariance matrix [Covφ(ϕi,ϕj)]m×m of the random variables ϕ(X),
. . . ,ϕm(X) is non-negative. The proof of Proposition  is completed. �

According to Proposition  and the quadratic form theory, all the principal minors of
the φ-covariance matrix are non-negative. In particular, all the  ×  principal minors of
the φ-covariance matrix are non-negative. Hence

det

[
bi,i bi,j

bj,i bj,j

]

= bi,ibj,j – (bi,j) ≥ .

So, if bi,i > , bj,j > , we can define the functional

ρφ(ϕi,ϕj) �
bi,j√

bi,i
√

bj,j
∈ [–, ] ()

as a φ-correlation coefficient of the random variables ϕi(X) and ϕj(X), where bi,j is defined
by (), and i, j = , . . . , m.

4.2 φ-Jensen variance
We say that the function
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a ◦ b : R →R, a ◦ b =

{ ±√ab, a �= b,
a, a = b

is a signed square root product of two real numbers a and b [].
For the signed square root product a ◦ b, we have

lim
b→a

a ◦ b =
√

a = |a| and a ◦ a = a, ∀(a, b) ∈R
.

Hence the function a◦b is discontinuous if a = b < , and a◦a = a is similar to the formula
√a = a.

Since

a, b ∈R, a �= b ⇒ a ◦ b = ±√a × ±√b and a × b = a ◦ b
√|ab|, ()

and

a, b ∈R ⇒ a ◦ b = b ◦ a ≤ ±√a × ±√b, ()

we know that the properties of the signed square root product a ◦ b are similar to the
product a × b and the formula

√ab = √a × √b.

The graph of the function a ◦ b is depicted in Figure .
Assume that the function φ is a convex function. Then we say that the functional

JCovφ(ϕi,ϕj) � E
[
φ(ϕi) – φ(Eϕi)

] ◦ [φ(ϕj) – φ(Eϕj)
]
,  ≤ i, j ≤ m, ()

Figure 2 The graph of the function a ◦ b, (a, b) ∈ [–1, 1]2.
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is a φ-Jensen covariance of the random variables ϕi(X) and ϕj(X), and the functional

JVarφ ϕ = JCovφ(ϕ,ϕ) ()

is a φ-Jensen variance of the random variables ϕ(X).
According to the definition and Jensen’s inequality [–], we have

JVarφ ϕ = Eφ(ϕ) – φ(Eϕ) ≥ . ()

According to the above definition, we have the following relationship between the φ-
Jensen covariance JCovφ(ϕi,ϕj) and the φ-covariance Covφ(ϕi,ϕj).

Proposition  If |�i,j| = , where

�i,j �
{

t ∈ �|φ[ϕi(t)
]

– φ(Eϕi) = φ
[
ϕj(t)

]
– φ(Eϕj)

}
,  ≤ i �= j ≤ m,

and |�i,j| is the measure of the set �i,j, then we have

JCovφ(ϕi,ϕj) = Covφ(ϕi,ϕj). ()

Proof Since |�i,j| = , by (), we have

∫

�i,j

pai ◦ aj =  and
∫

�i,j

p ±√ai × ±√aj = . ()

From () and (), we get

JCovφ(ϕi,ϕj) = E
[
φ(ϕi) – φ(Eϕi)

] ◦ [φ(ϕj) – φ(Eϕj)
]

=
∫

�

pai ◦ aj

=
∫

�i,j

pai ◦ aj +
∫

�\�i,j

pai ◦ aj

=
∫

�\�i,j

pai ◦ aj

=
∫

�\�i,j

p ±√ai × ±√aj

=
∫

�i,j

p ±√ai × ±√aj +
∫

�\�i,j

p ±√ai × ±√aj

=
∫

�

p ±√ai × ±√aj

= Covφ(ϕi,ϕj).

This ends the proof of Proposition . �

In addition, according to inequality (), we have

JCovφ(ϕi,ϕj) ≤ Covφ(ϕi,ϕj), ()
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and

 ≤ JVarφ ϕ ≤ Varφϕ. ()

Unfortunately, the φ-Jensen covariance matrix [JCovφ(ϕi,ϕj)]m×m of the random vari-
ables ϕ(X), . . . ,ϕm(X) is not non-negative in general. But since

∣∣JCovφ(ϕi,ϕj)
∣∣

=
∣∣E
[
φ(ϕi) – φ(Eϕi)

] ◦ [φ(ϕj) – φ(Eϕj)
]∣∣

≤ E
∣∣[φ(ϕi) – φ(Eϕi)

] ◦ [φ(ϕj) – φ(Eϕj)
]∣∣

= E
(√∣∣φ(ϕi) – φ(Eϕi)

∣∣×
√∣∣φ(ϕj) – φ(Eϕj)

∣∣)

≤
√

E
∣∣φ(ϕi) – φ(Eϕi)

∣∣×
√

E
∣∣φ(ϕj) – φ(Eϕj)

∣∣

=
√

Covφ(ϕi,ϕi) ×
√

Covφ(ϕj,ϕj),

if
√

Covφ(ϕi,ϕi) > ,
√

Covφ(ϕj,ϕj) > , we can define the functional

ρ∗
φ(ϕi,ϕj) �

JCovφ(ϕi,ϕj)√
Covφ(ϕi,ϕi)

√
Covφ(ϕj,ϕj)

∈ [–, ] ()

as a φ-Jensen correlation coefficient of the random variables ϕi(X) and ϕj(X) , where i, j =
, . . . , m.

A natural question is why we define the φ-Jensen variance. One of the reasons is that we
have the following relationship between the φ-Jensen variance JVarφ ϕ and the variance
[, ]:

Varϕ � E(ϕ – Eϕ) = Eϕ – (Eϕ). ()

Theorem  Let the function φ : J → (–∞,∞) be twice continuously differentiable and
φ′′(x) ≥ , ∀x ∈ J , and let the function ϕ : I → J be continuous. Then we have the inequali-
ties




inf
t∈I

{
φ′′[ϕ(t)

]}≤ JVarφ ϕ

Varϕ
≤ 


sup
t∈I

{
φ′′[ϕ(t)

]}
. ()

Suppose that I, J ⊂ (,∞) are two intervals, and ϕ : I → J is a monotonic function. If we
set φ′′ = ϕ– > , then

φ =
∫∫

ϕ– �
∫

dt
∫

ϕ–(t) dt,

where ϕ– is the inverse function of the function ϕ. Hence inequalities () can be rewrit-
ten as

inf
t∈I

{t} ≤ Eϕ(X) �
 JVar∫∫ ϕ– ϕ

Varϕ
≤ sup

t∈I
{t}. ()
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We say that the functional Eϕ(X) is the ϕ-mathematical expectation of the random variable
XI and the functional JVar∫∫ ϕ– ϕ is an integral variance of the random variable ϕ(X).

In order to facilitate applications in Section , now we introduce a special φ-Jensen vari-
ance, which is called a γ -order variance.

We define a function φγ as follows:

φγ : (,∞) → (,∞), φγ (t) � 
γ (γ – )

tγ , γ �= , . ()

Then

φ′′
γ (t) = tγ – > , ∀t ∈ (,∞),∀γ ∈R.

Hence φγ is a convex function.
Let ϕ(t) > , ∀t ∈ I . Then we say that the functional

Var[γ ]ϕ � JVarφγ ϕ =


γ (γ – )
[
Eϕγ – (Eϕ)γ

]
()

is a γ -order variance of the random variable ϕ(X).
In general, for any real number γ , we define the γ -order variance of the random variable

ϕ(X) as follows []:

Var[γ ] ϕ �

⎧
⎪⎨

⎪⎩


γ (γ –) [Eϕγ – (Eϕ)γ ], γ �= , ,
limγ→ Var[γ ] ϕ = [ln(Eϕ) – E(lnϕ)], γ = ,
limγ→ Var[γ ] ϕ = [E(ϕ lnϕ) – (Eϕ) ln(Eϕ)], γ = .

()

Noting that from the definition (), we have

Var[γ ] ϕ ≥ , ∀γ ∈R. ()

Hence we may say that the functional (Var[γ ] ϕ)/γ is a γ -order mean variance of the ran-
dom variable ϕ(X), where γ �= .

Since φγ is a convex function, according to Theorem  and the continuity, we have

inf
t∈I

{[
ϕ(t)

]γ –}≤ Var[γ ] ϕ

Varϕ
≤ sup

t∈I

{[
ϕ(t)

]γ –}, ∀γ ∈R. ()

In [], the authors defined the Dresher variance mean Vγ ,δ(ϕ) of the random variable
ϕ(X) and obtained the Dresher-type inequality (see Theorem  in []) and the following
V-E inequality (see () in []):

Var[γ ] ϕ

Var[δ] ϕ
≥ δ

γ
(Eϕ)γ –δ , ()

where γ > δ ≥ , and the coefficient δ/γ is the best constant, and the authors demonstrated
the applications of these results in space science (see ()-() in []).
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Based on the above analysis, we know that the φ-Jensen variance and the γ -order vari-
ance are natural extensions of the traditional variance

Varϕ � Var[] ϕ.

According to Theorem , we may use the φ-Jensen variance JVarφ ϕ to replace the tradi-
tional variance Varϕ. For example, we may use the integral variance JVar∫∫ ϕ– ϕ or γ -order
variance Var[γ ] ϕ to replace the traditional variance Varϕ. If some ϕ(t) ≤ , ∃t ∈ I , then we
may use the φ∗

γ -Jensen variance JVarφ∗
γ
ϕ to replace the traditional variance Varϕ, where

φ∗
γ : R → [,∞), φ∗

γ (t) � 
γ (γ – )

|t|γ , γ > , ()

which is a convex function.
We remark here that

JVarφ∗
γ
ϕ = Var[γ ] ϕ if ϕ >  and γ > . ()

Remark  Theorem  in [] implies the following results: Let the function φ : [,∞) →R

be twice continuously differentiable, and let φ with φ′′ be convex, and let the function
ϕ : I → [,∞) be continuous. Then we have the inequalities

φ′′
(

Var[] ϕ

Varϕ

)
≤ JVarφ ϕ

Varϕ
≤ max{φ′′(ϕ)} + Eφ′′(ϕ) + φ′′(Eϕ)


. ()

Therefore, there are close relationships among the JVarφ ϕ, Var[γ ] ϕ and Varϕ.

4.3 Proof of Theorem 2
In this section, we will use the following notations [–]:

x � (x, . . . , xn), φ(x) �
(
φ(x), . . . ,φ(xn)

)
, p � (p, . . . , pn),

�n �
{

p ∈ (,∞)n
∣∣∣∣

n∑

i=

pi = 

}

, S �
{

(t, t) ∈ [,∞)|t + t ≤ 
}

,

A(x, p) �
n∑

i=

pixi, wi,j(x, p, t, t) � txi + txj + ( – t – t)A(x, p).

In order to prove Theorem , we need three lemmas as follows.
In [], the authors proved the following Lemma  by means of the theory of linear

algebra.

Lemma  (Lemma  in []) Let the function φ : J → R be twice continuously differen-
tiable. If x ∈ Jn, p ∈ �n, then we have the following identity:

A
(
φ(x), p

)
– φ
(
A(x, p)

)
=
∑

≤i<j≤n

pipj

{∫∫

S
φ′′[wi,j(x, p, t, t)

]
dt dt

}
(xi – xj). ()
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Lemma  Let the function φ : J → R be twice continuously differentiable and φ′′(x) ≥ ,
∀x ∈ J . If x ∈ Jn, p ∈ �n, then we have the following inequalities:




inf
t∈J

{
φ′′(t)

}≤ A(φ(x), p) – φ(A(x, p))
A(x, p) – A(x, p)

≤ 


sup
t∈J

{
φ′′(t)

}
. ()

Proof We just need to prove the second inequality in (), because the proof of the first
inequality in () is similar.

In identity (), set φ(t) = t. From
∫∫

S dt dt = /, we get

A
(
x, p

)
– A(x, p) =

∑

≤i<j≤n

pipj(xi – xj). ()

According to Lemma  and (), and noting that wi,j(x, p, t, t) ∈ J , we get

A(φ(x), p) – φ(A(x, p))
A(x, p) – A(x, p)

=
∑

≤i<j≤n pipj{
∫∫

S φ′′[wi,j(x, p, t, t)] dt dt}(xi – xj)

∑
≤i<j≤n pipj(xi – xj)

≤
∑

≤i<j≤n pipj[
∫∫

S supt∈J{φ′′(t)}dt dt](xi – xj)

∑
≤i<j≤n pipj(xi – xj)

=
∫∫

S
sup
t∈J

{
φ′′(t)

}
dt dt

=



sup
t∈J

{
φ′′(t)

}
.

The second inequality in () is proved. This ends the proof. �

One of the integral analogues of Lemma  is the following Lemma .

Lemma  Under the hypotheses of Theorem , we have the following inequalities:




inf
t∈I

{
φ′′[ϕ(t)

]}≤
∫

I pφ(ϕ) – φ[
∫

I pφ(ϕ)]
∫

I pϕ – (
∫

I pϕ) ≤ 


sup
t∈I

{
φ′′[ϕ(t)

]}
. ()

Proof We just need to prove the second inequality in (), because the proof of the first
inequality in () is similar.

Let T � {ΔI, . . . ,ΔIm} be a partition of I . Pick any ηi ∈ ΔIi,  ≤ i ≤ m, and set

η � (η,η, . . . ,ηm) ∈ Im, ‖T‖� max
≤i≤m

max
X,Y∈ΔIi

{‖X – Y‖},

p∗(η) �
(
p∗(η), . . . , p∗m(η)

)
� (p(η)|ΔI|, . . . , p(ηm)|ΔIm|)

∑m
i= p(ηi)|ΔIi| ,

where ‖X – Y‖ is the Euclid norm of X – Y , |ΔIi| is the measure of ΔIi, i.e., n-dimensional
volume, p∗(η) ∈ �m, i.e.,

m∑

i=

p∗i(η) = .
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Since

lim‖T‖→

m∑

i=

p(ηi)|ΔIi| =
∫

I
p = ,

according to the definition of the Riemann integral and Lemma , we get
∫

I pφ(ϕ) – φ[
∫

I pφ(ϕ)]
∫

I pϕ – (
∫

I pϕ) = lim‖T‖→

A(φ(ϕ(η)), p∗(η)) – φ(A(ϕ(η), p∗(η)))
A(ϕ(η), p∗(η)) – A(ϕ(η), p∗(η))

≤ lim‖T‖→




sup
t∈I

{
φ′′[ϕ(t)

]}

=



sup
t∈I

{
φ′′[ϕ(t)

]}
.

The second inequality in () is proved. This ends the proof of Lemma . �

The proof of Theorem  is now relatively easy.

Proof We just need to prove the second inequality in (), because the proof of the first
inequality in () is similar.

According to () and Lemma , we get

JVarφ ϕ

Varϕ
=

Eφ(ϕ) – φ(Eϕ)
E(ϕ – Eϕ) =

∫
I pφ(ϕ) – φ[

∫
I pφ(ϕ)]

∫
I pϕ – (

∫
I pϕ) ≤ 


sup
t∈I

{
φ′′[ϕ(t)

]}
.

This proves the second inequality in (). The proof of Theorem  is completed. �

A large number of algebra, functional analysis and inequality theories are used in the
proof of Theorem . Based on these theories, we obtained Lemma , which is the discrete
form of Theorem . According to Lemma  and the definition of the Riemann integral, we
obtained the proof of Theorem . Therefore, the proof of Theorem  is both interesting
and very difficult.

4.4 An example in the generalized traditional teaching model
In order to illustrate the significance of the φ-Jensen variance, integral variance and γ -
order variance, we provide an illustrative example as follows.

In the generalized traditional teaching model HTM{–∞,∞, pR}, suppose that the score
of a student is X ∈ J , where J = (μ,∞),  ≤ μ < ∞, and μ is the average score of the stu-
dents. In order to stimulate the learning enthusiasm of a student, we may want to give the
student a bonus payment A (X), where X > μ. The function A : J → (,∞) is called an al-
lowance function of the HTM{–∞,∞, pR} []. In general, we define the allowance function
A as follows:

A : J → (,∞), A (t) � c(t – μ)α , c > ,α > . ()

Assume that s = A (X), X ∈ J . Then

X = A –(s) =
(

s
c

)/α

+ μ. ()
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Hence

φ =
∫∫

A – �
∫

ds
∫

A –(s) ds =
c–/αs/α+

(/α + )(/α + )
+



μs + Cs + C, ()

here we define the constants C �  and C � . Therefore, the integral variance of the
random variable A (X) is

JVar∫∫ A – A = Eφ(A ) – φ(EA )

= E
[

c–/αA /α+

(/α + )(/α + )
+



μA 

]
–
[

c–/α(EA )/α+

(/α + )(/α + )
+



μ(EA )

]

=
c–/α


Var[/α+](A ) +



μVar(A )

=



c Var[/α+](X – μ)α +



cμVar(X – μ)α

=



c[Var[/α+](X – μ)α + μVar(X – μ)α
]
,

i.e.,

JVar∫∫ A – A =



c[Var[/α+](X – μ)α + μVar(X – μ)α
]
, ()

and the A -mathematical expectation of the random variable X is

EA (X) �
 JVar∫∫ A – A

VarA
=

Var[/α+](X – μ)α

Var(X – μ)α
+ μ ∈ J . ()

On the other hand, by inequality (), we have

EA (X) ≥ 
/α + 

[
E(X – μ)α

]/α + μ, ∀α > , ()

where [E(X – μ)α]/α is the α-power mean [, , ] of the random variable X – μ.

4.5 Monotonicity of the interval function JVarφ ϕ(X[a,b])
In this section, we apply the log concavity of function to study the monotonicities of the
interval function JVarφ ϕ(X[a,b]) involving a φ-Jensen variance. In particular, we generalize
inequalities in () to the case where D is a truncated random variable (see Remark ).
Our purpose is to study the hierarchical and the traditional teaching models from the
angle of the analysis of variance, so as to decide on the superiority or the inferiority of the
hierarchical teaching model and the traditional teaching model.

Let X[a,b] be a truncated random variable of X, where the probability density function
p : I → (,∞) of X is continuous. Then, by (), () and the definition of the truncated
random variable, we know that the φ-Jensen variance of the random variable ϕ(X[a,b]) is

JVarφ ϕ(X[a,b]) �

⎧
⎨

⎩

∫ b
a pφ•ϕ
∫ b

a p
– φ(

∫ b
a pϕ
∫ b

a p
), a �= b,

, a = b,
∀[a, b] ∈ I, ()

which is a non-negative interval function, where φ • ϕ � φ(ϕ) is a composite function.
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The main results of this section is the following Theorem .

Theorem  Let the function p : I → (,∞) be differentiable and log-concave, and let the
functions φ : J → R and ϕ : I → J be thrice differentiable and twice differentiable, respec-
tively, which satisfy the following conditions:

φ′′(x) > , ∀x ∈ J and ϕ′(t) > , ∀t ∈ I,

where I and J are intervals. Then we have the following two assertions.
(I) If φ′′′(x) ≥ , ∀x ∈ J , and ϕ′′(t) ≥ , ∀t ∈ I , then the interval function JVarφ ϕ(X[a,b])

([a, b] ∈ I) is right increasing.
(II) If φ′′′(x) ≤ , ∀x ∈ J , and ϕ′′(t) ≤ , ∀t ∈ I , then the interval function JVarφ ϕ(X[a,b])

([a, b] ∈ I) is left increasing.
Here the interval function JVarφ ϕ(X[a,b]) is defined by ().

Two real numbers α and β are said to have the same sign [], written as α ∼ β , if

α >  ⇒ β > , α =  ⇒ β =  and α <  ⇒ β < . ()

In the following discussion, we set

w �
∫ b

a pϕ
∫ b

a p
=
∫ b

a p(t)ϕ(t) dt
∫ b

a p(t) dt
, a �= b. ()

In order to prove Theorem , we need four lemmas as follows.

Lemma  Let the functions p : I → (,∞) and ϕ : I → J be continuous, and let the function
φ : J → R be differentiable. If we set

H(a, b) �
[
φ • ϕ(b) – φ′(w)

(
ϕ(b) – w

)]∫ b

a
p –
∫ b

a
pφ • ϕ, ()

then we have

∂ JVarφ ϕ(X[a,b])
∂b

∼ H(a, b), ∀[a, b] ∈ I, ()

where I and J are intervals, JVarφ ϕ(X[a,b]) and w are defined by () and (), respectively.

Proof According to the above definition, we have the following formula:

c > , α ∈R ⇒ cα ∼ α. ()

By the identity

∂

∂b

∫ b

a
f � ∂

∂b

∫ b

a
f (t) dt ≡ f (b), ∀(a, b) ∈ I, ()
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we get

∂w
∂b

=
p(b)ϕ(b)

∫ b
a p – p(b)

∫ b
a pϕ

(
∫ b

a p)
 =

p(b)
∫ b

a p

(
ϕ(b) – w

)
, ()

and

∂

∂b

∫ b
a pφ • ϕ
∫ b

a p
=

p(b)φ • ϕ(b)
∫ b

a p – p(b)
∫ b

a pφ • ϕ

(
∫ b

a p)
 . ()

According to ()-() and (), we have

∂ JVarφ ϕ(X[a,b])
∂b

=
∂

∂b

[∫ b
a pφ • ϕ
∫ b

a p
– φ(w)

]

=
p(b)φ • ϕ(b)

∫ b
a p – p(b)

∫ b
a pφ • ϕ

(
∫ b

a p)
 – φ′(w)

∂w
∂b

=
p(b)φ • ϕ(b)

∫ b
a p – p(b)

∫ b
a pφ • ϕ

(
∫ b

a p)
 – φ′(w)

p(b)
∫ b

a p

(
ϕ(b) – w

)

=
p(b)

(
∫ b

a p)


[
φ • ϕ(b)

∫ b

a
p –
∫ b

a
pφ • ϕ – φ′(w)

(
ϕ(b) – w

)∫ b

a
p
]

=
p(b)

(
∫ b

a p)


{[
φ • ϕ(b) – φ′(w)

(
ϕ(b) – w

)]∫ b

a
p –
∫ b

a
pφ • ϕ

}

∼ [φ • ϕ(b) – φ′(w)
(
ϕ(b) – w

)]∫ b

a
p –
∫ b

a
pφ • ϕ

= H(a, b).

Hence () holds. This ends the proof. �

Lemma  Let the function p : I → (,∞) be continuous, and let the functions ϕ : I → J
and φ : J → R be differentiable and twice differentiable, respectively. Then we have

∂H(a, b)
∂b

=
(

ϕ′(b)
∫ b

a
p
)∫ ϕ(b)

w
φ′′(t) dt – p(b)φ′′(w)

(
ϕ(b) – w

), ∀[a, b] ∈ I, ()

where I and J are intervals, w and H(a, b) are defined by () and (), respectively.

Proof By (), we have

∂[φ • ϕ(b) – φ′(w)(ϕ(b) – w)]
∂b

=
∂[φ • ϕ(b)]

∂b
–

∂[φ′(w)(ϕ(b) – w)]
∂b

= φ′ • ϕ(b)ϕ′(b) – φ′′(w)
∂w
∂b
(
ϕ(b) – w

)
– φ′(w)

(
ϕ′(b) –

∂w
∂b

)
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= φ′ • ϕ(b)ϕ′(b) – φ′′(w)
p(b)
∫ b

a p

(
ϕ(b) – w

) – φ′(w)
[
ϕ′(b) –

p(b)
∫ b

a p

(
ϕ(b) – w

)]

=
[
φ′ • ϕ(b) – φ′(w)

]
ϕ′(b) – φ′′(w)

p(b)
∫ b

a p

(
ϕ(b) – w

) + φ′(w)
p(b)
∫ b

a p

(
ϕ(b) – w

)
.

Hence from () and (), we get

∂H(a, b)
∂b

=
∂

∂b

{[
φ • ϕ(b) – φ′(w)

(
ϕ(b) – w

)]∫ b

a
p –
∫ b

a
pφ • ϕ

}

=
∂[φ • ϕ(b) – φ′(w)(ϕ(b) – w)]

∂b

∫ b

a
p

+
[
φ • ϕ(b) – φ′(w)

(
ϕ(b) – w

)]
p(b) – p(b)φ • ϕ(b)

=
[
φ′ • ϕ(b) – φ′(w)

]
ϕ′(b)

∫ b

a
p – φ′′(w)p(b)

(
ϕ(b) – w

)

+ φ′(w)p(b)
(
ϕ(b) – w

)
+
[
φ • ϕ(b) – φ′(w)

(
ϕ(b) – w

)]
p(b) – p(b)φ • ϕ(b)

=
(

ϕ′(b)
∫ b

a
p
)[

φ′ • ϕ(b) – φ′(w)
]

– p(b)φ′′(w)
(
ϕ(b) – w

)

=
(

ϕ′(b)
∫ b

a
p
)∫ ϕ(b)

w
φ′′(t) dt – p(b)φ′′(w)

(
ϕ(b) – w

).

The proof is completed. �

Lemma  Let the function p : I → (,∞) be differentiable and log-concave, and let the
function ϕ : I → J be twice differentiable and satisfy the following condition:

ϕ′(t) > , ∀t ∈ I.

If we set

H∗(a, b) � ϕ′(b)
∫ b

a
p – p(b)

(
ϕ(b) – w

)
, ()

where w is defined by (), then we have

∂H∗(a, b)
∂b

> ϕ′′(b)
∫ b

a
p, ∀[a, b] ∈ I, a �= b. ()

Proof By () and (), we get

∂H∗(a, b)
∂b

=
∂

∂b

[
ϕ′(b)

∫ b

a
p – p(b)

(
ϕ(b) – w

)]

= ϕ′′(b)
∫ b

a
p + ϕ′(b)p(b) – p′(b)

(
ϕ(b) – w

)
– p(b)

(
ϕ′(b) –

∂w
∂b

)

= ϕ′′(b)
∫ b

a
p – p′(b)

(
ϕ(b) – w

)
+ p(b)

∂w
∂b
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= ϕ′′(b)
∫ b

a
p – p′(b)

(
ϕ(b) – w

)
+ p(b)

p(b)
∫ b

a p

(
ϕ(b) – w

)

= ϕ′′(b)
∫ b

a
p +

p(b)
∫ b

a p

(
ϕ(b) – w

)[
p(b) –

p′(b)
p(b)

∫ b

a
p
]

,

i.e.,

∂H∗(a, b)
∂b

= ϕ′′(b)
∫ b

a
p +

p(b)
∫ b

a p

(
ϕ(b) – w

)[
p(b) –

p′(b)
p(b)

∫ b

a
p
]

. ()

Since the function p : I → (,∞) is differentiable and log-concave, according to Theo-
rem , we have

p(b) –
p′(b)
p(b)

∫ b

a
p ≥ p(a) > , ∀(a, b) ∈ I. ()

If a < b, then, by ϕ′(t) > , ∀t ∈ I , we have

ϕ(a) < w �
∫ b

a pIϕ
∫ b

a pI
< ϕ(b). ()

Combining with ()-() and
∫ b

a p > , we get ().
If a > b, then, by ϕ′(t) > , ∀t ∈ I , we have

ϕ(b) < w �
∫ b

a pIϕ
∫ b

a pI
< ϕ(a). ()

Combining with (), (), () and
∫ b

a p < , we get (). This ends the proof. �

Lemma  Under the hypotheses of Theorem , if

a, b ∈ I, a < b, and φ′′′(x) ≥ , ∀x ∈ J , ()

or

a, b ∈ I, a > b, and φ′′′(x) ≤ , ∀x ∈ J , ()

then we have

∂H(a, b)
∂b

≥ [ϕ(b) – w
]
φ′′(w)H∗(a, b), ()

where H(a, b), H∗(a, b) and w are defined by (), () and (), respectively.

Proof First, we assume that () holds. Then () holds by the proof of Lemma . Now
we prove that inequality () holds as follows.

From (), we know that the function φ′′ is increasing, hence from () we get

φ′′(w) ≤ φ′′(t) ≤ φ′′(ϕ(b)
)

for w ≤ t ≤ ϕ(b). ()
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By () and (), we have

∫ ϕ(b)

w
φ′′(t) dt ≥

∫ ϕ(b)

w
φ′′(w) dt =

(
ϕ(b) – w

)
φ′′(w) > . ()

From ϕ′(t) > , ∀t ∈ I , and a, b ∈ I , a < b, we know that

ϕ′(b)
∫ b

a
p > . ()

By (), () and Lemma , we have

∂H(a, b)
∂b

=
(

ϕ′(b)
∫ b

a
p
)∫ ϕ(b)

w
φ′′(t) dt – p(b)φ′′(w)

(
ϕ(b) – w

)

≥
(

ϕ′(b)
∫ b

a
p
)(

ϕ(b) – w
)
φ′′(w) – p(b)φ′′(w)

(
ϕ(b) – w

)

=
[
ϕ(b) – w

]
φ′′(w)H∗(a, b),

that is to say, inequality () holds.
Next, we assume that () holds. Then () holds by the proof of Lemma . Now we

prove that inequality () also holds as follows.
From () we know that the function φ′′ is decreasing, hence from () we get

φ′′(w) ≤ φ′′(t) ≤ φ′′(ϕ(b)
)

for ϕ(b) ≤ t ≤ w. ()

By () and (), we have

∫ w

ϕ(b)
φ′′(t) dt ≥

∫ w

ϕ(b)
φ′′(w) dt =

(
w – ϕ(b)

)
φ′′(w) > . ()

From ϕ′(t) > , ∀t ∈ I , and a, b ∈ I , a > b, we know that

ϕ′(b)
∫ a

b
p > . ()

By (), () and Lemma , we have

∂H(a, b)
∂b

=
(

ϕ′(b)
∫ b

a
p
)∫ ϕ(b)

w
φ′′(t) dt – p(b)φ′′(w)

(
ϕ(b) – w

)

=
(

ϕ′(b)
∫ a

b
p
)∫ w

ϕ(b)
φ′′(t) dt – p(b)φ′′(w)

(
ϕ(b) – w

)

≥
(

ϕ′(b)
∫ a

b
p
)(

w – ϕ(b)
)
φ′′(w) – p(b)φ′′(w)

(
ϕ(b) – w

)

=
(

ϕ′(b)
∫ b

a
p
)(

ϕ(b) – w
)
φ′′(w) – p(b)φ′′(w)

(
ϕ(b) – w

)

=
[
ϕ(b) – w

]
φ′′(w)H∗(a, b).

That is to say, inequality () still holds. This ends the proof of Lemma . �
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The proof of Theorem  is as follows.

Proof We first prove assertion (I). By Proposition , we just need to prove that

∂ JVarφ ϕ(X[a,b])
∂b

> , ∀[a, b] ∈ I, a < b. ()

Suppose that

x ∈ J ⇒ φ′′′(x) ≥ , t ∈ I ⇒ ϕ′′(t) ≥ , a, b ∈ I, a < b. ()

We prove () as follows.
By (), we have

ϕ′′(b)
∫ b

a
p ≥ . ()

According to Lemma  and (), we have

∂H∗(a, b)
∂b

> ϕ′′(b)
∫ b

a
p ≥  ⇒ ∂H∗(a, b)

∂b
> . ()

According to b > a, () and

lim
b→a

w = ϕ(a), ()

we get

H∗(a, b) > H∗(a, a) = . ()

From φ′′(x) > , ∀x ∈ J and (), we get

[
ϕ(b) – w

]
φ′′(w) > . ()

Combining with (), () and Lemma , we get

∂H(a, b)
∂b

≥ [ϕ(b) – w
]
φ′′(w)H∗(a, b) >  ⇒ ∂H(a, b)

∂b
> . ()

From (), () and a < b, we get

H(a, b) > H(a, a) = . ()

Combining with () and Lemma , we get

∂ JVarφ ϕ(X[a,b])
∂b

∼ H(a, b) >  ⇒ ∂ JVarφ ϕ(X[a,b])
∂b

> .

Hence () holds. Assertion (I) is proved.
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Next, we prove assertion (II) as follows. By Proposition , we just need to prove that

∂ JVarφ ϕ(X[a,b])
∂b

< , ∀[a, b] ∈ I, a > b. ()

Suppose that

x ∈ J ⇒ φ′′′(x) ≤ , t ∈ I ⇒ ϕ′′(t) ≤ , a, b ∈ I, a > b. ()

We prove () as follows:

a > b ⇒ ∂H∗(a, b)
∂b

> ϕ′′(b)
∫ b

a
p ≥  ⇒ H∗(a, b) < H∗(a, a) = 

⇒ ∂H(a, b)
∂b

≥ (ϕ(b) – w
)
φ′′(w)H∗(a, b) > 

⇒ H(a, b) < H(a, a) =  ⇒ ∂ JVarφ ϕ(X[a,b])
∂b

∼ H(a, b) < .

Hence () holds. Assertion (II) is also proved.
We remark here that the proof of Theorem  can be rewritten as

∂ JVarφ ϕ(X[a,b])
∂b

∼ H(a, b) ∼ (b – a)
∂H(a, b)

∂b
∼ (b – a)

[
ϕ(b) – w

]
H∗(a, b)

∼ H∗(a, b) ∼ (b – a)
∂H∗(a, b)

∂b
∼ b – a

{
> , a < b,
< , a > b.

The proof of Theorem  is completed. �

A large number of analysis and inequality theories are used in the proof of Theorem .
Based on these theories, we obtained Theorem  and Lemmas -, and according to The-
orem  and Lemmas -, we obtained the proof of Theorem . Therefore, the proof of
Theorem  is also both interesting and very difficult.

Remark  Let D ∈R be a log concave random variable. In () and (), if we set φ(x) ≡
x, ϕ(t) ≡ t, I = R, then we get the inequalities

∂ Var D[d,∞]

∂d
=

∂

∂d

[∫∞
d p(t)t dt
∫∞

d p(t) dt
–
(∫∞

d p(t)t dt
∫∞

d p(t) dt

)]
≤ , ∀d ∈R, ()

and

∂ Var D[–∞,d]

∂d
=

∂

∂d

[∫ d
–∞ p(t)t dt
∫ d

–∞ p(t) dt
–
(∫ d

–∞ p(t)t dt
∫ d

–∞ p(t) dt

)]
≥ , ∀d ∈R, ()

where p : R → (,∞) is a differentiable log-concave function. In other words, we have
generalized the inequalities in () to the case where D is a truncated random variable.

In Section ., we will demonstrate the applications of Theorem .
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4.6 Corollaries of Theorem 3
The connotation of Theorem  is very rich, which implies the following four interesting
corollaries.

Corollary  Let X be a continuous random variable and its probability density function p :
I → (,∞) be a differentiable log-concave function, and let the twice differentiable function
ϕ : I → J satisfy the following conditions:

I, J ⊂ (,∞), ϕ′(t) > , ϕ′′(t) ≥ , ∀t ∈ I,

where I and J are intervals. Then the interval function JVar∫∫ ϕ– ϕ(X[a,b]) ([a, b] ∈ I) is right
increasing.

Proof Set φ′′ = ϕ–, where ϕ– is the inverse function of the function ϕ. Since

I, J ⊂ (,∞), ϕ′(t) > , ϕ′′(t) ≥ , ∀t ∈ I,

we have

φ′′(x) > , φ′′′(x) > , ∀x ∈ J .

By assertion (I) in Theorem , the interval function

JVar∫∫ ϕ– ϕ(X[a,b]) ≡ JVarφ ϕ(X[a,b])
(
[a, b] ∈ I

)

is right increasing. This ends the proof. �

In Theorem , if we set φ(x) ≡ x and ϕ(t) ≡ t, then we get the following.

Corollary  Let X be a continuous random variable and its probability density function p :
I → (,∞) be differentiable and log-concave. Then the interval function Var X[a,b] ([a, b] ∈
I) is increasing.

In Section ., we will demonstrate the applications of Corollary  in the hierarchical
teaching model.

Corollary  Let X be a continuous random variable and its probability density function
p : I → (,∞) be a differentiable function, and let the twice differentiable function ϕ : I → J
satisfy the following condition:

ϕ′(t) > , ∀t ∈ I,

where I is an interval. If the function

p • ϕ–(ϕ–)′ � p
(
ϕ–)(ϕ–)′

is a log-concave function, then the interval function Varϕ(X[a,b]) is increasing, where ϕ– is
the inverse function of ϕ, and X[a,b] ⊆ X.
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Proof To be more precise, we set that

Var(pI ) ϕ(X[a,b]) � Varϕ(X[a,b]) and pI � p, Var(pI ) X[a,b] � Var X[a,b].

Without loss of generality, we may assume a < b. Set

x = ϕ(t) ⇔ t = ϕ–(x), p∗
J = pI • ϕ–(ϕ–)′, x ∈ J = ϕ(I),

a∗ = ϕ(a) < ϕ(b) = b∗,

then

p∗
J (x) > ,

∫

J
p∗

J =
∫

I
pI = .

Hence p∗
J is a probability density function of a random variable on J . Since

Var(pI ) ϕ(X[a,b]) =
∫ b

a pI(t)ϕ(t) dt
∫ b

a pI(t) dt
–
(∫ b

a pI(t)ϕ(t) dt
∫ b

a pI(t) dt

)

=
∫ b∗

a∗ p∗
J (x)ϕ(ϕ–(x)) dx
∫ b∗

a∗ p∗
J (x) dx

–
(∫ b∗

a∗ p∗
J (x)ϕ(ϕ–(x)) dx
∫ b∗

a∗ p∗
J (x) dx

)

=
∫ b∗

a∗ p∗
J (x)x dx

∫ b∗
a∗ p∗

J (x) dx
–
(∫ b∗

a∗ p∗
J (x)x dx

∫ b∗
a∗ p∗

J (x) dx

)

= Var(p∗
J ) X∗

[a∗ ,b∗],

and p∗
J = pI •ϕ–(ϕ–)′ is a differentiable log-concave function, by Corollary , the interval

function Var(p∗
J ) X∗

[a∗ ,b∗] ([a∗, b∗] ∈ J) is increasing, i.e.,

[
a∗, b∗]⊂ [c∗, d∗]⊆ J ⇒ Var(p∗

J ) X∗
[a∗ ,b∗] < Var(p∗

J ) X∗
[c∗ ,d∗].

Since ϕ′(t) > , ∀t ∈ I , and

[
a∗, b∗]⊂ [c∗, d∗]⊆ J ⇔ [a, b] ⊂ [c, d] ⊆ I, Var(pI ) ϕ(X[a,b]) = Var(p∗

J ) X∗
[a∗ ,b∗],

we have

[a, b] ⊂ [c, d] ⊆ I ⇒ Var(pI ) X[a,b] < Var(pI ) X[c,d].

That is to say, the interval function Varϕ(X[a,b]) ([a, b] ∈ I) is increasing. The proof of
Corollary  is completed. �

In Section ., we will demonstrate the applications of Corollary  in the generalized
traditional teaching model.

In Theorem , if I is an n-dimensional interval, then we have the following result.
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Corollary  Let the probability density function pj : Ij → (,∞) of the random variable
Xj be a differentiable log-concave function, and let ϕj : Ij → (,∞) be twice differentiable,
which satisfy the following conditions:

ϕ′
j (tj) > , ϕ′′

j (tj) ≥ , ∀tj ∈ Ij,

where  ≤ j ≤ n, n ≥ , and let

ϕ : I → (,∞), ϕ(t) �
n∏

j=

ϕj(tj),

where I = I × · · · × In, t = (t, . . . , tn). If γ ≥ , and X, . . . , Xn are independent random
variables, then the interval function

Var[γ ] ϕ(X[a,b]) �

⎧
⎨

⎩


γ (γ –) [

∫
[a,b] pϕγ

∫
[a,b] p – (

∫
[a,b] pϕ
∫

[a,b] p )γ ], a �= b,

, a = b,
∀[a, b] ∈ I, ()

is right increasing, where p : I → (,∞) is the probability density function of the n-
dimensional random variable X � (X, . . . , Xn), and X[a,b] ⊆ X.

Proof Let

aj < bj,  ≤ j ≤ n, [a, b] ⊂ [a, b′]⊆ I, γ ≥ .

We just need to prove that

Var[γ ] ϕ(X[a,b]) < Var[γ ] ϕ(X[a,b′]). ()

Set

Aj �

∫ bj
aj

pjϕ
γ

j
∫ bj

aj
pj

, Bj �
(∫ bj

aj
pjϕj

∫ bj
aj

pj

)γ

, A′
j �
∫ b′

j
aj pjϕ

γ

j
∫ b′

j
aj pj

, B′
j �
(∫ b′

j
aj pjϕj
∫ b′

j
aj pj

)γ

.

According to the facts that

φ′′
γ (x) = xγ – > , φ′′′

γ (x) = (γ – )xγ – ≥ , ∀x ∈ (,∞),

ϕ′
j (tj) > , ϕ′′

j (tj) ≥ , ∀tj ∈ Ij, j = , . . . , n,

and Theorem  with Example , we have

 < Aj – Bj ≤ A′
j – B′

j, j = , . . . , n, ()

 < Bj ≤ B′
j, j = , . . . , n, ()

and there is j :  ≤ j ≤ n such that the equations in () and () do not hold, where the
function φγ is defined by ().
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Since X, . . . , Xn are independent random variables, we have

p(X) =
n∏

j=

pj,
∫

[a,b]
pϕγ ≡

n∏

j=

∫

[aj ,bj]
pjϕ

γ

j ,

Var[γ ] ϕ(X[a,b]) ≡ 
γ (γ – )

( n∏

j=

Aj –
n∏

j=

Bj

)

.

Hence inequality () can be rewritten as

 <
n∏

j=

Aj –
n∏

j=

Bj <
n∏

j=

A′
j –

n∏

j=

B′
j. ()

We prove inequalities () by means of the mathematical induction as follows.
(I) Let n = . From () and (), we get

 < (A – B)(A – B) ≤ (A′
 – B′


)(

A′
 – B′


)
, ()

 < B(A – B) ≤ B′

(
A′

 – B′

)
, ()

 < B(A – B) ≤ B′

(
A′

 – B′

)
. ()

From

AA – BB = (A – B)(A – B) + B(A – B) + B(A – B),

A′
A′

 – B′
B′

 =
(
A′

 – B′

)(

A′
 – B′


)

+ B′

(
A′

 – B′

)

+ B′

(
A′

 – B′

)
,

and ()-(), we get

 < AA – BB ≤ A′
A′

 – B′
B′

. ()

Since there is j :  ≤ j ≤ n such that the equations in () and () do not hold, the equa-
tion in inequalities () does not hold. That is to say, inequalities () hold when n = .

(II) Suppose that

 <
n–∏

j=

Aj –
n–∏

j=

Bj ≤
n–∏

j=

A′
j –

n–∏

j=

B′
j, n ≥ . ()

By (), (), (),

 <
n–∏

j=

Bj ≤
n–∏

j=

B′
j,

and the proof of the case n = , we have

 < An

n–∏

j=

Aj – Bn

n–∏

j=

Bj ≤ A′
n

n–∏

j=

A′
j – B′

n

n–∏

j=

B′
j,
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i.e.,

 <
n∏

j=

Aj –
n∏

j=

Bj ≤
n∏

j=

A′
j –

n∏

j=

B′
j. ()

Since there is j :  ≤ j ≤ n such that the equations in () and () do not hold, the equa-
tion in inequalities () does not hold. That is to say, inequalities () hold. The proof
of Corollary  is completed. �

As an application of Corollary , we have the following example.

Example  In Corollary , if we set

Ij = (αj,βj), ϕj(tj) =
∫ tj

αj

pj, j = , . . . , n,

then

ϕ(t) �
n∏

j=

ϕj(tj) = P(α < X ≤ t, . . . ,αn < Xn ≤ tn),

which is the probability of the random event

α < X ≤ t, . . . , αn < Xn ≤ tn,

and ϕ : I → [, ] is the probability distribution function of X, where X, . . . , Xn are inde-
pendent random variables. If pj : Ij → (,∞) is differentiable, increasing and log-concave,
then

ϕ′
j (tj) = pj(tj) > , ϕ′′

j (tj) = p′
j(tj) ≥ , ∀tj ∈ Ij,

where  ≤ j ≤ n. By Corollary , the interval function

Var[γ ] ϕ(X[a,b])
(
[a, b] ∈ I

)

is right increasing.

5 Applications in higher education
5.1 k-Normal distribution
The normal distribution [–] is considered as the most prominent probability distri-
bution in probability and statistics. In order to facilitate the applications in Sections .
and ., in this section, we need to recall the concept of k-normal distribution as follows:
If the probability density function of the random variable X is

p(t;μ,σ , k) � k–k–

�(k–)σ
exp

(
–

|t – μ|k
kσ k

)
, ()
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Figure 3 The graph of the function p(t; 0, 1, k),
where –4 ≤ t ≤ 4, 1 < k ≤ 3.

then we say that the random variable X follows a k-normal distribution [], or X follows
a generalized normal distribution [, ], denoted by X ∼ Nk(μ,σ ), where t ∈ R, the pa-
rameters μ ∈ R, σ ∈ (,∞), k ∈ (,∞), and �(s) is the gamma function. The graph of the
function p(t; , , k) is depicted in Figure .

Clearly, p(t;μ,σ , ) is just the standard normal distribution N(μ,σ ) with mean μ and
mean variance σ , as well as p(t;μ,σ , k) and the probability distribution function

P(x;μ,σ , k) �
∫ x

–∞
p(t;μ,σ , k) dt

are log-concave functions by Proposition  and Example . By () and [, ], we easily
get

EX = μ, E|X – EX|k = σ k ,

Var X =
kk–

�(k–)
�(k–)

σ 

⎧
⎪⎨

⎪⎩

> σ ,  < k < ,
= σ , k = ,
< σ , k > ,

()

here μ, σ k and σ are the mathematical expectation, the k-order absolute central moment
and the k-order mean absolute central moment of the random variable X, respectively.

We remark here that there are close relationships between the k-normal distribution
and the Weibull distribution [].

5.2 Applications in the hierarchical teaching model
In the hierarchical teaching model or the traditional teaching model, the score of each
student is treated as a random variable XI ∈ I = [, ]. By using the central limit theorem
[], we may think that XI ⊆ X ∼ N(μ,σ ), where μ is the average score of the students and
σ is the mean variance of the score. If the top and bottom students are insignificant, that
is to say, the variance Var X of the random variable X is very small, according to formulas
() and Figure , we may think that there is a real number k ∈ (,∞) such that XI ⊆
X ∼ Nk(μ,σ ). Otherwise, we may think that there is a real number k ∈ (, ) such that
XI ⊆ X ∼ Nk(μ,σ ). Here μ ∈ (, ) is the average score of the students and σ is the k-order
mean absolute central moment of the score. We can estimate the number k by means of a
sampling procedure.
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Based on the above analysis, φ′′′
γ (x) = (γ – )xγ –, where the function φγ is defined by

(), Theorem , Corollary  and formulas (), we get the following proposition.

Proposition  In the hierarchical teaching model HTM{a, . . . , am, pI}, assume that XI ⊂
X ∼ Nk(μ,σ ), k > . Then we have the following three assertions.

(I) If γ ≥ ,  ≤ i < j ≤ j′ ≤ m, then we have the following inequality:

Var[γ ]X[ai ,aj] ≤ Var[γ ]X[ai ,aj′ ]. ()

(II) If  < γ ≤ ,  ≤ i′ ≤ i < j ≤ m, then we have the following inequality:

Var[γ ]X[ai ,aj] ≤ Var[γ ]X[ai′ ,aj]. ()

(III) If  ≤ i′ ≤ i < j ≤ j′ ≤ m, then we have the following inequalities:

Var X[ai ,aj] ≤ Var X[ai′ ,aj′ ] ≤ Var XI ≤ Var X =
kk–

�(k–)
�(k–)

σ . ()

Remark  According to Proposition , we know that the HTM{a, . . . , am, pI} is increasing
under the hypotheses

XI ⊂ X ∼ Nk(μ,σ ), k > .

Therefore, we may conclude that the hierarchical teaching model is ‘normally’ better than
the traditional teaching model by the central limit theorem and Proposition .

Remark  In [], the authors proved that the probability density function of the k-normal
distribution is quasi-log concave and showed that the generalized hierarchical teaching
model is ‘normally’ better than the generalized traditional teaching model. That is to say,
in the HTM{–∞, . . . ,∞, pR}, if XR ∼ N(μ,σ ), then we have the following inequalities:

Var X[ai ,aj] ≤ Var XR = σ , ∀i, j :  ≤ i < j ≤ m. ()

Therefore, Proposition  is a generalization of ().

5.3 Applications in the generalized traditional teaching model
Next, we demonstrate the applications of Corollary  in the generalized traditional teach-
ing model.

In the generalized traditional teaching model HTM{–∞,∞, pR}, according to the cen-
tral limit theorem, we may assume that the score X of each student follows a k-normal
distribution, i.e., X ∼ Nk(μ,σ ), k > , where μ >  is the average score of the students and
σ >  is the k-order mean absolute central moment of the score.

In the HTM{–∞,∞, pR}, assume that

X[a,b] ⊂ X(μ,∞) ⊂ XR ∼ Nk(μ,σ ), A (x) = c(x – μ)k–, k > , c > , x > μ > ,
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then we have the following inequalities (see Theorem . in []):

 ≤ VarA (X[a,b]) ≤ cσ kEA ′(X[a,b]). ()

In the HTM{–∞,∞, pR}, for the general allowance function (), we have the following.

Proposition  In the HTM{–∞,∞, pR}, assume that the score X of each student follows a
k-normal distribution, where k > . Then we have the following two assertions.

(I) If  < α ≤ , then the interval function VarA (X[a,b]) ([a, b] ∈ (μ,∞)) is increasing.
(II) If  < α < k, then the interval function VarA (X[a,b]) ([a, b] ∈ [μ∗,∞)) is also

increasing. Here

A (t) � c(t – μ)α , VarA (X[a,b]) �
∫ b

a pA 

∫ b
a p

–
(∫ b

a pA
∫ b

a p

)

,

μ∗ � μ + σ

[
α(α – )

k – α

] 
k

.

Proof By (), we have

A ′(t) = cα(t – μ)α– > , ∀t > μ.

According to Corollary , we just need to prove that the function p∗
J � p • A –(A –)′ is a

differentiable log-concave function under the hypotheses of assertions (I) and (II).
By () and (), we have

log p∗
J (s) = log p • A –(s)

(
A –(s)

)′

= log

[
k–k–

�(k–)σ
exp

(
–

|A –(s) – μ|k
kσ k

)
d
ds

A –(s)
]

= log

[
k–k–

�(k–)σ

]
–


kσ k

(
s
c

) k
α

+ log

[

αc

(
s
c

) –α
α
]

= log

[
k–k–

�(k–)σ

]
–



kσ kc k
α

s
k
α +

 – α

α
log s – log

(
αc


α
)
,

and

d

ds log p∗
J (s) =

d

ds

(
–



kσ kc k
α

s
k
α +

 – α

α
log s

)
= –

k – α

ασ kc k
α

s
k
α – –

 – α

α
s–

∼ –(k – α)
(

s
cσα

) k
α

– α( – α).

Hence

d

ds log p∗
J (s) ≤ 

⇔ –(k – α)
(

s
cσα

) k
α

– α( – α) ≤ 
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⇔ –(k – α)
[

c(t – μ)α

cσα

] k
α

– α( – α) ≤ 

⇔ (k – α)
(

t – μ

σ

)k

+ α( – α) ≥ 

⇔  < α ≤ , t ≥ μ or  < α < k, t ≥ μ∗ = μ + σ

[
α(α – )

k – α

] 
k

.

Therefore, the function p∗
J � p •A –(A –)′ is a differentiable log-concave function under

the hypotheses of assertions (I) and (II). This completes the proof of Proposition . �

6 Conclusion
Variances and covariances are important concepts in the analysis of variance since they
can be used as quantitative tools in mathematical models involving probability and statis-
tics. The motivation of this paper is to extend the connotation of the analysis of variance
and facilitate its applications in probability, statistics and higher education. In the appli-
cations, one of our main purposes is to study the hierarchical and the traditional teaching
models from the angle of the analysis of variance, so as to decide on the superiority or the
inferiority of the hierarchical teaching model and the traditional teaching model.

In this paper, we first introduce the relevant concepts and properties of the interval
functions. Next, we study several characteristics of the log-concave function, and prove
the interesting quasi-log concavity conjecture in []. Next, we generalize the traditional
covariance and the variance of random variables and define φ-covariance, φ-variance, φ-
Jensen variance, φ-Jensen covariance, integral variance and γ -order variance, and study
the relationships among these ‘variances’, as well as study the monotonicity of the interval
function JVarφ ϕ(X[a,b]). Finally, we demonstrate the applications of our results in higher
education. Based on the monotonicity of the interval function Var[γ ]X[a,b] ([a, b] ∈ I), we
show that the hierarchical teaching model is ‘normally’ better than the traditional teaching
model under the hypotheses that XI ⊂ X ∼ Nk(μ,σ ), k > . We also study the monotonic-
ity of the interval function VarA (X[a,b]) involving an allowance function A . Theorems 
and  are the main theoretical basis and Theorem  is one of main results of this paper.

A large number of algebraic, functional analysis, probability, statistics and inequality
theories are used in this paper. The proofs of our results are both interesting and difficult,
and the problems of proof of these results are difficult to be solved by means of the existing
probability and statistics theories. Some of our proof methods can also be found in the
references of this paper.

Based on the above analysis, we know that the theory of φ-Jensen variance is of great the-
oretical significance and application value in inequality, probability, statistics and higher
education.
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