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Abstract
In the article, we present several sharp bounds for the Mills ratio
R(x) = ex

2/2
∫ ∞
x e–t

2/2 dt (x > 0) in terms of the functions Ia(x) = a/[
√
x2 + 2a + (a – 1)x]

and J(x) = a/[
√
x2 + 2a2/π + 2ax/π ] with parameter a > 0.
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1 Introduction
The Mills ratio [] is the function

R(x) =
 – �(x)

φ(x)
= e

x


∫ ∞

x
e– t

 dt, x > , (.)

where φ(x) = e–x//
√

π is the density function of a standard Gaussian law and �(x) =
∫ x

–∞ φ(t) dt its cumulative distribution function. The study of the Mills ratio is much older
than the work of Mills [], and through its relation with the function F(x) = ex ∫ ∞

x e–t dt
given by R(x) =

√
F(x/

√
), its introduction can be traced back to Laplace [], Livre X,

Chapter , no, while he was analyzing different hypotheses related to the refraction of
the light in the atmosphere. Laplace gave many of the essential results, like the continued
fraction and the asymptotic expansion. Since the function F is related to the error function,
and also to the upper incomplete Gamma function of parameter /, the properties of the
Mills ratio are spread over papers and books of probability and statistics, mathematical
analysis, numerical analysis, etc., and many results have been discovered and rediscovered
by different authors.

It is well known that the function � cannot be expressed as the composition of elemen-
tary functions, therefore, it is valuable to find sharp bounds for the Mills ratio by certain
simple and elementary functions.

Gordon [] proved that the double inequality

x
x + 

≤ R(x) ≤ 
x

holds for all x > .
Birnbaum [] and Komatu [] proved that the double inequality

√
x +  + x

< R(x) <
√

x +  + x

holds for all x > .
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An improvement for the upper bound of Mills ratio,

R(x) <
√

x +  + x
,

is due to Sampford [] and Shenton [].
Pollak [] proved that b = /π is the best possible parameter such that /[

√
x + b + x]

is the upper bound of Mills ratio. Boyd [] dealt with the bounds for the Mills ratio of the
form

ψ(x) =
a√

x + b + c
(.)

with a, b, c >  such that

ψ() = R(), lim
x→∞

[
x
(
ψ(x) – R(x)

)]
= 

and proved that

π√
x + π + (π – )x

< R(x) <
π

√
(π – )x + πx + x

.

Very recently, Gasull and Utzet [] proved the double inequality

max
{

W,(x), W,(x)
}

< R(x) < max
{

W,(x), W,(x)
}

(.)

for all x > , where

W,(x) =
π

√
( – π )x + π + x

, W,(x) =
π√

x + π + (π – )x
, (.)

W,(x) =
π

√
(π – )x + π + x

, W,(x) =
√

x +  + x
. (.)

More inequalities involving the Mills ratio R(x) can be found in the literature [–]
and the references therein.

Let ψ(x) be defined by (.). Then making use of the asymptotic expansion of the Mills
ratio R(x) at infinity (see [], p. )

R(x) ∼ 
x

–

x +

 · 
x –

 ·  · 
x + · · · (x → ∞)

we get

ψ(x) =
a√

x + a + (a – )x
:= Ia(x) (.)

if ψ(x) satisfies

lim
x→∞

[
x
(
ψ(x) – R(x)

)]
= , lim

x→∞
[
x(ψ(x) – R(x)

)]
= ,
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and

ψ(x) =
a√

x + a/π + ax/π
:= Ja(x) (.)

if ψ() = R() and ψ ′() = R′().
The main purpose of this paper is to present the sharp bounds for the Mills ratio R(x)

in terms of Ia(x) and Ja(x).

2 Lemmas
In order to prove our main results we need several lemmas, which we present in this sec-
tion.

Lemma . (See [], Proposition . or [], Proposition .) Let –∞ ≤ a < b ≤ ∞, f , g :
(a, b) →R be differentiable on (a, b) with f (a+) = g(a+) =  or f (b–) = g(b–) = , and g ′(x) �=
 on (a, b). If f ′(x)/g ′(x) is increasing (decreasing) on (a, b), then so is f (x)/g(x).

Lemma . (See [], Theorem ) Let –∞ ≤ a < b ≤ ∞, f , g : (a, b) →R be differentiable
on (a, b) with f (b–) = g(b–) = , g ′(x) �=  on (a, b), and

Hf ,g =
f ′

g ′ g – f . (.)

If there exists c ∈ (a, b) such that f ′/g ′ is increasing (decreasing) on (a, c) and decreasing
(increasing) on (c, b). Then the follows statements are true:

(i) f /g is decreasing (increasing) on (a, b) if g ′ >  on (a, b) and Hf ,g(a+) ≤ (≥) or g ′ < 
on (a, b) and Hf ,g(a+) ≥ (≤);

(ii) there exists c ∈ (a, b) such that f /g is increasing (decreasing) on (a, c) and
decreasing (increasing) on (c, b) if g ′ >  on (a, b) and Hf ,g(a+) > (<) or g ′ <  on
(a, b) and Hf ,g(a+) < (>).

Lemma . Let a, b ∈ R with a < b and f : [a, b] → R be continuous and strictly convex
(concave) with f (a)f (b) < . Then there exists c ∈ (a, b) such that f (x)f (a) >  for x ∈ (a, c)
and f (x)f (b) >  for x ∈ (c, b).

Proof We only prove the case of f being convex with

f (a) < , f (b) > , (.)

other cases can be proved by similar methods. Let x ∈ (a, b) and

F(x) =
f (x) – f (a)

x – a
. (.)

Then from the convexity of f on [a, b] we know that F is increasing on (a, b).
We divide the proof into two cases.
Case  F(a+) ≥ . Then F(x) > F(a+) ≥  for x ∈ (a, b). It follows from the convexity of f

on [a, b] that
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f (x) – f (x)
x – x

>
f (x) – f (a)

x – a
= F(x) >  (.)

for all x, x ∈ (a, b) with x �= x.
Inequality (.) implies that f is increasing on (a, b), which together with (.) leads to

the desired result.
Case  F(a+) < . Then from the monotonicity of F given by (.) we clearly see that

F(b) >  and there exists c∗ ∈ (a, b) such that F(x) <  for x ∈ (a, c∗) and F(x) >  for x ∈
(c∗, b).

From (.) and (.) together with Case  we know that

f (x) < f (a) <  (.)

for x ∈ (a, c∗) and f is increasing on (c∗, b).
Therefore, the desired assertion follows from (.) and the monotonicity of f on (c∗, b)

together with (.). �

Lemma . Let

h(t) = –πat – πt + a
(
a – π

)
t –

[
( – π )a – π]. (.)

Then the equation h′(t) =  has the unique solution

t = t(a) =
√

a – πa + π –
√

ππ


√

πa
(.)

on (, ) such that h(t) >  if a ∈ (π/
√

( – π ),
√

π +  + ).

Proof It follows from (.) that

h′(t) = –πat – πt + a
(
a – π

)
, (.)

h′() = a
(
a – π

)
> . (.)

From (.) and (.) we know that t = t(a) given by (.) is the unique positive solution
of the equation h′(t) = . Equation (.) gives

dt(a)
da

=
√

ππ
√

a – πa + π + (a – π)

√

πa
√

a – πa + π
>  (.)

for a ∈ (π/
√

( – π ),
√

π +  + ).
Inequality (.) leads to

t(a) < t(
√

π +  + ) < t

(



)

= . · · · <  (.)

for a ∈ (π/
√

( – π ),
√

π +  + ).
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Next, we prove that h(t) >  for a ∈ (π/
√

( – π ),
√

π +  + ). From (.) and (.) we
have

h(t) =
(a – πa + π)/ – 

√
π (π – a)


√

πa
.

It is enough to prove that

(
u – πu + π) –

[

√

π
(
u – π)]

= u
[
u – πu + π

(
π + π – 

)
u

– π(π – )u – π( – π )u + π]

:= uh(u) > 

for u ∈ (π/[( – π )], (
√

π +  + )).
Let v = u – π/[( – π )] > . Then h(u) can be rewritten as

h(u) =


( – π )

[
( – π )v + π ( – π )(π – )v

+ π ( – π )(π + π – π + ,π – ,
)
v

+ π( – π )(π – π + ,π – ,π + ,
)
v

+ π( – π )
(
π – π + ,π – ,π + ,π – ,

)
v

+ π(π – π + 
)
(π – )] > 

due to all the coefficients of the quintic polynomial being positive. �

Lemma . Let h(t) be defined by (.). Then the following statements are true:
(i) there exists t ∈ (, ) such that h(t) >  for t ∈ (, t) and h(t) <  for t ∈ (t, ) if

a ∈ (,π/
√

( – π )];
(ii) there exists t, t ∈ (, ) with t < t such that h(t) <  for t ∈ (, t) ∪ (t, ) and

h(t) >  for t ∈ (t, t) if a ∈ (π/
√

( – π ),
√

π +  + );
(iii) there exists t∗

 ∈ (, ) such that h(t) <  for t ∈ (, t∗
 ) and h(t) >  for t ∈ (t∗

 , ) if
a ∈ [

√
π +  + ,∞).

Proof It follows from (.) that

h() = π – ( – π )a = –( – π )
(

a +
π√

( – π )

)(

a –
π√

( – π )

)

, (.)

h() = a – ( – π )a – πa – π

= (π + a)(a +
√

π +  – )
[
a – (

√
π +  + )

]
, (.)

h′(t) = –πat – πt + a
(
a – π

)
, (.)

h′() = a
(
a – π

)
= a

(

a +
√

π



)(

a –
√

π



)

, (.)

h′() = a – πa – π. (.)



Yang and Chu Journal of Inequalities and Applications  (2015) 2015:273 Page 6 of 14

From (.) we clearly see that h′(t) is decreasing and h(t) is strictly concave on (, ).
We divide the proof into five cases.

Case  a ∈ (,π/
√

( – π )). Then (.) and (.) lead to

h() > , h() < . (.)

Therefore, the desired assertion follows easily from (.) and the concavity of h on (, )
together with Lemma ..

Case  a = π/
√

( – π ). Then (.), (.), (.), and (.) give

h() = , h() < , (.)

h′() > , h′() = –
π

√
( – π )

[
 – π

 – π
+ 

√
( – π )

]

< . (.)

From (.) and the monotonicity of h′(t) on (, ) we know that there exists λ ∈ (, )
such that h(t) is increasing on (,λ] and decreasing on [λ, ). Therefore, the desired result
follows from (.) and the piecewise monotonicity of h(t) on (, ).

Case  a ∈ (π/
√

( – π ),
√

π +  + ). Then (.) and (.) imply that

h() < , h() < . (.)

Therefore, the desired assertion follows from (.) and Lemma . together with the
concavity of h on (, ).

Case  a =
√

π +  + . Then (.), (.), (.), and (.) lead to

h() < , h() =  (.)

and (.) again holds. From (.) and the monotonicity of h′(t) on (, ) we know that
there exists μ ∈ (, ) such that h(t) is increasing on (,μ] and decreasing on [μ, ). There-
fore, the desired result follows from (.) and the piecewise monotonicity of h(t) on (, ).

Case  a ∈ (
√

π +  + ,∞). Then (.) and (.) imply that

h() < , h() > . (.)

Therefore, the desired assertion follows from Lemma . and (.) together with the
concavity of f on (, ). �

3 Main results
Theorem . The following statements are true for all x > :

() if a ∈ (, (
√

π +  + )/π ], then

a√
x + a + (a – )x

< R(x) <
√

π

a
a√

x + a + (a – )x
; (.)

() if a ∈ [,∞), then

√
π

a
a√

x + a + (a – )x
< R(x) <

a√
x + a + (a – )x

; (.)
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() if a ∈ ((
√

π +  + )/π , ), then

min

{

,
√

π

a

}
a√

x + a + (a – )x
< R(x) < λ(a)

a√
x + a + (a – )x

(.)

with λ(a) = (
√

x
 + a + (a – )x)R(x)/a, where x is the unique solution of the equation

d[(
√

x + a + (a – )x)R(x)]
dx

= 

on the interval (,∞). In particular, if a = π , then x = . · · · , λ(π ) = . · · · , and

π√
x + π + (π – )x

< R(x) <
πλ(π )√

x + π + (π – )x
. (.)

Proof Let

f(x) =
ae–x/

√
x + a + (a – )x

, g(x) =
∫ ∞

x
e–t/ dt

and Ia(x) be defined by (.). Then simple computations lead to

f(x)
g(x)

=
Ia(x)
R(x)

, (.)

f(∞) = g(∞) = , (.)

lim
x→+

f(x)
g(x)

=
√

a
π

, lim
x→∞

f(x)
g(x)

= , (.)

and

f ′
 (x)

g ′(x)
=

a(a –  + x√
x+a

)

[
√

x + a + (a – )x]
+

ax√
x + a + (a – )x

. (.)

Let t = x/
√

x + a ∈ (, ) or x =
√

at/
√

 – t. Then (.) can be rewritten as

f ′
 (x)

g ′(x)
=

–t + (a – a + )t + (a + )t + (a – )
( – t + at) . (.)

Differentiating (.) gives

(
f ′
 (x)

g ′(x)

)′
=

d
dt

[
–t + (a – a + )t + (a + )t + (a – )

( – t + at)

]

× dt
dx

=
a( – t)

( – t + at)(x + a)/ l(t), (.)

where

l(t) = (a – )t + (a + )t – a + a – , (.)
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l() = –
(

a –
 –

√




)(

a –
 +

√




)

, l() = –a(a – ). (.)

Next, we divide our analysis into three cases to determine the sign of l(t) on the interval
(, ).

Case  a = . We clearly see that l(t) = (t + ) >  for t ∈ (, ).
Case  a > . It follows from (.) that l(t) is strictly convex on (, ).
We divide the discussions into three subcases.
Subcase . a ∈ (, ( +

√
)/]. Then (.) and (.) lead to l(t) > l() ≥  for t ∈ (, ).

Subcase . a ∈ (( +
√

)/, ). Then (.) gives

l() < , l() > . (.)

It follows from Lemma . and the convexity of l(t) on (, ) together with (.) that
there exists t ∈ (, ) such that l(t) <  for t ∈ (, t) and l(t) >  for t ∈ (t, ).

Subcase . a ∈ [,∞). Then (.) gives

l() < , l() ≤ . (.)

Making use of the convexity of l(t) on (, ) and (.) we get

l(t) ≤ ( – t)l() + tl() < 

for t ∈ (, ).
Case   < a < . Then from (.) we clearly see that l(t) is strictly concave on (, ).
We divide the discussions into two subcases.
Subcase . a ∈ (, ( –

√
)/). Then (.) and Lemma . lead to the conclusion that

(.) again holds and there exists t ∈ (, ) such that l(t) <  for t ∈ (, t) and l(t) >  for
t ∈ (t, ).

Subcase . a ∈ [( –
√

)/, ). Then (.) leads to

l() ≥ , l() > . (.)

Making use of the concavity of l(t) on (, ) and (.) we have

l(t) ≥ ( – t)l() + tl() > 

for t ∈ (t, ).
Now, we divide the discussion into three cases to prove the desired results.
Case A a ∈ [( –

√
)/, ( +

√
)/]. Then Subcases . and . together with (.) and

(.) lead to the conclusion that f ′
 (x)/g ′(x) is increasing on (,∞). From the monotonicity

of f ′
 (x)/g ′(x) on (,∞) and (.) together with Lemma . and the fact that g ′(x) = –e–x/ �=

 we know that f(x)/g(x) is also increasing on (,∞). Therefore, (.) follows easily from
(.), (.), and the monotonicity of f(x)/g(x) on (,∞).

Case B a ∈ [,∞). Then (.) and (.) together with Subcase . lead to the conclusion
that f ′

 (x)/g ′(x) is decreasing on (,∞). Making use of (.) and Lemma . together with
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g ′(x) �=  we know that f(x)/g(x) is also decreasing on (,∞). Therefore, (.) follows easily
from (.), (.), and the monotonicity of f(x)/g(x) on (,∞).

Case C a ∈ (, ( –
√

)/) ∪ (( +
√

)/, ). Then from Subcases . and . we know
that there exists t∗ ∈ (, ) such that l(t) <  for t ∈ (, t∗) and l(t) >  for t ∈ (t∗, ), and
(.) and (.) lead to the conclusion that there exists x∗ =

√
at∗/

√
 – t∗ ∈ (,∞) such

that f ′
 (x)/g ′(x) is decreasing on (, x∗) and increasing on (x∗,∞).

Note that

Hf,g(x) =
f ′
 (x)

g ′(x)
g(x) – f(x)

=
[ a(a –  + x√

x+a
)

(
√

x + a + (a – )x)
+

ax√
x + a + (a – )x

]∫ ∞

x
e–t/ dt

–
ae–x/

√
x + a + (a – )x

,

Hf,g() =
√

π



(√
a +

√
π +  – √

π

)(√
a –

√
π +  + √

π

)

. (.)

We divide the discussion into two subcases.
Subcase C() a ∈ (, ( –

√
)/) ∪ (( +

√
)/, (π + 

√
π +  + )/π ]. Then (.) leads to

Hf,g() ≤ . (.)

It follows from (.), (.), and g ′(x) = –e–x/ <  together with the piecewise mono-
tonicity of f ′

 /g ′ and Lemma .(i) that f/g is increasing on (,∞). Therefore, (.) follows
easily from (.), (.), and the monotonicity of f(x)/g(x) on (,∞).

Subcase C() a ∈ ((π + 
√

π +  + )/π , ). Then (.) gives

Hf,g() > . (.)

From (.), (.), and g ′(x) <  together with the piecewise monotonicity of f ′
 /g ′ and

Lemma .(ii) we know that there exists x ∈ (,∞) such that f/g is decreasing on (, x)
and increasing on (x,∞). Consequently, we get

min

{

lim
x→

g(x)
f(x)

, lim
x→∞

g(x)
f(x)

}

<
g(x)
f(x)

=
R(x)
Ia(x)

<
R(x)
Ia(x)

= λ(a). (.)

Therefore, (.) follows from (.) and (.). We clearly see that x satisfies the equa-
tion (f(x)/g(x))′ =  or d[(

√
x + a + (a – )x)R(x)]/dx = , and λ(a) = (

√
x

 + a + (a –
)x)R(x)/a.

If a = π , then numerical computations show that x = . · · · and λ(π ) = . · · · .
�

Theorem . The following statements are true for all x > :
() if a ∈ (,π/

√
( – π )], then

a
√

x + a
π

+ ax
π

< R(x) <
π + a

πa
a

√
x + a

π
+ ax

π

; (.)
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() if a ∈ [
√

π +  + ,∞), then

π + a
πa

a
√

x + a
π

+ ax
π

< R(x) <
a

√
x + a

π
+ ax

π

; (.)

() if a ∈ (π/
√

( – π ),
√

π +  + ), then

aθ (a)
√

x + a
π

+ ax
π

< R(x) < max

{
π + a

πa
, 

}
a

√
x + a

π
+ ax

π

, (.)

where

θ (a) =

a

(√

x
 +

a

π
+

ax

π

)

R(x)

and x is the unique solution of the equation

d[(
√

x + a
π

+ ax
π

)R(x)]
dx

= 

on (,∞). In particular, if a = a = π/(π – ) = . · · · , then x = . · · · , θ (a) =
. · · · , and

πθ (a)
√

(π – )x + π + x
< R(x) <

π
√

(π – )x + π + x
.

Proof Let

f(x) =
ae–x/

√
x + a

π
+ ax

π

, g(x) =
∫ ∞

x
e–t/ dt

and Ja(x) be defined by (.). Then simple computations lead to

f(x)
g(x)

=
Ja(x)
R(x)

, (.)

f(∞) = g(∞) = , (.)

lim
x→+

f(x)
g(x)

= , lim
x→∞

f(x)
g(x)

=
πa

π + a
, (.)

f ′
(x)

g ′(x)
=

ax
√

x + a
π

+ ax
π

+ a

a
π

+ x√
x+ a

π

(
√

x + a
π

+ ax
π

)
, (.)

Hf,g(x) =
f ′
(x)

g ′(x)
g(x) – f(x)

=
[

ax
√

x + a
π

+ ax
π

+ a

a
π

+ x√
x+ a

π

(
√

x + a
π

+ ax
π

)

]∫ ∞

x
e–t

dt –
ae–x/

√
x + a

π
+ ax

π

,
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Hf,g() = Hf,g(∞) = . (.)

Let t = x/
√

x + a/π ∈ (, ) or x =
√

at/
√

π ( – t). Then (.) becomes

f ′
(x)

g ′(x)
= –

π

a
πt + (πa – a)t – (πa + π)t – πa

(π + at) . (.)

Differentiating (.) gives

(
f ′
(x)

g ′(x)

)′
= –

π

a
d
dt

(
πt + (πa – a)t – (πa + π)t – πa

(π + at)

)

× dt
dx

= –
π

a

(

π
πat + πt + (πa – a)t + (a – π – πa)

(π + at)

)

× a√π

(πx + a)/

=
aπ/

(π + at)(a + πx)/ h(t), (.)

where h(t) is defined by Lemma ..
We divide the proof into three cases.
Case  a ∈ (,π/

√
( – π )]. Then from Lemma .(i) and (.) we know that there

exists x =
√

at/
√

π ( – t) ∈ (,∞) such that f ′
/g ′ is increasing on (, x) and de-

creasing on (x,∞). It follows from the piecewise monotonicity of f ′
/g ′, (.), (.),

g ′(x) = –e–x/ < , and Lemma .(i) that f/g is decreasing on (,∞). Therefore, (.)
follows from (.) and (.) together with the monotonicity of f/g .

Case  a ∈ [
√

π +  + ,∞). Then from Lemma .(iii) and (.) we know that there ex-
ists x∗

 =
√

at∗
 /

√
π ( – t∗

 ) ∈ (,∞) such that f ′
/g ′ is decreasing on (, x∗

 ) and increasing
on (x∗

 ,∞). It follows from the piecewise monotonicity of f ′
/g ′, (.), (.), g ′(x) < , and

Lemma .(i) that f/g is increasing on (,∞). Therefore, (.) follows from (.) and
(.) together with the monotonicity of f/g .

Case  a ∈ (π/
√

( – π ),
√

π +  + ). Then from Lemma .(ii) and (.) together
with g >  and (Hf,g)′ = (f ′

/g ′)′g we know that there exists x =
√

at/
√

π ( – t), x =√
at/

√
π ( – t) ∈ (,∞) with x < x such that Hf,g is decreasing on (, x) ∪

(x,∞) and increasing on (x, x).
Making use of the piecewise monotonicity of Hf,g and (.) we conclude that there

exists x ∈ (,∞) such that Hf,g(x) <  for x ∈ (, x) and Hf,g(x) >  for x ∈ (x,∞), then
the identity (f/g)′ = g ′Hf,g/g and g ′ <  lead to the conclusion that f/g is increasing on
(, x) and decreasing on (x,∞). Therefore, (.) follows easily from (.) and (.)
together with the piecewise monotonicity of f/g , where

θ (a) =
R(x)
Ja(x)

=

a

(√

x
 +

a

π
+

ax

π

)

R(x).

We clearly see that x satisfies the equation (f/g)′ = , namely x is the unique solution
of the equation

d[(
√

x + a
π

+ ax
π

)R(x)]
dx

= 
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on (,∞). In particular, if a = a = π/(π – ) = . · · · , then numerical computations
show that x = . · · · and θ (a) = . · · · . �

Remark . Let x > , and Ia(x) and Ja(x) be defined by (.) and (.), respectively. Then
the functions a → Ia(x) and a → Ja(x) are increasing on (,∞), and the functions a →√

π/aIa(x) and a → (π + a)Ja(x)/(πa) are decreasing on (,∞) due to

∂Ia(x)
∂a

=
x + a – x

√
x + a√

x + a + (
√

x + a + (a – )x)
> ,

∂

∂a

(√
π

a
Ia(x)

)

= –



√
π

a
x

( + a)
√

x + a – x√
x + a(

√
x + a + (a – )x)

< ,

∂Ja(x)
∂a

=
x

√
x + a/π (

√
x + a/π + ax/π )

> ,

∂

∂a

(
π + a

πa
Ja(x)

)

= –

π

x(
√

x + a/π – x) + a√
x + a/π (

√
x + a/π + ax/π )

< .

From Theorems . and ., and their proofs together with Remark . we get Corol-
lary ..

Corollary . Let a, b, a, b > . Then the double inequalities

a√
x + a + (a – )x

< R(x) <
b√

x + b + (b – )x
(.)

and

a√
x + a

/π + ax/π
< R(x) <

b√
x + b

/π + bx/π
(.)

hold for all x >  if and only if a ≤ π , b ≥ , a ≤ π/
√

( – π ) = . · · · , and b ≥
π/(π – ) = . · · · .

Remark . Letting a = π , b = , a = π/
√

( – π ), and b = π/(π – ). Then (.) and
(.) lead to

W,(x) < R(x) < W,(x), W,(x) < R(x) < W,(x)

for all x > , which implies inequality (.), where W,(x), W,(x), W,(x), and W,(x) are
defined by (.) and (.).

Letting a = +, , , (
√

π +  + )/π in Theorem .(), a = , ,∞ in Theorem .(),
a = +, , ,π/

√
( – π ) in Theorem .() and a =

√
π +  + ,π , ,∞ in Theorem .(),

respectively. Then we get Corollary . immediately.
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Corollary . The following inequalities for the Mills ratio R(x):

x
x + 

<
√

x + 
<

√
x +  + x

<
(
√

π +  + )
√

πx + π (
√

π +  + ) + (
√

π +  + )x

< R(x) <
π (

√
π +  + )

√
πx + π (

√
π +  + ) + (

√
π +  + )x

<
√

π√
x +  + x

<
√

π√
x + 

,

√
π√

x +  + x
<


√

π√
x +  + x

< R(x) <
√

x +  + x
<

√
x +  + x

<

x

,

π√
πx + π + x

<
π√

πx + π + x
<

π
√

( – π )x + π + x
< R(x)

<
√

( – π ) + 
√

( – π )x + π + x
<

π + √
πx + π + x

<
π + √

πx + π + x
<


x

,


x +

√
π

<
π + √

πx + π + x
<

√
x + π + x

<
(
√

π +  + )
√

πx + π (
√

π +  + ) + (
√

π +  + )x
< R(x)

<
π (

√
π +  + )

√
πx + π (

√
π +  + ) + (

√
π +  + )x

<
π√

x + π + x
<

π√
πx + π + x

<
π

x +
√

π

hold for all x > .
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