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Abstract
In this article, we define and we study the Hardy spaces associated with the Weinstein
operator. We establish refined Sobolev inequalities between the homogeneous
Weinstein-Besov spaces and many spaces, as the homogeneous Weinstein-Riesz
spaces and the generalized Lorentz spaces. Next we prove Hardy-type inequalities in
the homogeneous Weinstein-Besov space, homogeneous Weinstein-Riesz space, and
Weinstein-Hardy space.
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1 Introduction
The theory of classical real Hardy spaces in R

d originates from the study of holomorphic
functions of one variable in the upper half-plane. For characterizations and properties of
the classical Hardy spaces we refer the reader to the original work [–]. Hardy spaces
on spaces of homogeneous type (see, e.g., [, ]) are extensions of the classical real Hardy
spaces on R

d . More information is given in [] and the references therein. We note that
the subject of the generalized Hardy spaces associated with some operators was studied
by many authors (see [–], among others).

A well-known result of Hardy states that if f ∈ Hp(Rd),  < p ≤ , then the inequality of
the Euclidean Fourier transform is

∫
Rd

|F (f )(x)|p
‖x‖d(–p) dx ≤ C‖f ‖p

Hp(Rd).

Analogs of Hardy’s inequality in the context of eigenfunction expansions have been con-
sidered by several authors. In [] Colzani-Travaglini established a Hardy inequality for
eigenfunction expansions associated to the Laplace-Beltrami operator on compact Rie-
mannian manifolds. They have also treated compact symmetric spaces. Kanjin [] proved
Hardy’s inequality for the one-dimensional Hermite and Laguerre expansions of the func-
tions f from H(R). Later, Radha and Thangavelu [] treated Hardy’s inequalities and
proved them for higher-dimensional Hermite and special Hermite expansions of func-
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tions in Hardy spaces. Inequalities for multiple Laguerre expansions are also deduced in
the case of Laguerre expansions.

In this paper, we consider the Weinstein operator defined on R
d × (,∞) by

�β :=
d+∑
i=

∂

∂x
i

+
β + 
xd+

∂

∂xd+
, β > –




= �d + Lβ ,

where �d is the Laplacian for the d first variables and Lβ the Bessel operator for the last
variable, given by

Lβ =
∂

∂x
d+

+
β + 
xd+

∂

∂xd+
, β > –




.

For d > , the operator �β is the Laplace-Beltrami operator on the Riemanian space Rd ×
(,∞) equipped with the metric

ds = x(β+)/(d–)
d+

d+∑
i=

dx
i

(cf. []). The Weinstein operator �β has several applications in pure and applied mathe-
matics especially in fluid mechanics (cf. []).

The harmonic analysis associated with the Weinstein operator is studied by Ben Nahia
and Ben Salem (cf. [, ]). In particular the authors have introduced and studied the
generalized Fourier transform associated with the Weinstein operator. This transform is
called the Weinstein transform.

Very recently, many authors have investigated the behavior of the Weinstein transform
with respect to several problems already studied for the Fourier transform; for instance,
Paley-Wiener theorems [], the Bockner-Hecke theorem [], uncertainty [], the Gabor
transform [], Heisenberg-type inequalities [], and so on.

In the present paper, we intend to continue our study of generalized spaces of type
Sobolev associated with the Weinstein operator started in []. Indeed, in [] the au-
thor provided a general theory for the Littlewood-Paley case associated with the Wein-
stein operators. Furthermore, some function spaces associated with Weinstein operators:
homogeneous generalized Bessel potential spaces, homogeneous Besov spaces associated
with Weinstein operator are studied. We obtain their basic properties and apply them to
an estimate of the solutions of the Weinstein heat equation.

The first subject of this paper is to address and analyze in this new context the atomic
Hardy spaces in the spirit of the classical scheme. The second subject is to establish Hardy-
type inequalities between the homogeneous Weinstein-Besov spaces and many spaces, as
the homogeneous Weinstein-Riesz spaces and the generalized Lorentz spaces.

The contents of the paper is as follows. In Section  we recall some basic results as
regards the harmonic analysis associated with the Weinstein operator. In Section , we
give an appropriate definition of atoms and investigate the atom characterization of Hardy
spaces associated with the Weinstein operator. Next we establish many estimates for the
Weinstein transform of the functions in the generalized Hardy spaces. In Section  we
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establish a Hardy type inequality in the homogeneous Weinstein-Riesz spaces. Next, we
introduce the generalized Lorentz spaces associated with the Weinstein operator. We
prove refined Sobolev inequalities between the homogeneous Weinstein-Besov spaces
and the generalized Lorentz space. Finally, Hardy-type inequalities in the homogeneous
Weinstein-Besov spaces and the generalized Hardy spaces are proved.

Throughout this paper, the letter C indicates a positive constant, not necessarily the
same in each occurrence.

2 Preliminaries
In order to confirm the basic and standard notations we briefly overview the Weinstein
operator and related harmonic analysis. The main references are [, ]. In this section
we collect some notations and results on the Weinstein kernel, the Weinstein transform,
and the Weinstein convolution.

In the following we denote by

R
d+
+ = R

d × [,∞),

x = (x, . . . , xd, xd+) =
(
x′, xd+

) ∈R
d+
+ .

C∗(Rd+) the space of continuous functions on R
d+, even with respect to the last

variable.
Cp

∗ (Rd+) the space of functions of class Cp on R
d+, even with respect to the last

variable.
E∗(Rd+) the space of C∞-functions on R

d+, even with respect to the last variable.
S∗(Rd+) the Schwartz space of rapidly decreasing functions on R

d+, even with
respect to the last variable.
D∗(Rd+) the space of C∞-functions on R

d+ which are of compact support, even with
respect to the last variable.
S ′∗(Rd+) the space of temperate distributions on R

d+, even with respect to the last
variable. It is the topological dual of S∗(Rd+).

We consider the Weinstein operator �β defined by ∀x = (x′, xd+) ∈R
d × (,∞),

�β f (x) = �x′ f
(
x′, xd+

)
+ Lβ ,xd+ f

(
x′, xd+

)
, f ∈ C

∗
(
R

d+), (.)

where �x′ is the Laplace operator on R
d , and Lβ ,xd+ the Bessel operator on (,∞) given

by

Lβ ,xd+ :=
d

dx
d+

+
β + 
xd+

d
dxd+

, β > –



. (.)

The Weinstein kernel � is given by

�(x, z) := ei〈x′ ,z′〉jβ (xd+zd+), for all (x, z) ∈R
d+ ×C

d+, (.)

where jβ (xd+zd+) is the normalized Bessel function. The Weinstein kernel satisfies the
following properties:
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(i) For all z, t ∈C
d+, we have

�(z, t) = �(t, z); �(z, ) =  and �(λz, t) = �(z,λt), for all λ ∈C. (.)

(ii) For all ν ∈N
d+, x ∈R

d+, and z ∈C
d+, we have

∣∣Dν
z �(x, z)

∣∣ ≤ ‖x‖|ν| exp
(‖x‖‖ Im z‖), (.)

where Dν
z = ∂ν

∂zν
 ···∂zνd+

d+
and |ν| = ν + · · · + νd+. In particular

∣∣�(x, y)
∣∣ ≤ , for all x, y ∈R

d+. (.)

The Weinstein intertwining operator is the operator Rβ defined on C∗(Rd+) by

Rβ f
(
x′, xd+

)
=

{
�(β+)√
π�(β+ 

 )
x–β

d+
∫ xd+

–xd+
(x

d+ – t)β– 
 f (x′, t) dt, xd+ > ,

f (x′, ), xd+ = .

We note that the Weinstein kernel has the following representation

∀(x, z) ∈R
d+ ×C

d+, �(x, z) = Rβ

(
e〈ix,·〉)(z).

We denote by Lp
β (Rd+

+ ) the space of measurable functions on R
d+
+ such that

‖f ‖Lp
β (Rd+

+ ) =
(∫

R
d+
+

∣∣f (x)
∣∣p dμβ (x) dx

) 
p

< ∞, if  ≤ p < ∞,

‖f ‖L∞
β (Rd+

+ ) = ess sup
x∈Rd+

+

∣∣f (x)
∣∣ < ∞,

where dμβ is the measure on R
d+
+ given by

dμβ

(
x′, xd+

)
:= xβ+

d+ dx′ dxd+.

The Weinstein transform is given for f in L
β (Rd+

+ ) by

FW (f )(y) =
∫
R

d+
+

f (x)�(–x, y) dμβ(x), for all y ∈R
d+
+ . (.)

Some basic properties of this transform are the following:
(i) For f in L

β (Rd+
+ ),

∥∥FW (f )
∥∥

L∞
β (Rd+

+ ) ≤ ‖f ‖L
β (Rd+

+ ). (.)

(ii) For f in S∗(Rd+) we have

FW (�β f )(y) = –‖y‖FW (f )(y), for all y ∈R
d+
+ . (.)
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(iii) For all f in L
β (Rd+

+ ), if FW (f ) belongs to L
β (Rd+

+ ), then

f (y) = C(β)
∫
R

d+
+

FW (f )(x)�(x, y) dμβ(x), a.e., (.)

where

C(β) :=


πdβ+ d
 (�(β + ))

. (.)

(iv) For f ∈ S∗(Rd+), if we define

FW (f )(y) = FW (f )(–y),

then

FWFW = FWFW = C(β)Id. (.)

Proposition .
(i) The Weinstein transform FW is a topological isomorphism from S∗(Rd+) onto itself

and for all f in S∗(Rd+),

∫
R

d+
+

∣∣f (x)
∣∣ dμβ (x) = C(β)

∫
R

d+
+

∣∣FW (f )(ξ )
∣∣ dμβ (ξ ). (.)

(ii) In particular, the renormalized Weinstein transform f → C(β) 
 FW (f ) can be

uniquely extended to an isometric isomorphism from L
β (Rd+

+ ) onto itself.

The generalized translation operator τx, x ∈ R
d+
+ , associated with the operator �β is

defined by

∀y ∈R
d+
+ ,

τxf (y) =
�(β + )√
π�(β + 

 )

∫ π


f
(

x′ + y′,
√

x
d+ + y

d+ + xd+yd+ cos θ
)

(sin θ )β dθ ,

where f ∈ C∗(Rd+).
By using the Weinstein kernel, we can also define a generalized translation. For a func-

tion f ∈ S∗(Rd+) and y ∈ R
d+
+ the generalized translation τyf is defined by the following

relation:

FW (τyf )(x) = �(x, y)FW (f )(x).

By using the generalized translation, we define the generalized convolution product f ∗W

g of the functions f , g ∈ L
β (Rd+

+ ) as follows:

f ∗W g(x) =
∫
R

d+
+

τxf
(
–y′, yd+

)
g(y) dμβ (y). (.)

This convolution is commutative and associative and satisfies the following:
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(i) For all f , g ∈ L
β (Rd+

+ ), f ∗W g belongs to L
β (Rd+

+ ) and

FW (f ∗W g) = FW (f )FW (g). (.)

(ii) Let  ≤ p, q, r ≤ ∞ such that 
p + 

q – 
r = . If f ∈ Lp

β (Rd+
+ ) and g ∈ Lq

β (Rd+
+ ), then

f ∗W g ∈ Lr
β (Rd+

+ ) and

‖f ∗W g‖Lr
β (Rd+

+ ) ≤ ‖f ‖Lp
β (Rd+

+ )‖g‖Lq
β (Rd+

+ ). (.)

We define the tempered distribution Tf associated with f ∈ Lp
β (Rd+

+ ) by

〈Tf ,φ〉 =
∫
R

d+
+

f (x)φ(x) dμβ (x) (.)

for φ ∈ S∗(Rd+) and denote by 〈f ,φ〉β the integral in the right hand side.

Definition . The Weinstein transform FW (τ ) of a distribution τ ∈ S ′∗(Rd+) is defined
by

〈
FW (τ ),φ

〉
=

〈
τ ,FW (φ)

〉

for φ ∈ S∗(Rd+).

In particular, for f ∈ Lp
β (Rd+

+ ), it follows that for φ ∈ S∗(Rd+),

〈
FW (f ),φ

〉
=

〈
FW (Tf ),φ

〉
=

〈
Tf ,FW (φ)

〉
=

〈
f ,FW (φ)

〉
β

.

Proposition . The Weinstein transform FW is a topological isomorphism from
S ′∗(Rd+) onto itself.

Definition . The generalized convolution product of a distribution S in S ′∗(Rd+) and
a function φ in S∗(Rd+) is the function S ∗W φ defined by

S ∗W φ(x) =
〈
Sy, τ–yφ(x)

〉
.

Proposition . Let f be in Lp
β (Rd+

+ ),  ≤ p ≤ ∞, and φ in S∗(Rd+). Then the distribution
Tf ∗W φ is given by the function f ∗W φ and Tf ∗W φ belongs to Lp

β (Rd+
+ ). Moreover, for all

ψ ∈ S∗(Rd+),

〈Tf ∗W φ,ψ〉 = 〈f̌ ,φ ∗W ψ̌〉β , (.)

where ψ̌(x) = ψ(–x), and

FW (Tf ∗W φ) = FW (Tf )FW (φ). (.)
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For each u ∈ S ′∗(Rd+), we define the distribution �βu, by 〈�βu,ψ〉 = 〈u,�βψ〉. This
distribution satisfies the following property:

FW (�βu) = –‖y‖FW (u).

In the following we denote Tf given by (.) by f for simplicity.

3 Generalized Hardy spaces
Definition . Let  < p ≤  ≤ q ≤ ∞, with p �= q. A function a ∈ Lq

β (Rd+
+ ) is a (p, q,β)-

atom if a satisfies the following conditions:
(i) There exist r >  such that supp(a) ⊂ B+(, r) := {x ∈R

d+
+ : ‖x‖ < r}.

(ii) ‖a‖Lq
β (Rd+

+ ) ≤ (μβ (B+(, r)))

q – 

p , where r is given in (i).
(iii)

∫
R

d+
+

yνa(y) dμβ (y), |ν| ≤ N , with N = [(β + d + )( 
p – )] is the greatest integer

not exceeding (β + d + )( 
p – ).

Definition . Let  < p ≤ . We define the Weinstein-Hardy space Hp
β (Rd+

+ ) to be the
space of distributions in S ′∗(Rd+) such that it can be represented by

f =
∞∑
j=

λjaj, (.)

where λj ∈ C such that
∑∞

j= |λj|p < ∞, there exist q ∈ [,∞], q > p where aj is a (p, q,β)-
atom for all j ∈N, and the series in (.) converges in S ′∗(Rd+). We define on Hp

β (Rd+
+ ) the

norm ‖ · ‖Hp
β (Rd+

+ ) by

‖f ‖Hp
β (Rd+

+ ) = inf

( ∞∑
j=

|λj|p
) 

p

,

where the infimum is taken over all those sequences (λj)j∈N ⊂ C such that f is given (.)
for certain (p, q,β)-atoms aj, j ∈N.

For the spaces Hp
β (Rd+

+ ), we prove the following embedding result.

Theorem . Let  < p ≤  and f ∈ Hp
β (Rd+

+ ), then f ∈ Lp
β (Rd+

+ ), and

‖f ‖Lp
β (Rd+

+ ) ≤ ‖f ‖Hp
β (Rd+

+ ).

Proof Let a be a (p, q,β)-atom where  < p ≤  ≤ q ≤ ∞, and p �= q. From the Defini-
tion ., there exist r >  such that

a(x) = , ‖x‖ > r and ‖a‖Lq
β (Rd+

+ ) ≤ (
μβ

(
B+(, r)

)) 
q – 

p .

Then from Hölder’s inequality

‖a‖Lp
β (Rd+

+ ) =
(∫

R
d+
+

∣∣a(x)
∣∣p dμβ (x)

) 
p

≤ ‖a‖Lq
β (Rd+

+ )
(
μβ

(
B+(, r)

)) 
p – 

q ≤ .
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Now let f ∈ Hp
β (Rd+

+ ), then f =
∑∞

j= λjaj, where λj ∈ C and aj is a (p, q,β)-atom, for all
j ∈ N, such that

∑∞
j= |λj|p < ∞. From the above, the series defining f converges in Lp

β (Rd+
+ ).

Hence, f ∈ Lp
β (Rd+

+ ) and

‖f ‖Lp
β (Rd+

+ ) ≤
∞∑
j=

|λj|.

Using the fact that
∑∞

j= |λj| ≤ (
∑∞

j= |λj|p)

p , we obtain the result. �

Theorem . Let  < p ≤  and f ∈ Hp
β (Rd+

+ ), then there exists a positive constant C such
that

∣∣FW (f )(x)
∣∣ ≤ C‖x‖(β+d+)( 

p –)‖f ‖Hp
β (Rd+

+ ).

Proof Let f ∈ Hp
β (Rd+

+ ),  < p ≤ . Then f =
∑∞

j= λjaj, where the series converges in
S ′∗(Rd+) for a certain (p, q,β)-atom and λj ∈ C, j ∈ N. As FW is a continuous linear map-
ping from S ′∗(Rd+) onto itself, we have

FW (f ) =
∞∑
j=

λjFW (aj).

Hence

∣∣FW (f )(x)
∣∣ ≤

∞∑
j=

|λj|
∣∣FW (aj)(x)

∣∣ ≤ sup
j∈N

∣∣FW (aj)(x)
∣∣ ∞∑

j=

|λj|.

Moreover, since
∑∞

j= |λj| ≤ (
∑∞

j= |λj|p)

p , we obtain

∣∣FW (f )(x)
∣∣ ≤ sup

j∈N

∣∣FW (aj)(x)
∣∣
( ∞∑

j=

|λj|p
) 

p

. (.)

Thus it suffices to estimate supj∈N |FW (aj)(x)|. Indeed, let j ∈N, we have from the proper-
ties of the (p, q,β)-atom aj

∣∣FW (aj)(x)
∣∣ =

∣∣∣∣
∫

B+(,r)
aj(y)�(–x, y) dμβ (y)

∣∣∣∣

=

∣∣∣∣∣
∫

B+(,r)

(
�(–x, y) –

N∑
j=

Rβ (〈–iy, x〉j)
j!

(x)

)
aj(y) dμβ (y)

∣∣∣∣∣

≤
∫

B+(,r)

∣∣∣∣∣�(–x, y) –
N∑

j=

Rβ (〈–iy, x〉j)
j!

(x)

∣∣∣∣∣
∣∣aj(y)

∣∣dμβ (y).

On the other hand, from the definition of the transmutation operator Rβ , it is easy to
obtain

∣∣∣∣∣�(–x, y) –
N∑

j=

Rβ (〈–iy, x〉j)
j!

(x)

∣∣∣∣∣ ≤ C‖x‖N+‖y‖N+.
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Thus, using the properties of the (p, q,β)–atom aj and Hölder’s inequality

∣∣FW (aj)(x)
∣∣ ≤ C‖x‖N+

∫
B+(,r)

‖y‖N+∣∣aj(y)
∣∣dμβ (y)

≤ C‖x‖N+rN+‖aj‖Lq
β (Rd+

+ )
(
μβ

(
B+(, r)

))– 
q .

As

‖aj‖Lq
β (Rd+

+ ) ≤ (
μβ

(
B+(, r)

)) 
q – 

p ,

we obtain

∀x ∈R
d+
+ ,

∣∣FW (aj)(x)
∣∣ ≤ C‖x‖N+rN++(β+d+)(– 

p ). (.)

On the other hand, we proceed as above

∣∣FW (aj)(x)
∣∣ ≤

∫
B+(,r)

∣∣aj(y)
∣∣dμβ (y)

≤ ‖aj‖Lq
β (Rd+

+ )
(
μβ

(
B+(, r)

))– 
q

≤ Cr(β+d+)(– 
p ). (.)

We claim that

∣∣FW (aj)(x)
∣∣ ≤ C‖x‖–(β+d+)(– 

p ), ∀x ∈R
d+
+ . (.)

Indeed, if ‖x‖ ≤ r– and as (β + d + )( – 
p ) + N +  > , we obtain

‖x‖N+rN++(β+d+)(– 
p ) ≤ C‖x‖–(β+d+)(– 

p ).

Thus from (.), we obtain (.).
On the other hand if ‖x‖ ≥ r– and as (β + d + )( – 

p ) < , we obtain

r(β+d+)(– 
p ) ≤ C‖x‖–(β+d+)(– 

p ).

Thus from (.), we obtain (.). Finally, from (.), we obtain

∣∣FW (f )(x)
∣∣ ≤ C‖x‖–(β+d+)(– 

p )

( ∞∑
j=

|λj|p
) 

p

,

which finishes the proof. �

Corollary . Let  < p ≤  and f ∈ Hp
β (Rd+

+ ), then there exist a positive constant C such
that

μβ

({
x ∈R

d+
+ : ‖x‖(β+d+)(– 

p )∣∣FW (f )(x)
∣∣ ≥ λ

}) ≤ C
‖f ‖p

Hp
β (Rd+

+ )

λp , λ > .
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Proof Let  < p ≤  and f ∈ Hp
β (Rd+

+ ), and let λ > . From Theorem ., we have

μβ

({
x ∈R

d+
+ : ‖x‖(β+d+)(– 

p )∣∣FW (f )(x)
∣∣ ≥ λ

})

≤ μβ

(
B+

(
,

(C‖f ‖Hp
β (Rd+

+ )

λ

) p
β+d+

))

≤ C
‖f ‖p

Hp
β (Rd+

+ )

λp .

Thus the proof of the corollary is complete. �

4 Hardy-type inequalities associated with the Weinstein operator
One of the main tools in this paper is the homogeneous Littlewood-Paley decomposition
of distributions associated with the Weinstein operators into dyadic blocs of frequencies.

Lemma . Let us define by C the ring of center , of small radius  and great radius .
There exist two radial functions ψ and ϕ the values of which are in the interval [, ] be-
longing to D∗(Rd+) such that

suppψ ⊂ B
(

,



)
, suppϕ ⊂ C,

∀ξ ∈ R
d+, ψ(ξ ) +

∑
j≥

ϕ
(
–jξ

)
= ,

∀ξ ∈ C,
∑
j∈Z

ϕ
(
–jξ

)
= ,

|n – m| ≥  ⇒ suppϕ
(
–n.

) ∩ suppϕ
(
–m.

)
= ∅,

j ≥  ⇒ suppψ ∩ suppϕ
(
–j.

)
= ∅.

Notations We denote by

�jf = F–
W

(
ϕ

(
ξ

j

)
FW (f )

)
, Sjf =

∑
n≤j–

�nf , for all j ∈ Z. (.)

The distribution �jf is called the jth dyadic block of the homogeneous Littlewood-Paley
decomposition of f associated with the Weinstein operators.

Definition . Let us denote by S ′
h,β ,∗(Rd+) the space of tempered distributions such that

lim
j→–∞ Sju =  in S ′

∗
(
R

d+).

From now on, we agree to the convention that for all non-negative sequence {aq}q∈Z, the
notation (

∑
q ar

q) 
r stands for supq aq in the case r = ∞.
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Definition . Let s ∈ R and p, q ∈ [,∞]. The homogeneous Weinstein-Besov space
Ḃs,β

p,q(Rd+
+ ) is the space of distributions in S ′

h,β ,∗(Rd+) such that

‖f ‖Ḃs,β
p,q(Rd+

+ ) :=
(∑

j∈Z

(
sj‖�jf ‖Lp

β (Rd+
+ )

)q
) 

q
< ∞.

Remark . Let p, q be as above. The above definition of the space Ḃs,β
p,q(Rd+

+ ) does not de-
pend on the choice of the couple (ϕ,ψ) defining the homogeneous Weinstein-Littlewood-
Paley decomposition.

Definition . For s ∈R, the operator Rs
β from S ′

h,β ,∗(Rd+) to S ′
h,β ,∗(Rd+) is defined by

Rs
β (f ) = F–

W
(‖ · ‖sFW f

)
.

The operator R–s
β is called a Weinstein-Riesz potential.

Definition . For s ∈ R and  ≤ p ≤ ∞, the homogeneous Weinstein-Riesz potential
space Ḣs

p,β (Rd+
+ ) is defined as the space R–s

β (Lp
β (Rd+

+ )), equipped with the norm

‖f ‖Ḣs
p,β (Rd+

+ ) =
∥∥Rs

β (f )
∥∥

Lp
β (Rd+

+ ).

Theorem . Let d+β+
 < s < d+β+

 be given. There exists a positive constant C such that
for all function u ∈ Ḣs

,β (Rd+
+ ) we have

∫
R

d+
+

|u(x)|
‖x‖s dμβ (x) ≤ C‖u‖

Ḣs
,β (Rd+

+ ). (.)

For a proof this theorem we need the following lemma, which we obtain by a simple
calculation.

Lemma . Let s be a real number in the interval (,β +  + d
 ). Then the function x �→

‖x‖–s belongs to the Weinstein-Besov space Ḃd+β+–s,β
,∞ (Rd+

+ ).

Proof of Theorem . Let us define

Is,β (u) :=
∫
R

d+
+

|u(x)|
‖x‖s dμβ (x) =

〈‖ · ‖–s, u〉.

Using a homogeneous Littlewood-Paley decomposition and the fact that u belongs to
S ′

h,β ,∗(Rd+), we can write

Is,β (u) =
∑

|n–m|≤

〈
�n

(‖ · ‖–s),�m
(
u)〉

≤ C
∑

|n–m|≤

〈
n( d+β+

 –s)�n
(‖ · ‖–s), –m( d+β+

 –s)�m
(
u)〉.

Lemma . claims that ‖ · ‖–s belongs to Ḃ
d+β+

 –s,β
,∞ (Rd+

+ ).
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Moreover, it is easy to prove that when u belongs to Ḣs
,β (Rd+

+ ), then

u ∈ Ḃs– d+β+
 ,β

,
(
R

d+
+

)
and

∥∥u∥∥
Ḃ

s– d+β+
 ,β

, (Rd+
+ )

≤ C‖u‖
Ḣs

,β (Rd+
+ ).

Thus

Is,β (u) ≤ C‖u‖
Ḣs

,β (Rd+
+ ). �

For any measurable function f on R
d+
+ , we define its distribution and rearrangement

functions by

df ,β (λ) := mβ

({|f | ≥ λ
})

, f ∗
β (s) := inf

{
λ : df ,β (λ) ≤ s

}
.

For  ≤ p < ∞ and  ≤ q ≤ ∞, define

‖f ‖Lp,q
β (Rd+

+ ) =

{
(
∫ ∞

 (s

p f ∗

β (s))q ds
s )


q if q < ∞,

sups> s

p f ∗

β (s) if q = ∞.

The generalized Lorentz space Lp,q
β (Rd+

+ ) is defined as the set of all measurable functions
f such that ‖f ‖Lp,q

β (Rd+
+ ) < ∞.

By a simple calculations, we prove that

‖f ‖q
Lp,q
β (Rd+

+ )
= p

∫ ∞


λq(df ,β (λ)

) q
p dλ

λ
, if q < ∞.

It is easy to see that Lp,p
β (Rd+

+ ) = Lp
β (Rd+

+ ) and that generalized Lorentz spaces can be
derived from Lp

β (Rd+
+ ) spaces by the real interpolation method. In particular, when  < p <

∞ we have Lp,q
β (Rd+

+ ) = [L
β (Rd+

+ ), L∞
β (Rd+

+ )]θ ,q, with 
p =  – θ .

Theorem . Let q ∈ [,∞] and let s ∈R such that  < s < β+d+
q , then we have

‖f ‖Lp,q
β (Rd+

+ ) ≤ C‖f ‖– q
p

Ḃ
s– d+β+

q ,β
∞,q (Rd+

+ )
‖f ‖

q
p

Ḃs,β
q,q(Rd+

+ )
, (.)

where p = q(β+d+)
β+d+–qs .

Proof Let f be in S∗(Rd+); we have

‖f ‖q
Lp,q
β (Rd+

+ )
= p

∫ ∞


λq(df ,β (λ)

) q
p dλ

λ
.

For A > , we put f = f,A + f,A, with

f,A = Ad+β+ψ(A.) ∗W f and f,A = Ad+β+(Id – ψ(A.)
) ∗W f ,

where ψ is define in Lemma ..
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To proceed as in [] we prove

∫ ∞


Asq–d–β–‖f,A‖q

L∞
β (Rd+

+ )
dA ≤ C‖f ‖q

Ḃ
s– d+β+

q ,β
∞,q (Rd+

+ )
(.)

and

∫ ∞


Asq–‖f,A‖q

L∞
β (Rd+

+ )
dA ≤ C‖f ‖q

Ḃs,β
q,q(Rd+

+ )
. (.)

For all λ > , we have

{|f | ≥ λ
} ⊂

{
|f,A| ≥ λ



}
∪

{
|f,A| ≥ λ



}
.

We take now λ = λ(A) such that

‖f,A‖L∞
β (Rd+

+ ) =
λ


.

Then we deduce from the choice of λ that

df ,β (λ) ≤ df,Aλ
,β

(
λ



)
.

By the Bienaymene-Tchebytchev inequality, we have

df,Aλ
,β

(
λ



)
≤ qλ–q‖f,Aλ

‖q
Lq
β (Rd+

+ )
.

Moreover,

‖f ‖q
Lp,q
β (Rd+

+ )
= p

∫ ∞


λq(df ,β (λ)

) q
p dλ

λ
≤ p

∫ ∞


λ(A)q–λ′(A)

(
df,Aλ

,β

(
λ



)) q
p

dA.

From the definitions of λ and f,Aλ
, we deduce

‖f ‖q
Lp,q
β (Rd+

+ )
≤ C

[∫ ∞


A(β+d+)q∥∥ψ(A.) ∗W f

∥∥q
L∞
β (Rd+

+ )

(
df,Aλ

,β

(
λ



)) q
p dA

A

+
∫ ∞


A(β+d+)(q–)∥∥ψ(A.) ∗W f

∥∥q–
L∞
β (Rd+

+ )

× ∥∥�(A.) ∗W f
∥∥

L∞
β (Rd+

+ )

(
df,Aλ

,β

(
λ



)) q
p

dA
]

= I + I,

where

�(Ax) =
〈∇ψ(Ax), x

〉
.
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Applying the Hölder inequality, we obtain

I ≤ C
(∫ ∞


Aqs–(β+d+)‖f,A‖q

L∞
β (Rd+

+ )

dA
A

)– q
p
(∫ ∞


Aqs‖f,A‖q

Lq
β (Rd+

+ )

dA
A

) q
p

≤ C
(‖f ‖

q
p

Ḃs,β
q,q(Rd+

+ )
‖f ‖– q

p

Ḃ
s– d+β+

q ,β
∞,q (Rd+

+ )

)q.

Proceeding in an exactly similar manner for I, we obtain

I ≤ C
(∫ ∞


A(β+d+)(q–)∥∥ψ(A.) ∗W f

∥∥q–
L∞
β (Rd+

+ )

∥∥�(A.) ∗W f
∥∥

L∞
β (Rd+

+ )
dA
A

) q
p

×
(∫ ∞


Aqs‖f,A‖q

Lq
β (Rd+

+ )

dA
A

) q
p

.

By a simple calculation it is easy to obtain

I ≤ C
(‖f ‖

q
p

Ḃs,β
q,q(Rd+

+ )
‖f ‖– q

p

Ḃ
s– d+β+

q ,β
∞,q (Rd+

+ )

)q.

Combining our estimates for I and I we have proved that

‖f ‖q
Lp,q
β (Rd+

+ )
≤ C

(‖f ‖
q
p

Ḃs,β
q,q(Rd+

+ )
‖f ‖– q

p

Ḃ
s– d+β+

q ,β
∞,q (Rd+

+ )

)q,

which is the desired result. �

Corollary . Let s be a real number in the interval (, d+β+
q ) and let q be a real number

in [,∞] There is a constant C such that, for any function f ∈ Ḃs,β
q,q(Rd+

+ ), the following
inequality holds:

(∫
R

d+
+

|f (x)|q
‖x‖sq dμβ (x)

) 
q

≤ C‖f ‖θ

Ḃs,β
q,q(Rd+

+ )
‖f ‖–θ

Ḃ
s– d+β+

q ,β
∞,q (Rd+

+ )
, (.)

where θ =  – qs
d+β+ .

For a proof of this result we need the following lemma, which we prove as in the Eu-
clidean case.

Lemma . Let  ≤ p, p, q, q ≤ ∞. If f ∈ Lp,q
β (Rd+

+ ) and g ∈ Lp,q
β (Rd+

+ ), then

‖fg‖Lp,q
β (Rd+

+ ) ≤ C‖f ‖Lp,q
β (Rd+

+ )‖g‖Lp,q
β (Rd+

+ ), (.)

where 
p = 

p
+ 

p
and 

q = 
q

+ 
q

.

Proof of Corollary . Let as in the previous theorem  < p < ∞ and s ∈ (, d+β+
q ) with


p = 

q – s
d+β+ . We take g(x) = 

‖x‖s and apply (.), in the specific form

‖fg‖Lq,q
β (Rd+

+ ) ≤ C‖f ‖Lp,q
β (Rd+

+ )‖g‖Lr,∞
β (Rd+

+ ),
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where r = d+β+
s and p = q(β+d+)

β+d+–qs . As g ∈ Lr,∞
β (Rd+

+ ), we have

(∫
R

d+
+

|f (x)|q
‖x‖sq dμβ (x)

) 
q

≤ C‖f ‖Lp,q
β (Rd+

+ ).

Combining this with (.), we obtain (.). �

Theorem . Let  < p ≤  and N = [(β +d+)( 
p –)] is the greatest integer not exceeding

(β + d + )( 
p – ). For any f ∈ Hp

β (Rd+
+ ), we have

∫
R

d+
+

|FW (f )(x)|p
‖x‖s dμβ (x) ≤ C‖f ‖p

Hp
β (Rd+

+ )
, (.)

provided that

(β + d + )( – p) ≤ s < β + d +  + p(N + ). (.)

Proof Let f ∈ Hp
β (Rd+

+ ),  < p ≤ . Then f =
∑∞

j= λjaj, where the series converges in
S ′∗(Rd+) for a certain (p, q,β)-atom and λj ∈ C, j ∈ N. As FW is a continuous linear map-
ping from S ′∗(Rd+) onto itself, we have

FW (f ) =
∞∑
j=

λjFW (aj).

Hence

∫
R

d+
+

|FW (f )(x)|p
‖x‖s dμβ (x) ≤

∞∑
j=

|λj|p
∫
R

d+
+

|FW (aj)(x)|p
‖x‖s dμβ (x).

Thus in order to establish the theorem, it suffice to prove

∫
R

d+
+

|FW (aj)(x)|p
‖x‖s dμβ (x) ≤ C.

Indeed, let R is a positive constant. We have

∫
R

d+
+

|FW (aj)(x)|p
‖x‖s dμβ (x)

=
∫

B+(,R)

|FW (aj)(x)|p
‖x‖s dμβ (x) +

∫
R

d+
+ \B+(,R)

|FW (aj)(x)|p
‖x‖s dμβ (x)

:= I + I.

From (.) and (.), we have

I ≤ Crp(β+d++N)–(β+d+)
∫

B+(,R)

‖x‖p(N+)

‖x‖s dμβ (x)

≤ Crp(β+d++N)–(β+d+)Rβ+d++p(N+)–s.
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Now we will estimate I. Indeed, we apply Hölder’s inequality and Plancherel’s formula,
and we use (.), and we obtain

I ≤
(∫

R
d+
+

∣∣FW (aj)(x)
∣∣ dμβ (x)

) p

(∫

R
d+
+ \B+(,R)

‖x‖ s
p– dμβ (x)

) –p


≤ C‖aj‖p
L
β (Rd+

+ )
R

(β+d+)(–p)
 –s.

Moreover, from the properties of aj, it is easy to see that

‖aj‖p
L
β (Rd+

+ )
≤ Cr– (β+d+)(–p)

 .

Thus

I ≤ Cr– (β+d+)(–p)
 R

(β+d+)(–p)
 –s. (.)

To conclude we distinguish two cases.
First case: If s = (β + d + )( – p). We put R = 

r , and we obtain I ≤ C and I ≤ C.
Second case: If (β + d + )( – p) < s < β + d +  + p(N + ). We shall discuss the cases

 < r <  and r ≥ .
Indeed, if  < r < , it is easy to see from the definition of N and the condition

(β + d + )( – p) < s < β + d +  + p(N + ),

that there exists R >  such that

rp(β+d++N)–(β+d+)Rβ+d++p(N+)–s ≤ C and r– (β+d+)(–p)
 R

(β+d+)(–p)
 –s ≤ C.

Hence we obtain I ≤ C and I ≤ C.
If r ≥ . We put R = r

β+d+–p(N++β+d)
β+d++p(N+)–s , and it is easy to see that I ≤ C and I ≤ C. Thus

the proof of the theorem is finished. �
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