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Abstract
The present paper deals with the common solution method for finding a fixed point
of a nonexpansive mapping and a solution of split hierarchical Minty variational
inequality problems. We discuss the weak convergence of the sequences generated
by the proposed method to a common solution of a fixed point problem and a split
hierarchical Minty variational inequality problem. An example is presented to illustrate
the proposed algorithm and result.
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1 Introduction
Since its origin in  by Censor and Elfving [], the split feasibility problem (SFP) has
been rapidly investigated and studied because of its applications in different areas such as
signal processing, phase retrievals, image reconstruction, intensity-modulated radiation
therapy, etc. (see, for example, [–] and the references therein). Recently, Censor and Se-
gal [] introduced a split common fixed point problem (SCFPP) which is to find a common
element of a family of operators in one space such that its image under a linear transfor-
mation is a common fixed point of another family of operators in the image space. The
SCFPP generalizes convex feasibility problem (CFP), split feasibility problem (SFP) and
multiple sets split feasibility problem (MSSFP). They developed a parallel algorithm for
solving SCFPP for the class of directed operators in the setting of finite-dimension spaces.
Further, Cui et al. [] proposed a damped projection method for SCFPP and studied its
convergence result. Moudafi [] further proposed and analyzed an iterative scheme for
solving SCFPP for the class of demicontractive operators in the setting of Hilbert spaces.
He studied the weak convergence of the sequence generated by the proposed algorithm
to a solution of SCFPP. Subsequently, Cui and Wang [] suggested a new algorithm that
does not require any prior information of the operator norm to find a solution of SCFPP.
They studied the weak convergence of the proposed algorithm. In , Moudafi [] con-
sidered the relaxed algorithm for computing the approximate solution of SCFPP for quasi-
nonexpansive operators and studied the weak convergence of the sequence generated by
the suggested algorithm. Very recently, SCFPP was considered by Kraikaew and Saejung
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[] for quasi-nonexpansive and strongly quasi-nonexpansive operators. They proposed
an algorithm and showed that their algorithm converges strongly to a solution of SCFPP.
They also considered split variational inequality problem [], split common null point
problem and Moudafi’s split feasibility problem, and derived the algorithm for these prob-
lems from the main algorithm for SCFPP. Also, the strong convergence of these algorithms
is derived from the main convergence result. Very recently, Ansari et al. [] introduced the
split hierarchical variational inequality problem (SHVIP). A variational inequality prob-
lem in which the underlying set is a set of fixed points of a nonlinear operator is called
hierarchical variational inequality problem. For further details on hierarchical variational
inequality problems, we refer to [] and the references therein. More precisely, they con-
sidered the following split hierarchical Minty variational inequality problem (SHMVIP)
which requires to find a solution of a hierarchical Minty variational inequality problem
(HMVIP) such that its image under a nonlinear operator is a solution of another HMVIP.

Let H and H be real Hilbert spaces, f , T : H → H be operators such that Fix(T) �= ∅,
and h, S : H → H be operators with Fix(S) �= ∅, where Fix(T) and Fix(S) are denoted
by the set of fixed points of T and S, respectively. Let A : H → H be an operator with
R(A) ∩ Fix(S) �= ∅, where R(A) denotes the range of A. The split hierarchical variational
inequality problem (SHVIP) is to find x∗ ∈ Fix(T) such that

〈
f
(
x∗), x – x∗〉 ≥  for all x ∈ Fix(T) ()

such that Ax∗ ∈ Fix(S) and it satisfies

〈
h
(
Ax∗), y – Ax∗〉 ≥  for all y ∈ Fix(S). ()

The solution set of the SHVIP is denoted by �.
Another problem which is closely related to (SHVIP) is the following split hierarchical

Minty variational inequality problem (SHMVIP): Find x∗ ∈ Fix(T) such that

〈
f (x), x – x∗〉 ≥  for all x ∈ Fix(T), ()

and such that Ax∗ ∈ Fix(S) satisfies

〈
h(y), y – Ax∗〉 ≥  for all y ∈ Fix(S). ()

We denote by � the set of solutions of SHMVIP, that is,

� =
{

x solves () : Ax solves ()
}

.

It can be easily seen by the Minty lemma [], Lemma , that if Fix(T) and Fix(S) are
nonempty closed convex and f and h are monotone and continuous, then SHVIP ()-()
and SHMVIP ()-() are equivalent.

Ansari et al. [] showed that several problems, namely split convex minimization prob-
lem, split variational inequality problem over the solution set of monotone variational
inclusion problem, and split variational inequality problem over the solution set of equi-
librium problem, are particular cases of SHVIP. They proposed an iterative scheme for
solving SHVIP and studied the weak convergence of the sequence generated by the pro-
posed algorithm.
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In this paper, we give a common solution method for finding a fixed point of a nonex-
pansive operator and a solution of split hierarchical variational inequality problems. The
weak convergence of such algorithm is studied. We also present an example to illustrate
the proposed algorithm and the convergence result.

2 Preliminaries
Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and
‖ · ‖, respectively. Let C be a nonempty closed convex subset of H . We denote by xn → x
(respectively, xn ⇀ x) the strong (respectively, weak) convergence of the sequence {xn} to
x. Let T : H → H be an operator whose range is denoted by R(T). The set of all fixed points
of T is denoted by Fix(T), that is, Fix(T) = {x ∈ H : x = Tx}.

Definition . An operator T : H → H is said to be:
(a) nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ H ;
(b) strongly nonexpansive [, ] if T is nonexpansive and

lim
n→∞

∥∥(xn – yn) – (Txn – Tyn)
∥∥ = ,

whenever {xn} and {yn} are bounded sequences in H and
limn→∞(‖xn – yn‖ – ‖Txn – Tyn‖) = ;

(c) averaged nonexpansive if it can be written as

T = ( – α)I + αS,

where α ∈ (, ), I is the identity operator of H , and S : H → H is a nonexpansive
mapping;

(d) firmly nonexpansive if ‖Tx – Ty‖ ≤ 〈x – y, Tx – Ty〉 for all x, y ∈ H ;
(e) cutter [] if 〈x – Tx, z – Tx〉 ≤  for all x ∈ H and z ∈ Fix(T);
(f ) monotone if 〈x – y, Tx – Ty〉 ≥  for all x, y ∈ H ;
(g) α-inverse strongly monotone if there exists a constant α >  such that

〈Tx – Ty, x – y〉 ≥ α‖Tx – Ty‖ for all x, y ∈ H .

Remark . Every strongly nonexpansive operator is nonexpansive, but a nonexpansive
operator need not be strongly nonexpansive. Also, a nonexpansive cutter operator need
not be strongly nonexpansive.

Example . Let T : [–, ] → R be defined by Tx = –x for all x ∈ [–, ]. Then T is non-
expansive but not strongly nonexpansive.

Indeed, let xn =  and yn =  for all n. Then {xn} and {yn} are bounded sequences. Also,

lim
n→∞

∣∣(xn – yn) – (Txn – Tyn)
∣∣ = lim

n→∞| + | =  �= .

Thus, T is not strongly nonexpansive.

Example . Let H = H = R
 with inner product and norm be given by 〈x, y〉 = xy +

xy and ‖x‖ = |x| + |x|, respectively, where x = (x, x) and y = (y, y). Let C = {x ∈ R
 :
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‖x‖ ≤ √
} be a nonempty closed subspace of R. Let T : C → C be defined by

T(x, y) =
(




x +



y,



x +



y
)

for all (x, y) ∈ C.

Then T is a nonexpansive cutter operator, but T is not strongly nonexpansive.
Indeed, let {xn} = (, ) and {yn} = (, ) for all n. Then {xn} and {yn} are two bounded

sequences of C, and Txn = ( 
 , 

 ) and Tyn = (, ). Note that

lim
n→∞

(‖xn – yn‖ – ‖Txn – Tyn‖
)

= lim
n→∞

(∥∥(, )
∥∥ –

∥∥∥∥

(



,



)∥∥∥∥

)
= lim

n→∞( – ) = .

But

lim
n→∞

∥∥(xn – yn) – (Txn – Tyn)
∥∥ = lim

n→∞

∥∥∥∥(, ) –
(




,



)∥∥∥∥ = lim
n→∞

∥∥∥∥



,
–


∥∥∥∥ =



�= .

Thus, T is not strongly nonexpansive.
In order to show that T is a nonexpansive cutter operator, we first prove that it is non-

expansive. Let x = (x, x), y = (y, y) ∈ C. Then

‖Tx – Ty‖ =
∥∥∥∥

(



x +



x,



x +



x

)
–

(



y +



y,



y +



y

)∥∥∥∥

=
∥∥∥∥




(x – y) +



(x – y),



(x – y) +



(x – y)
∥∥∥∥

=
∣∣∣∣



(x – y) +



(x – y)
∣∣∣∣ +

∣∣∣∣



(x – y) +



(x – y)
∣∣∣∣

≤ 

|x – y| +



|x – y| +



|x – y| +



|x – y|

= |x – y| + |x – y| =
∥∥(x – y), (x, y)

∥∥

=
∥∥(x, x) – (y, y)

∥∥ = ‖x – y‖.

Thus, T is nonexpansive.
We next show that T is cutter. Note that Fix(T) = {(x, y) ∈ C : x = y}. Let x = (x, y) ∈ C

and (p, p) ∈ Fix(T), we have

〈x – Tx, p – Tx〉 =
〈
(x, y) –

(



x +



y,



x +



y
)

, (p, p) –
(




x +



y,



x +



y
)〉

=
〈(




(x – y),



(y – x)
)

,
(

p –



(x + y), p –



(x + y)
)〉

=



(x – y)
(

p –



(x + y)
)

+



(y – x)
(

p –



(x + y)
)

=



(x – y)
{

p – (x + y) – p + (x + y)
}

=



(x – y)(y – x) = –



(x – y) ≤ .

This shows that T is cutter.



Ansari et al. Journal of Inequalities and Applications  (2015) 2015:274 Page 5 of 16

The following lemma provides some fundamental properties of Hilbert spaces. These
properties will be used in the sequel.

Lemma . Let H be a real Hilbert space. Then, for all x, y ∈ H , we have
(a) ‖x – y‖ = ‖x‖ – ‖y‖ – 〈x – y, y〉;
(b) ‖x – y‖ ≤ ‖x‖ + 〈y, y – x〉;
(c) ‖λx + ( – λ)y‖ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x – y‖ for all λ ∈ [, ].

Lemma . ([], Lemma , Demiclosedness principle) Let C be a nonempty closed con-
vex subset of a real Hilbert space H and T : C → C be a nonexpansive operator with
Fix(T) �= ∅. If the sequence {xn} ⊆ C converges weakly to x and the sequence {(I – T)xn}
converges strongly to y, then (I – T)x = y; in particular, if y = , then x ∈ Fix(T).

Definition . Let T : H → H be a set-valued operator with domain D(T) = {x ∈ H :
T(x) �= ∅}, range R(T) =

⋃
x∈D(T) T(x) and the inverse of T is T–(y) = {x ∈ H : y ∈ T(x)}.

T is said to be:
(a) monotone if

〈x – y, f – g〉 ≥ , whenever f ∈ Tx, g ∈ Ty;

(b) maximal monotone if it is monotone and the graph

G(T) =
{

(x, f ) ∈ H × H : f ∈ Tx
}

of T is not properly contained in the graph of any other monotone operator;
(c) α-inverse strongly monotone if there exists a constant α >  such that

〈Tx – Ty, x – y〉 ≥ α‖Tx – Ty‖, whenever x, y ∈ D(T).

It is well known that when T is maximal monotone, then for each x ∈ H and λ > , there
is a unique z ∈ H such that x ∈ (I + λT)z. In this case, the operator JT

λ := (I + λT)– is
called resolvent of T with parameter λ. It is known that JT

λ is a single-valued and firmly
nonexpansive mapping.

The following lemma will be used in our main result.

Lemma . ([]) Let {an}∞n= and {bn}∞n= be sequences of nonnegative real numbers such
that

an+ ≤ an + bn for all n ≥ .

If
∑∞

n= bn < ∞, then the limit limn→∞ an exists.

3 Algorithms and convergence results
Let K : H → H be a nonexpansive operator with Fix(K) ∩ � �= ∅. We propose the follow-
ing algorithm to compute a common element of the set of fixed points of K and the set of
solutions of SHMVIP.
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Algorithm . Initialization: Choose {αn}∞n=, {βn}∞n=, {λn}∞n= ⊂ (, ). Take arbitrary
x ∈ H.

Iterative step: For a given current xn ∈ H, compute

zn = xn – γ A∗(I – S(I – βnh)
)
Axn,

yn = T(I – αnf )zn,

xn+ = λnxn + ( – λn)Kyn,

()

where γ ∈ (, 
‖A‖ ).

Last step: Update n := n + .

When K is the identity operator, Algorithm . reduces to the following algorithm.

Algorithm . Initialization: Choose {αn}∞n=, {βn}∞n=, {λn}∞n= ⊂ (, ). Take arbitrary
x ∈ H.

Iterative step: For a given current xn ∈ H, compute

zn = xn – γ A∗(I – S(I – βnh)
)
Axn,

yn = T(I – αnf )zn,

xn+ = λnxn + ( – λn)yn,

()

where γ ∈ (, 
‖A‖ ).

Last step: Update n := n + .

Next we prove the weak convergence of the sequences generated by Algorithm ..

Theorem . Let f : H → H be a monotone continuous mapping, T : H → H be a non-
expansive cutter operator such that Fix(T) �= ∅, h : H → H be a monotone continuous
mapping and S : H → H be a strongly nonexpansive cutter operator such that Fix(S) �= ∅.
Let A : H → H be a bounded linear operator with R(A)∩Fix(S) �= ∅ and let K : H → H be
a nonexpansive operator with Fix(K) ∩ � �= ∅. Let {xn} and {yn} be the sequences generated
by Algorithm . such that the following conditions hold:

(i) There exists a natural number n◦ such that

� ⊂
∞⋂

n=n◦

{
z ∈ H :

〈
h(Axn), S(I – βnh)Axn – Az

〉 ≥ 
}

;

(ii) {f (zn)}∞n= is a bounded sequence;
(iii)

∑∞
n= αn < ∞;

(iv) limn→∞ βn = ;
(v) ‖xn+ – xn‖ = o(αn) and αn = o(β

n);
(vi) {h(Axn)}∞n= is a bounded sequence.

Then the sequences {xn} and {yn} converge weakly to an element x∗ ∈ Fix(K) ∩ �.
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Proof Let p ∈ Fix(K) ∩ �. Then T(p) = p, K(p) = p and S(Ap) = Ap. Consider

‖zn – p‖ =
∥∥xn – γ A∗(I – S(I – βnh)

)
Axn – p

∥∥

= ‖xn – p‖ + γ ∥∥A∗(I – S(I – βnh)
)
Axn

∥∥

– γ
〈
xn – p, A∗(I – S(I – βnh)

)
Axn

〉

≤ ‖xn – p‖ + γ ‖A‖∥∥(
I – S(I – βnh)

)
Axn

∥∥

– γ
〈
xn – p, A∗(I – S(I – βnh)

)
Axn

〉
for all n ≥ . ()

Since S is a cutter operator, we have

〈
xn – p, A∗(S(I – βnh) – I

)
Axn

〉

=
〈
Axn – Ap,

(
S(I – βnh) – I

)
Axn

〉

=
〈
S(I – βnh)Axn – Ap + Axn – S(I – βnh)Axn,

(
S(I – βnh) – I

)
Axn

〉

=
〈
S(I – βnh)Axn – Ap,

(
S(I – βnh) – I

)
Axn

〉
–

∥∥(
S(I – βnh) – I

)
Axn

∥∥

=
〈
S(I – βnh)Axn – Ap,

(
S(I – βnh) – I

)
Axn + βnhAxn – βnhAxn

〉

–
∥∥(

S(I – βnh) – I
)
Axn

∥∥

=
〈
S(I – βnh)Axn – Ap, S(I – βnh)Axn – (I – βnh)Axn

〉

– βn
〈
S(I – βnh)(Axn) – Ap, h(Axn)

〉
–

∥∥(
S(I – βnh) – I

)
Axn

∥∥

≤ –
∥∥(

S(I – βnh) – I
)
Axn

∥∥ – βn
〈
S(I – βnh)(Axn) – Ap, h(Axn)

〉
.

Since p ∈ �, by condition (i), we have

〈
S(I – βnh)(Axn) – Ap, h(Axn)

〉 ≥ .

Since βn ∈ (, ) for all n ∈N, we further have

βn
〈
S(I – βnh)(Axn) – Ap, h(Axn)

〉 ≥ .

Therefore,

〈
xn – p, A∗(S(I – βnh) – I

)
Axn

〉 ≤ –
∥∥(

S(I – βnh) – I
)
Axn

∥∥.

Thus, () becomes

‖zn – p‖ ≤ ‖xn – p‖ + γ ‖A‖∥∥(
I – S(I – βnh)

)
Axn

∥∥

– γ
∥∥(

S(I – βnh) – I
)
Axn

∥∥

= ‖xn – p‖ – γ
(
 – γ ‖A‖)∥∥(

S(I – βnh) – I
)
Axn

∥∥ for all n ≥ . ()

Since γ ∈ (, 
‖A‖ ), we observe that γ ( – γ ‖A‖) > , and hence

‖zn – p‖ ≤ ‖xn – p‖ for all n ≥ . ()
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Let M := sup{‖f (zn)‖ : n ≥ }. Then, for all n ≥ , we have

‖yn – p‖ =
∥∥T

(
zn – αnf (zn)

)
– T(p)

∥∥

≤ ‖zn – p‖ + αn
∥∥f (zn)

∥∥

≤ ‖zn – p‖ + αnM

≤ ‖xn – p‖ + αnM, ()

‖xn+ – p‖ =
∥∥λnxn + ( – λn)Kyn – p

∥∥

=
∥∥λn(xn – p) + ( – λn)(Kyn – p)

∥∥

≤ λn‖xn – p‖ + ( – λn)‖yn – p‖
≤ λn‖xn – p‖ + ( – λn)‖xn – p‖ + ( – λn)αnM

≤ ‖xn – p‖ + ( – λn)αnM.

Since
∑

αn < ∞ and  < ( – λn) < , we have
∑∞

n=( – λn)αn < ∞. Thus, by Lemma .,
the limit limn→∞ ‖xn – p‖ exists. Also, from ()-(), the limits limn→∞ ‖zn – p‖ and
limn→∞ ‖yn – p‖ exist. This implies that {xn}, {yn} and {zn} are bounded sequences. Now,
consider

‖yn – p‖ =
∥∥T(I – αnf )(zn) – T(p)

∥∥

≤ ∥∥(zn – p) – αnf (zn)
∥∥

≤ ‖zn – p‖ + α
n
∥∥f (zn)

∥∥. ()

From (), () and by Lemma .(c), we have

‖xn+ – p‖ =
∥∥λnxn + ( – λn)Kyn – p

∥∥

=
∥∥λn(xn – p) + ( – λn)(Kyn – p)

∥∥

= λn‖xn – p‖ + ( – λn)‖yn – p‖ – λn( – λn)‖Kyn – xn‖

≤ λn‖xn – p‖ + ( – λn)
{‖zn – p‖ + α

n
∥∥f (zn)

∥∥}

– λn( – λn)‖Kyn – xn‖

≤ λn‖xn – p‖ + ( – λn)‖xn – p‖

– ( – λn)γ
(
 – γ ‖A‖)∥∥(

S(I – βnh) – I
)
Axn

∥∥

+ ( – λn)α
n
∥∥f (zn)

∥∥ – λn( – λn)‖Kyn – xn‖

= ‖xn – p‖ – ( – λn)γ
(
 – γ ‖A‖)∥∥(

S(I – βnh) – I
)
Axn

∥∥

+ ( – λn)α
n
∥∥f (zn)

∥∥ – λn( – λn)‖Kyn – xn‖, ()

which is equivalent to

( – λn)γ
(
 – γ ‖A‖)∥∥(

S(I – βnh) – I
)
Axn

∥∥ + λn( – λn)‖Kyn – xn‖

≤ ‖xn – p‖ – ‖xn+ – p‖ + ( – λn)α
n
∥∥f (zn)

∥∥. ()
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From the existence of the limit limn→∞ ‖xn – p‖ and the facts that αn → , ‖f (zn)‖ is
bounded,  < λn <  and γ ∈ (, 

‖A‖ ), it follows that

lim
n→∞

∥∥(
S(I – βnh) – I

)
Axn

∥∥ = , ()

and

lim
n→∞‖Kyn – xn‖ = . ()

From (), we have

lim
n→∞‖xn+ – xn‖ ≤ lim

n→∞‖Kyn – xn‖ = . ()

Since T is a cutter operator, we have

〈p – yn, zn – yn〉
= 〈yn – p, yn – zn〉
=

〈
T(I – αnf )zn – p, T(I – αnf )zn – (I – αnf )zn + (I – αnf )zn – zn

〉

=
〈
T(I – αnf )zn – p, T(I – αnf )zn – (I – αnf )zn

〉

+
〈
T(I – αnf )zn – p, –αnfzn

〉

≤ 〈
T(I – αnf )zn – p, T(I – αnf )zn – (I – αnf )zn

〉

+ αn
∥∥T(I – αnf )zn – p

∥∥‖fzn‖,

and

〈
T(I – αnf )zn – p, T(I – αnf )zn – (I – αnf )zn

〉 ≤ .

This implies that

〈p – yn, zn – yn〉 ≤ αn
∥∥T(I – αnf )zn – p

∥∥‖fzn‖. ()

From (), () and by Lemma .(a), we have

‖yn – p‖ = ‖zn – p‖ – ‖zn – yn‖ – 〈yn – p, zn – yn〉
≤ ‖xn – p‖ –

∥∥xn – γ A∗(I – S(I – βnh)
)
Axn – yn

∥∥

– 〈yn – p, zn – yn〉
= ‖xn – p‖ – ‖xn – yn‖ – γ ‖A‖∥∥(

I – S(I – βnh)
)
Axn

∥∥

+ γ
〈
xn – yn, A∗(I – S(I – βnh)Axn

)〉
+ 〈p – yn, zn – yn〉

≤ ‖xn – p‖ – ‖xn – yn‖ – γ ‖A‖∥∥(
I – S(I – βnh)

)
Axn

∥∥

+ αn
∥∥T(I – αnf )zn – p

∥∥‖fzn‖
+ γ ‖xn – yn‖‖A‖∥∥(

S(I – βnh) – I
)
Axn

∥∥. ()
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Thus, from () and (), we have

‖xn+ – p‖

= λn‖xn – p‖ + ( – λn)‖yn – p‖ – λn( – λn)‖Kyn – xn‖

≤ λn‖xn – p‖ + ( – λn)‖xn – p‖ – ( – λn)γ ‖A‖∥∥(
I – S(I – βnh)

)
Axn

∥∥

– ( – λn)‖xn – yn‖ – λn( – λn)‖Kyn – xn‖

+ ( – λn)αn
∥∥T(I – αnf )zn – p

∥∥∥∥f (zn)
∥∥

+ γ ( – λn)‖xn – yn‖‖A‖∥∥(
S(I – βnh) – I

)
Axn

∥∥

≤ ‖xn – p‖ – ( – λn)‖xn – yn‖ – ( – λn)γ ‖A‖∥∥(
I – S(I – βnh)

)
Axn

∥∥

+ ( – λn)αn
∥∥T(I – αnf )zn – p

∥∥∥∥f (zn)
∥∥ – λn( – λn)‖Kyn – xn‖

+ γ ( – λn)‖xn – yn‖‖A‖∥∥(
S(I – βnh) – I

)
Axn

∥∥,

which is equivalent to

( – λn)‖xn – yn‖ ≤ ‖xn – p‖ – ‖xn+ – p‖ – λn( – λn)‖Kyn – xn‖

+ ( – λn)αn
∥∥T(I – αnf )zn – p

∥∥∥∥f (zn)
∥∥

+ γ ( – λn)‖xn – yn‖‖A‖∥∥(
S(I – βnh) – I

)
Axn

∥∥.

Taking limit as n → ∞, and taking into account αn → ,  < λn < , γ ∈ (, 
‖A‖ ) and from

equations (), () we have

‖xn – yn‖ →  as n → ∞, ()

‖yn – Kyn‖ = ‖yn – xn + xn – Kyn‖
≤ ‖yn – xn‖ + ‖xn – Kyn‖.

From () and (), we obtain

‖yn – Kyn‖ →  as n → ∞. ()

Since {xn} is a bounded sequence, there exists a convergent subsequence {xni} of {xn} that
converges weakly to some x∗ ∈ H. Since ‖xn – yn‖ → , it is known that yni ⇀ x∗ ∈ H. By
the demiclosed principle, yni ⇀ x∗ and ‖yni – Kyni‖ → , we have

Kx∗ = x∗.

From (), we obtain

‖zn – xn‖ = γ ‖A‖∥∥(
I – S(I – βnh)

)
Axn

∥∥.

By (), we have

‖zn – xn‖ →  as n → ∞, ()
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and

‖zn – yn‖ ≤ ‖xn – yn‖ + γ ‖A‖∥∥(
I – S(I – βnh)

)
Axn

∥∥.

Equations () and () yield that

‖zn – yn‖ →  as n → ∞. ()

From the definition of yn, we have

‖yn – Tzn‖ =
∥∥T

(
zn – αnf (zn)

)
– Tzn

∥∥

≤ ∥∥zn – αnf (zn) – zn
∥∥

≤ αn
∥∥f (zn)

∥∥.

This implies that

lim
n→∞‖yn – Tzn‖ = , ()

‖yn – Tyn‖ = ‖yn – Tzn + Tzn – Tyn‖
≤ ‖yn – Tzn‖ + ‖zn – yn‖.

From () and (), we get

lim
n→∞‖yn – Tyn‖ → .

Since yni ⇀ x∗ and ‖yni – Tyni‖ → , by the demiclosed principle, we obtain

Tx∗ = x∗.

Let vn := Axn – βnh(Axn) for all n ≥ . We observe that

 ≤ ‖vn – Ap‖ – ‖Svn – SAp‖
=

∥∥Axn – βnh(Axn) – Ap
∥∥ – ‖Svn – SAp‖

=
∥∥Axn – Svn + Svn – βnh(Axn) – Ap

∥∥ – ‖Svn – SAp‖
≤ ‖Axn – Svn‖ + ‖Svn – SAp‖ + βn

∥∥h(Axn)
∥∥ – ‖Svn – SAp‖

=
∥∥Axn – S

(
Axn – βn

(
h(Axn)

))∥∥ + βn
∥∥h(Axn)

∥∥

=
∥∥(

S(I – βnh) – I
)
Axn

∥∥ + βn
∥∥h(Axn)

∥∥.

From condition (iv) and (), we have

lim
n→∞

(‖vn – Ap‖ – ‖Svn – SAp‖) = .

The boundedness of vn and strong nonexpansiveness of S imply that

lim
n→∞‖Svn – vn‖ = . ()
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From the definition of vn and condition (iv), we get

lim
n→∞‖vn – Axn‖ =  ()

and

‖vn – SAxn‖ ≤ ‖vn – Svn‖ +
∥∥Svn – S(Axn)

∥∥

= ‖vn – Svn‖ + ‖vn – Axn‖.

From () and (), we have

lim
n→∞‖vn – SAxn‖ = ,

and thus

lim
n→∞‖Axn – SAxn‖ = . ()

Since xni ⇀ x∗ ∈ H, we have Axni ⇀ Ax∗ ∈ H. From () and by the demiclosed principle,
we obtain

SAx∗ = Ax∗.

Let qn := zn – αnf (zn). By Lemma .(b) and inequality (), we have

‖yn – p‖ =
∥∥T(I – αnf )zn – Tp

∥∥

≤ ∥∥zn – p – αnf (zn)
∥∥

≤ ‖zn – p‖ + 
〈
αnf (zn),αnf (zn) – zn + p

〉

= ‖zn – p‖ + 
〈
αnf (zn), p – zn

〉
+ α

n
∥∥f (zn)

∥∥

≤ ‖xn – p‖ + αn
〈
f (zn), p – zn

〉
+ α

n
∥∥f (zn)

∥∥. ()

From the definition of xn+, () and using the monotonicity of f , we have

‖xn+ – p‖ ≤ λn‖xn – p‖ + ( – λn)‖yn – p‖

≤ λn‖xn – p‖ + ( – λn)
{‖xn – p‖ + αn

〈
f (zn), p – zn

〉

+ α
n
∥∥f (zn)

∥∥}

≤ ‖xn – p‖ + ( – λn)αn
〈
f (zn), p – zn

〉
+ ( – λn)α

n
∥∥f (zn)

∥∥

= ‖xn – p‖ + ( – λn)αn
〈
f (zn) – f (p) + f (p), p – zn

〉

+ ( – λn)α
n
∥∥f (zn)

∥∥

= ‖xn – p‖ + ( – λn)αn
〈
f (zn) – f (p), p – zn

〉

+ ( – λn)αn
〈
f (p), p – zn

〉
+ ( – λn)α

n
∥∥f (zn)

∥∥

= ‖xn – p‖ – ( – λn)αn
〈
f (p) – f (zn), p – zn

〉
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+ ( – λn)αn
〈
f (p), p – zn

〉
+ ( – λn)α

n
∥∥f (zn)

∥∥

= ‖xn – p‖ + ( – λn)αn
〈
f (p), p – zn

〉
+ ( – λn)α

n
∥∥f (zn)

∥∥, ()

which is equivalent to

( – λn)
〈
f (p), zn – p

〉

≤
(‖xn – p‖ – ‖xn+ – p‖

αn

)
+ ( – λn)αn

∥∥f (zn)
∥∥

≤
{

(‖xn – p‖ + ‖xn+ – p‖)(‖xn – p‖ – ‖xn+ – p‖)
αn

}
+ ( – λn)αn

∥∥f (zn)
∥∥

≤ M

(‖xn – p‖ – ‖xn+ – p‖
αn

)
+ ( – λn)αn

∥∥f (zn)
∥∥

≤ M

(‖xn – xn+‖
αn

)
+ ( – λn)αn

∥∥f (zn)
∥∥,

where M = sup{‖xn – p‖ + ‖xn+ – p‖, n ≥ } < ∞. Taking limit of both sides and taking
into account that  < ( – λn) < , αn → , ‖xn – xn+‖ = o(αn) and zni ⇀ x∗, we have

〈
f (p), x∗ – p

〉 ≤ ,

and thus

〈
f (p), x∗ – p

〉 ≤  for all p ∈ Fix(T),

that is, x∗ ∈ Fix(T) solves (). Since αn = o(β
n), we may assume that αn ≤ β

n for all n ≥ .
From (), for all n ≥ , we have

( – λn)γ
(
 – γ ‖A‖)∥∥(

S(I – βnh) – I
)
Axn

∥∥

≤ ‖xn – p‖ – ‖xn+ – p‖ + α
n
∥∥f (zn)

∥∥

≤ {(‖xn – p‖ + ‖xn+ – p‖)(‖xn – p‖ – ‖xn+ – p‖)} + α
n
∥∥f (zn)

∥∥

≤ M‖xn – xn+‖ + α
n
∥∥f (zn)

∥∥,

where M = sup{‖xn – p‖ + ‖xn+ – p‖ : n ≥ } < ∞. Therefore, for all n ≥ , we have

( – λn)γ
(
 – γ ‖A‖)‖Axn – Svn‖

β
n

≤ ‖xn – xn+‖
β

n
M +

α
n

β
n

∥∥f (zn)
∥∥

≤ ‖xn – xn+‖
αn

M + αn
∥∥f (zn)

∥∥.

Subsequently, since αn → , ‖xn+ – xn‖ = o(αn), γ ( – γ ‖A‖) >  and  < ( – λn) < , we
have

lim
n→∞

‖Axn – Svn‖
βn

= . ()
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For all n ≥ , by Lemma .(b) and the monotonicity of h, we compute

‖Svn – SAp‖

≤ ‖vn – Ap‖
≤ ∥∥Axn – βnh(Axn) – Ap

∥∥

≤ ‖Axn – Ap‖ + 
〈
βnh(Axn),βnh(Axn) – Axn + Ap

〉

≤ ‖Axn – Ap‖ + βn
〈
h(Axn), Ap – Axn

〉
+ β

n
∥∥h(Axn)

∥∥

≤ ‖Axn – Ap‖ – βn
〈
h(Ap) – h(Axn), Ap – Axn

〉

+ β
n
∥∥h(Axn)

∥∥ + βn
〈
h(Ap), Ap – Axn

〉

≤ ‖Axn – Ap‖ + β
n
∥∥h(Axn)

∥∥ + βn
〈
h(Ap), Ap – Axn

〉
. ()

This gives


〈
h(Ap), Axn – Ap

〉

≤
{‖Axn – Ap‖ – ‖Svn – SAp‖

βn

}
+ βn

∥∥h(Axn)
∥∥

≤
{

(‖Axn – Ap‖ – ‖Svn – SAp‖)(‖Axn – Ap‖ + ‖Svn – SAp‖)
βn

}
+ βn

∥∥h(Axn)
∥∥

≤
(‖Axn – Svn‖

βn

)
M + βn

∥∥h(Axn)
∥∥,

where M := sup{‖Axn – Ap‖ + ‖Svn – SAp‖ : n ≥ } < ∞. From (), condition (iv) and
Axn ⇀ Ap, we obtain

〈
h(Ap), Ax∗ – Ap

〉 ≤  for all Ap ∈ Fix(S),

that is, Ax∗ solves (). Finally, it remains to show that xn ⇀ x∗. Note that, by the bound-
edness of {xn}, it suffices to show that there is no subsequence {xni} of {xn} such that
xni ⇀ y∗ ∈ H and y∗ �= x∗.

Indeed, if this is not true, then the well-known Opial theorem would imply

lim
n→∞

∥∥xn – y∗∥∥ = lim
j→∞

∥∥xnj – x∗∥∥ < lim
j→∞

∥∥xnj – y∗∥∥

= lim
n→∞

∥∥xn – y∗∥∥ = lim
i→∞

∥∥xni – y∗∥∥

< lim
i→∞

∥∥xni – x∗∥∥ = lim
n→∞

∥∥xn – y∗∥∥,

which leads to a contradiction. Therefore, the sequence {xn}∞n= converges weakly to a so-
lution x∗ ∈ �. Thus, ‖xn – yn‖ →  and ‖xn – zn‖ →  imply that yn ⇀ x∗ and zn ⇀ x∗,
respectively. �

Remark . By taking K ≡ I , the identity operator in Theorem ., we can derive a weak
convergence result for Algorithm . in which the operator T is nonexpansive cutter, but
not strongly nonexpansive as in [].
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Now, we illustrate Algorithm . and Theorem . by the following example.

Example . Let H, H, C and T be the same as in Example .. Let S : C → C be defined
as

S(x, y) =
(




x +



y,




x +



y
)

for all (x, y) ∈ C.

Then S is strongly nonexpansive cutter and firmly nonexpansive, and it has a fixed point
(, ). Thus being firmly nonexpansive, S is strongly nonexpansive. Also, every firmly non-
expansive operator with a fixed point is cutter (see [, ]). Thus, S is a strongly nonex-
pansive cutter operator.

Let f , h : C → C be operators defined by

f (x, y) =
(




x –



y, –



x +



y
)

for all (x, y) ∈ C,

and

h(x, y) =
(




x –



y, –



x +



y
)

for all (x, y) ∈ C.

Then f and h are monotone.
Let K : C → C be defined by

K(x, y) =
(




x +



y,



x +



y
)

for all (x, y) ∈ C.

Then K is nonexpansive.
Let A : C → C be defined by

A(x, y) =
(




x,



y
)

for all (x, y) ∈ C.

Then A is a bounded linear operator and ‖A‖ = 
 .

Table 1 Convergence table of Example 3.1

No. of iterations (n) yn xn

1 (–0.2222, 0.2222) (1, –1)
2 (1.0e–004) (–0.1528, 0.1528) (1.0e–004) (0.5000, –0.5000)
3 (1.0e–008) (–0.1605, 0.1605) (1.0e–008) (0.5000, –0.5000)
4 (1.0e–012) (–0.2447, 0.2447) (1.0e–012) (0.7500, –0.7500)
5 (1.0e–016) (–0.4931, 0.4931) (1.0e–015) (0.1500, –0.1500)
6 (1.0e–019) (–0.1238, 0.1238) (1.0e–019) (0.3750, –0.3750)
7 (1.0e–023) (–0.3722, 0.3722) (1.0e–022) (0.1125, –0.1125)
8 (1.0e–026) (–0.1305, 0.1305) (1.0e–026) (0.3938, –0.3938)
9 (1.0e–030) (–0.5223, 0.5223) (1.0e–029) (0.1575, –0.1575)
10 (1.0e–033) (–0.2352, 0.2352) (1.0e–033) (0.7088, –0.7088)
11 (1.0e–036) (–0.1177, 0.1177) (1.0e–036) (0.5544, –0.5544)
12 (0, 0) (0, 0)
13 (0, 0) (0, 0)
14 (0, 0) (0, 0)
15 (0, 0) (0, 0)
16 (0, 0) (0, 0)
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Let αn = (/n, /n), βn = (/n, /n), γ ∈ (, ) and λn ∈ (, ). Then the sequences xn

and yn generated by Algorithm . with initial guess x = (, –) converge to (, ) (see
Table ) which is a fixed point of T and K , whereas A(, ) = (, ) which is the fixed point
of S, where x = (x

, x
). Thus, (, ) is the required solution.
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