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Abstract
In this paper, we study norms of circulant and r-circulant matrices involving harmonic
Fibonacci and hyperharmonic Fibonacci numbers. We obtain inequalities by using
matrix norms.
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1 Introduction
The circulant and r-circulant matrices have a connection to signal processing, probability,
numerical analysis, coding theory, and many other areas. An n × n matrix Cr is called an
r-circulant matrix defined as follows:

Cr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c c c · · · cn– cn–

rcn– c c · · · cn– cn–

rcn– rcn– c · · · cn– cn–
...

...
...

...
...

rc rc rc · · · rcn– c

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Since the matrix Cr is determined by its row elements and r, we denote Cr = Circ(c, c, c,
. . . , cn–). In particular for r = 

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c c c · · · cn– cn–

cn– c c · · · cn– cn–

cn– cn– c · · · cn– cn–
...

...
...

...
...

c c c · · · cn– c

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

is called a circulant matrix and we denote it for brevity by C = Circ(c, c, c, . . . , cn–). The
eigenvalues of C are
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λj =
n–∑
i=

ci
(
wj)i, ()

where w = e π i
n and i =

√
–.

Many authors have investigated the norms of circulant and r-circulant matrices. In [],
Solak studied the lower and upper bounds for the spectral norms of circulant matrices
with classical Fibonacci and Lucas numbers entries. In [], Kocer et al. obtained norms of
circulant and semicirculant matrices with Horadams numbers. In [], Zhou et al. gave the
spectral norms of circulant-type matrices involving binomial coefficients and harmonic
numbers. In [], Zhou calculated spectral norms for circulant matrices with binomial co-
efficients combined with Fibonacci and Lucas number entries. In [], Shen and Cen have
given upper and lower bounds for the spectral norms of r-circulant matrices with classical
Fibonacci and Lucas number entries. In [], Bahşı and Solak computed the spectral norms
of circulant and r-circulant matrices with the hyper-Fibonacci and hyper-Lucas numbers.
In [], Jiang and Zhou studied spectral norms of even-order r-circulant matrices.

Motivated by the above papers, we compute the spectral norms and Euclidean norm
of circulant and r-circulant matrices with the harmonic and hyperharmonic Fibonacci
entries. The scheme of this paper is as follows. In Section , we present some definitions,
preliminaries, and lemmas related to our study. In Section , we calculate spectral norms
of circulant matrix with harmonic Fibonacci entries. Moreover, we obtain the Euclidean
norms of r-circulant matrices and give lower and upper bounds for the spectral norms of
r-circulant matrices with harmonic and hyperharmonic Fibonacci entries.

2 Preliminaries
The Fibonacci numbers Fn are defined by the following recurrence relation for n ≥ :

Fn+ = Fn + Fn–,

where F = , F = . In [], the authors investigated the finite sum of the reciprocals of
Fibonacci numbers,

Fn =
n∑

k=


Fk

,

which are called harmonic Fibonacci numbers. Then they gave a combinatoric identity
related to harmonic Fibonacci numbers as follows:

n–∑
k=

Fk–Fk = FnFn – n. ()

Moreover, in [], they defined hyperharmonic Fibonacci numbers for n, r ≥ 

F
(r)
n =

n∑
k=

F
(r–)
k ,

where F
()
n = 

Fn
and F = . At this point, we give some definitions and lemmas related to

our study.
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Definition  Let A = (aij) be any m × n matrix. The Euclidean norm of matrix A is

‖A‖E =

√√√√
( m∑

i=

n∑
j=

|aij|
)

.

Definition  Let A = (aij) be any m × n matrix. The spectral norm of matrix A is

‖A‖ =
√

max
≤i≤n

λi
(
AHA

)
,

where λi(AH A) is an eigenvalue of AHA and AH is the conjugate transpose of matrix A.

Then the following inequalities hold for the Euclidean norm and the spectral norm:

√
n

‖A‖E ≤ ‖A‖ ≤ ‖A‖E , ()

‖A‖ ≤ ‖A‖E ≤ √
n‖A‖. ()

Lemma  [] Let A and B be two m × n matrices. Then we have

‖A ◦ B‖ ≤ ‖A‖‖B‖,

where A ◦ B is the Hadamard product of A and B.

Lemma  [] Let A and B be two n × m matrices. We have

‖A ◦ B‖ ≤ r(A)c(B),

where

r(A) = max
≤i≤m

√√√√
n∑

j=

|aij|,

c(B) = max
≤j≤n

√√√√
m∑

i=

|bij|.

Definition  [] The difference operator of f (x) is defined as

�f (x) = f (x + ) – f (x).

Definition  [] A function f (x) with the property that �f (x) = g(x) is called the anti-
difference operator of g(x).

Lemma  [] If �f (x) = g(x), then

b∑
a

g(x)δx =
b–∑
x=a

g(x) = f (b) – f (a).
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Lemma  [] We have

b∑
a

u(x)�v(x)δx = u(x)v(x)|b+
a –

b∑
a

v(x + )�u(x)δx. ()

Lemma  [] For m �= – we have

∑
xmδx =

xm+

m + 
,

where xm = x(x – )(x – ) · · · (x – m + ).

3 Main results
Theorem  [] Let C = Circ(F,F,F, . . . ,Fn–) be an n×n circulant matrix. The spectral
norm of C is

‖C‖ = nFn –
n–∑
k=

k + 
Fk+

.

Theorem  [] Let C(k) = Circ(F(k)
 ,F(k)

 ,F(k)
 , . . . ,F(k)

n–) be an n × n circulant matrix. The
spectral norm of C(k) is

∥∥C(k)∥∥
 = F

(k+)
n– .

Theorem  Let

C = Circ(F–F, FF, . . . , Fn–Fn–) ()

be an n × n circulant matrix. Then the spectral norm of the matrix C is

‖C‖ = FnFn – n.

Proof Since C is a circulant matrix, from (), for all t = , , . . . , s – ,

λt(C) =
s–∑
i=

Fi–Fi
(
wt)i.

Then, for t = ,

λ(C) =
s–∑
i=

Fi–Fi ()

and from (), λ(C) = FnFn – n. Hence, for  ≤ m ≤ n – , we have

|λm| =

∣∣∣∣∣
s–∑
i=

Fi–Fi
(
wt)i

∣∣∣∣∣ ≤
∣∣∣∣∣

s–∑
i=

Fi–Fi

∣∣∣∣∣
∣∣(wt)i∣∣ ≤

s–∑
i=

Fi–Fi. ()
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Since C is a normal matrix, we have

‖C‖ = max
≤m≤n–

|λm|. ()

From (), (), (), and (), we have

‖C‖ = FnFn – n. �

Corollary  We have

√√√√
n–∑
k=

F
k–F


n ≤ FnFn – n ≤

√√√√n
n–∑
k=

F
k–F


n.

Proof The proof is trivial from Definition  and the relation between the Euclidean norm
and the spectral norm in (). �

Theorem  Let

C(k)
r = Circ

(
F

(k)
 ,F(k)

 , . . . ,F(k)
n–

)
()

be an n × n r-circulant matrix. The Euclidean norm of C(k)
r is

∥∥C(k)
r

∥∥
E =

[
n

(
n +  + (n – )|r|)(F(k)

n
)

–



n–∑
s=

(s + )
(
n + s

(|r| – 
))(

F
(k–)
s+ + F(k)

s
)
F

(k–)
s+

] 


.

Proof From the definition of the Euclidean norm we have

∥∥C(k)
r

∥∥
E =

[ n–∑
s=

(n – s)
(
F

(k)
s

) +
n–∑
s=

s|r|(F(k)
s

)
] 



=

[ n–∑
s=

(
n + s

(|r| – 
))(

F
(k)
s

)
] 



.

Now we will use the property of the difference operator in Lemma . Let u(s) = (F(k)
s ) and

�v(s) = n + s(|r| – ). Then using the definition of the hyperharmonic Fibonacci numbers
we obtain �u(s) = F

(k–)
s+ (F(k–)

s+ + F(k)
s ) and v(s) = ns + s

 (|r| – ). By using (), we have

∥∥C(k)
r

∥∥
E =

[
n

(
n +  + (n – )|r|)(F(k)

n
)

–



n–∑
s=

(s + )
(
n + s

(|r| – 
))(

F
(k–)
s+ + F(k)

s
)
F

(k–)
s+

] 


. �
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Corollary  Let Cr = Circ(F,F, . . . ,Fn–) be an n × n r-circulant matrix. The Euclidean
norm of Cr is

‖Cr‖E =

[(
n +

n


(|r| – 

))
F


n

–
n–∑
s=

(
n(s + ) +

(s + )


(|r| – 

))(
Fs +


Fs+

)


Fs+

] 


.

Proof It is clear that the proof can be completed if we take k =  in Theorem . �

Corollary  [] Let C = Circ(F,F, . . . ,Fn–) be an n × n matrix. The Euclidean norm is

‖C‖E =

[
n
F


n – n

n–∑
k=

k + 
Fk+

(
Fk +


Fk+

)] 


.

Proof It is easily seen that the proof can be completed if we take k = r =  in Theorem .
�

Now we give upper and lower bounds for the spectral norms of r-circulant matrices.

Theorem  Let C(k)
r = Circ(F(k)

 ,F(k)
 , . . . ,F(k)

n–) be an n × n r-circulant matrix.
(i) If |r| ≥ , then

√
n
F

(k+)
n– ≤ ∥∥C(k)

r
∥∥

 ≤ |r|√n – F(k+)
n– .

(ii) If |r| < , then

|r|√
n
F

(k+)
n– ≤ ∥∥C(k)

r
∥∥

 ≤ √
n – F(k+)

n– .

Proof Since we have the matrix

C(k)
r =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

F
(k)
 F

(k)
 F

(k)
 · · · F

(k)
n– F

(k)
n–

rF(k)
n– F

(k)
 F

(k)
 · · · F

(k)
n– F

(k)
n–

...
...

...
...

...
rF(k)

 rF(k)
 rF(k)

 · · · F
(k)
 F

(k)


rF(k)
 rF(k)

 rF(k)
 · · · rF(k)

n– F
(k)


⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

we have

∥∥C(k)
r

∥∥
E =

√√√√ n–∑
s=

(n – s)
(
F

(k)
s

) +
n–∑
s=

s|r|(F(k)
s

).

(i) In [], for the sum of the squares of hyperharmonic Fibonacci numbers, we have

√
n
F

(r+)
n– ≤

√√√√
n–∑
k=

(
F

(r)
k

) ≤ F
(r+)
n– . ()
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Since |r| ≥  and by (), we have

∥∥C(k)
r

∥∥
E ≥

√√√√ n–∑
s=

(n – s)
(
F

(k)
s

) +
n–∑
s=

s
(
F

(k)
s

) ≥
√√√√n

n–∑
s=

(
F

(k)
s

) ≥ F
(k+)
n– .

From ()

√
n
F

(k+)
n– ≤ ∥∥C(k)

r
∥∥

.

On the other hand, let the matrices A and B be defined by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

F
(k)
   · · ·  
r F

(k)
  · · ·  

...
...

...
...

...
r r r · · · F

(k)
 

r r r · · · r F
(k)


⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

F
(k)
 F

(k)
 F

(k)
 · · · F

(k)
n– F

(k)
n–

F
(k)
n– F

(k)
 F

(k)
 · · · F

(k)
n– F

(k)
n–

...
...

...
...

...
F

(k)
 F

(k)
 F

(k)
 · · · F

(k)
 F

(k)


F
(k)
 F

(k)
 F

(k)
 · · · F

(k)
n– F

(k)


⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

That is, C(k)
r = A ◦ B. Then we obtain

r(A) = max
≤i≤n

√√√√
n∑

j=

|aij| =

√√√√
n∑

j=

|anj| =
√

(n – )|r|

and

c(B) = max
≤j≤n

√√√√
n∑

i=

|bij| =

√√√√
n∑

i=

|bin| =

√√√√ n–∑
s=

(
F

(k)
s

).

Hence, from () and Lemma , we have

∥∥C(k)
r

∥∥
 ≤ |r|√n – F(k+)

n– .

Thus, we have

√
n
F

(k+)
n– ≤ ∥∥C(k)

r
∥∥

 ≤ |r|√n – F(k+)
n– .
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(ii) From |r| <  and from (), we have

∥∥C(k)
r

∥∥
E =

√√√√ n–∑
s=

(n – s)
(
F

(k)
s

) +
n–∑
s=

s|r|(F(k)
s

)

≥
√√√√ n–∑

s=

(n – s)|r|(F(k)
s

) +
n–∑
s=

s|r|(F(k)
s

)

= |r|
√√√√n

n–∑
s=

(
F

(k)
s

)

≥ |r|F(k+)
n– .

From (),

|r|√
n
F

(k+)
n– ≤ ∥∥C(k)

r
∥∥

.

On the other hand, let the matrices A and B be defined by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

F
(k)
   · · ·  
r F

(k)
  · · ·  

...
...

...
...

...
r r r · · · F

(k)
 

r r r · · · r F
(k)


⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

F
(k)
 F

(k)
 F

(k)
 · · · F

(k)
n– F

(k)
n–

F
(k)
n– F

(k)
 F

(k)
 · · · F

(k)
n– F

(k)
n–

...
...

...
...

...
F

(k)
 F

(k)
 F

(k)
 · · · F

(k)
 F

(k)


F
(k)
 F

(k)
 F

(k)
 · · · F

(k)
n– F

(k)


⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus C(k)
r = A ◦ B. Then we obtain

r(A) = max
≤i≤n

√√√√
n∑

j=

|aij| =
√(

F
(k)


) + n –  =
√

n – 

and

c(B) = max
≤j≤n

√√√√
n∑

i=

|bij| =

√√√√ n–∑
s=

(
F

(k)
s

).

Therefore, from () and Lemma , we have

∥∥C(k)
r

∥∥
 ≤ √

n – F(k+)
n– .
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Thus, we have

|r|√
n
F

(k+)
n– ≤ ∥∥C(k)

r
∥∥

 ≤ √
n – F(k+)

n– . �

Corollary  Let Cr = Circ(F,F, . . . ,Fn–) be an n × n r-circulant matrix.
(i) If |r| ≥ , then

√
n
F

()
n– ≤ ‖Cr‖ ≤ |r|√n – F()

n–.

(ii) If |r| < , then

|r|√
n
F

()
n– ≤ ‖Cr‖ ≤ √

n – F()
n–.

Proof It is easily seen that the proof can be completed if we take k =  in Theorem . �

4 Numerical examples
In this section, we present some numerical examples by using Maple .

Example  Let C = Circ(F–F, FF, . . . , Fn–Fn–) be as in (). We obtain the spectral
norms of some n × n C matrices, with the aid of Theorem  (see Table ).

Example  Let C(k)
r = Circ(F(k)

 ,F(k)
 , . . . ,F(k)

 ) be  ×  r-circulant matrix as in (). We
obtain Euclidean norms of C(k)

r for some values of r and k, with the aid of Theorem  (see
Table ).

Example  Let C(k)
r = Circ(F(k)

 ,F(k)
 , . . . ,F(k)

 ) be  ×  r-circulant matrix as in (). We
obtain some lower and upper bounds for the spectral norms of C(k)

r for some values of r
and k, with the aid of Theorem  (see Tables  and ).

Table 1 Spectral norms of C

n ‖C‖2

n = 5 0.1016666667× 102

n = 10 0.1731757972× 103

n = 50 0.4228842484× 1011

n = 100 0.1190154990× 1022

n = 500 0.4684460937× 10105

n = 1,000 0.1460426641× 10210

Table 2 Euclidean norms of C(k)
r for n = 5

k/r k = 1 k = 2 k = 3 k = 4

r = –2
√
9,935
6

√
61,598
6

√
246,743
6

√
755,966
6

r = –0.5
√
7,415
12

√
37,127
12

√
136,007
12

√
397,559
12

r = 0.1
√
133,655
60

√
593,351
60

√
2,038,631
60

√
5,736,887
60

r = 0.9
√
306,055
60

√
1,709,431
60

√
6,577,111
60

√
19,743,847

60

r = 1
√
3,470
6

√
19,745
6

5
√
3,062
6

√
230,705
6

r = 1.1
√
392,255
60

√
2,267,471
60

√
8,846,351
60

√
26,747,327

60

r = 10
√
216,815
6

√
1,400,894

6

√
5,692,919

6

√
17,564,318

6
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Table 3 Some lower and upper bounds for the spectral norms of C(k)
r for n = 5 and |r| ≥ 1

|r| ≥ 1 1√
n
F

(k+1)
n–1 ‖C(k)

r ‖2 |r|√n – 1F(k+1)
n–1

k = 1 r = –2 3.726779962 13.07393997 33.33333333
r = 1 3.726779962 8.333333332 16.66666667
r = 1.1 3.726779962 6.187213310 18.33333333

k = 2 r = –2 7.975309119 29.94984421 71.33333333
r = 1 7.975309119 17.83333333 35.66666667
r = 1.1 7.975309119 19.01179206 39.23333333

k = 3 r = –2 14.45990625 56.50736302 129.3333333
r = 1 14.45990625 32.33333334 64.66666667
r = 1.1 14.45990625 34.60097132 71.13333333

k = 4 r = –2 23.62778496 94.70523788 211.3333333
r = 1 23.62778496 52.83333332 105.6666667
r = 1.1 23.62778496 56.68238740 116.2333333

Table 4 Some lower and upper bounds for the spectral norms of C(k)
r for n = 5 and |r| < 1

|r| < 1 |r|√
n
F

(k+1)
n–1 ‖C(k)

r ‖2
√

n – 1F(k+1)
n–1

k = 1 r = –0.5 1.863389981 6.051069352 16.66666667
r = 0.1 0.372677996 5.912862964 16.66666667
r = 0.9 3.354101966 7.874554252 16.66666667

k = 2 r = –0.5 3.987654558 13.14607243 35.66666667
r = 0.1 0.797530912 12.64953828 35.66666667
r = 0.9 7.177778206 16.74610810 35.66666667

k = 3 r = –0.5 7.229953125 24.39979647 64.66666667
r = 0.1 1.445990625 23.46328510 64.66666667
r = 0.9 13.01391563 30.26866878 64.66666667

k = 4 r = –0.5 11.81389248 40.74250279 105.6666667
r = 0.1 2.362778496 39.32798158 105.6666667
r = 0.9 21.26500646 49.37728355 105.6666667
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