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Abstract
In this paper, some global optimality conditions for nonconvex minimization
problems subject to quadratic inequality constraints are presented. Then some
sufficient and necessary global optimality conditions for nonlinear programming
problems with box constraints are derived. We also establish a sufficient global
optimality condition for a nonconvex quadratic minimization problem with box
constraints, which is expressed in a simple way in terms of the problem’s data. In
addition, a sufficient and necessary global optimality condition for a class of
nonconvex quadratic programming problems with box constraints is discussed. We
also present some numerical examples to illustrate the significance of our optimality
conditions.
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1 Introduction
Consider the following nonconvex minimization problem (QCNP):

(QCNP) min f (x)

s.t. fi(x) =



xT Aix + xT ai + ci ≤ , i = , . . . , m,

where f : Rn → R is a twice continuously differentiable function, ci ∈ R, ai ∈ Rn, Ai ∈ Sn,
i = , . . . , m, and Sn is the set of all symmetric n × n matrices. Model problems of the form
(QCNP) arise in many important optimization problems [, ], such as trust-region sub-
problems [–] and quadratic minimization problems [, ].

Over the years, significant advances have been made in characterizing solutions of con-
strained convex optimization problems, where a local optimal solution is a global one.
However, the development of characterizing global solutions of optimization problems
that exhibit multiple local optima has so far been limited to a few classes of nonconvex
problems (see [–] and other references therein). Recently many researchers have fo-
cused on characterizing globally optimal solutions of various special cases of (QCNP). In
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[, ], sufficient global optimality conditions were given for quadratic optimization prob-
lems with binary constraints. Some Lagrange multiplier necessary conditions for global
optimality for problem (QCNP) have been established in [], by employing S-lemma and
over-estimators of the objective function, when m = . Global optimality conditions for
(QCNP) in the case where f is a quadratic function were recently developed in [, –
]. In [], Moré studied the problem of minimizing a quadratic function subject to one
general quadratic constraint and obtained some sufficient and necessary global optimality
conditions. Peng and Yuan [] derived some global optimality conditions for noncon-
vex quadratic programming problems with two quadratic constraints. In [], Jeyakumar
et al. established by a Lagrange multiplier sufficient as well as necessary conditions for
global optimality of general quadratic minimization problems with quadratic constraints.
The necessary and sufficient conditions were given in [] by using a regularity condi-
tion, called the S-property. Global optimality conditions in maximizing a convex quadratic
function under convex quadratic constraints were presented in []. Hiriart-Urruty []
studied global optimality conditions for quadratic minimization problems with quadratic
constraints. Some sufficient global optimality conditions for nonconvex quadratic mini-
mization problems with box constraints were obtained by using abstract subdifferentials
in []. Jeyakumar et al. in [] have given global optimality conditions for the minimiza-
tion of difference of quadratic and convex functions over box constraints by constructing
quadratic underestimators and characterizing global minimizers of the underestimators.

In this paper, we study the global optimality conditions for general nonconvex mini-
mization problems with inequality quadratic constraints, which can be viewed as a gener-
alization of Jeyakumar et al. [] for a single quadratic constraint. Moreover, some global
optimality conditions for nonlinear problems with box constraints are presented by trans-
forming the box constraints into n quadratic inequality constraints.

The outline of this paper is as follows. In Section , we present some necessary and suf-
ficient global optimality conditions for nonlinear programming problems with inequality
quadratic constraints (QCNP). In Section , we provide some global optimality conditions
for nonlinear minimization problems with box constraints, and deduce necessary and suf-
ficient optimality conditions for a class of nonconvex quadratic minimization problems
with box constraints.

2 Global optimality conditions for problem (QCNP)
We begin this section by presenting basic definitions and preliminary results that will be
used throughout the paper. The real line is denoted by R and the n-dimensional Euclidean
space is denoted by Rn. The set of all nonnegative vectors of Rn is denoted by Rn

+. For vec-
tors x = (x, x, . . . , xn)T , y = (y, y, . . . , yn)T ∈ Rn, x ≥ y means that xi ≥ yi, for i = , . . . , n.
The notation A � B means A – B is a positive semidefinite and A �  means –A � . A di-
agonal matrix with diagonal elements α, . . . ,αn is denoted by diag(α, . . . ,αn) = diag(α),
where α = (α, . . . ,αn)T . A matrix H = (hij)≤i,j≤n ∈ Sn is called a Z-matrix if hij ≤  for all
i �= j.

For problem (QCNP), let

D :=
{

x ∈ Rn|fi(x) ≤ , i = , . . . , m
}

.
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For fi(x) = 
 xT Aix + xT ai + ci, i = , . . . , m, we define

Hi =

(
Ai ai

aT
i ci

)

, i = , . . . , m. ()

The following theorem of the alternative ([], Theorem .) for systems of arbitrary
finite number of quadratic inequalities plays an important role in deriving our main result,
Theorem .

Lemma  [] Suppose that Hi, i = , . . . , m, are all Z-matrices. Then exactly one of the
following statements holds:

(i) (∃x ∈ Rn) fi(x) < , i = , . . . , m;
(ii) ∃λ ∈ Rm

+ \{}, (∀x ∈ Rn)
∑m

i= λifi(x) ≥ .

Theorem  (Necessary condition) For the problem (QCNP), suppose that each Hi is a Z-
matrix, i = , . . . , m. Let x̄ ∈ D and let C be a convex set containing D. Assume that there
exists a Z-matrix A ∈ Sn such that ∇f (x̄) – Ax̄ ≤  and ∇f (x) – A � , for each x ∈ C
and that there exists x ∈ Rn, such that fi(x) < , i = , . . . , m. If x̄ is a global minimizer of
(QCNP) then there exists λ = (λ, . . . ,λm)T ∈ Rm

+ , such that λifi(x̄) = , i = , . . . , m,

∇f (x̄) +
m∑

i=

λi(Aix̄ + ai) =  and A +
m∑

i=

λiAi � . ()

Proof Let g(x) = 
 xT Ax + (∇f (x̄) – Ax̄)T x, ∀x ∈ Rn, and let ϕ(x) = f (x) – g(x), x ∈ C, then

∇ϕ(x) = ∇f (x) – ∇g(x) = ∇f (x) – A � , ∀x ∈ C.

So ϕ is a concave function over C. Moreover, ∇ϕ(x̄) = ∇f (x̄) – ∇g(x̄) = . Hence,

ϕ(x) ≤ ϕ(x̄), ∀x ∈ C,

i.e.

g(x) – g(x̄) ≥ f (x) – f (x̄), ∀x ∈ C.

If x̄ is a global minimizer of (QCNP), then

g(x) – g(x̄) ≥ , ∀x ∈ D. ()

Then the system g(x) – g(x̄) <  and fi(x) < , i = , . . . , m, has no solution.
Let g̃ = g(x) – g(x̄), then

Hg̃ =

(
A ∇f (x̄) – Ax̄

(∇f (x̄) – Ax̄)T –g(x̄)

)

.

A being a Z-matrix and ∇f (x̄) – Ax̄ ≤ , we know that Hg̃ is also a Z-matrix.
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So, by Lemma , there exist μ = (μ,μ, . . . ,μm)T ∈ Rm+
+ \{}, such that

μ
(
g(x) – g(x̄)

)
+

m∑

i=

μifi(x) ≥ , ∀x ∈ Rn.

In particular,

μifi(x̄) = , i = , . . . , m. ()

μg +
∑m

i= μifi attains its minimum at x̄ over Rn. We now show that μ > . Otherwise,
∑m

i= μifi(x) ≥ , ∀x ∈ Rn. Note that fi(x) < , i = , . . . , m, it follows that μi = , i = , . . . , m.
This contradicts the fact that μ �= . Hence,

g(x) +
m∑

i=

λifi(x) ≥ g(x̄), ∀x ∈ Rn, ()

where λi = μi
μ

, i = , . . . , m. This implies that λifi(x̄) = , i = , . . . , m. Therefore, x̄ is a global
minimizer of g +

∑m
i= λifi over Rn. This shows us that ∇(g +

∑m
i= λifi)(x̄) =  and ∇(g +

∑m
i= λifi)(x̄) � . That is, ∇f (x̄) +

∑m
i= λi(Aix̄ + ai) =  and A +

∑m
i= λiAi � . �

Theorem  (Sufficient condition) For the problem (QCNP), let x̄ ∈ D and let C be a convex
set containing D. Suppose that there exists A ∈ Sn such that ∇f (x) – A � , for each x ∈ C
and there exists λ ∈ Rm

+ , such that λifi(x̄) = , i = , . . . , m,

∇f (x̄) +
m∑

i=

λi(Aix̄ + ai) =  and A +
m∑

i=

λiAi � , ()

then x̄ is a global minimizer of (QCNP).

Proof Let g(x) = 
 xT Ax + (∇f (x̄) – Ax̄)T x, ∀x ∈ Rn, and let ϕ(x) = f (x) – g(x), x ∈ C, then

∇ϕ(x) = ∇f (x) – ∇g(x) = ∇f (x) – A � , ∀x ∈ C.

So ϕ is a convex function over C. Moreover, ∇ϕ(x̄) = ∇f (x̄) – ∇g(x̄) = . Hence,

ϕ(x) ≥ ϕ(x̄), ∀x ∈ C,

i.e.

f (x) – f (x̄) ≥ g(x) – g(x̄), ∀x ∈ C.

If A +
∑m

i= λiAi � , then the function g(x) +
∑m

i= λifi(x) is convex on Rn. By ∇f (x̄) +
∑m

i= λi(Aix̄ + ai) =  ⇔ ∇g(x̄) +
∑m

i= λi(Aix̄ + ai) = , we know that x̄ is a global minimizer
of function g(x) +

∑m
i= λifi(x) on Rn. Hence

g(x) +
m∑

i=

λifi(x) ≥ g(x̄) +
m∑

i=

λifi(x̄) = g(x̄), ∀x ∈ Rn.
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Therefore g(x) – g(x̄) ≥ –
∑m

i= λifi(x) ≥ , ∀x ∈ D. Thus, f (x) ≥ f (x̄), ∀x ∈ D, which means
that x̄ is a global minimizer of problem (QCNP). �

Remark  Note that the matrix A in Theorem  (the necessary condition) is a Z-matrix,
∇f (x̄) – Ax̄ ≤ , and ∇f (x) – A � , for each x ∈ C, but the matrix A in Theorem  (the
sufficient condition) satisfies that ∇f (x) – A � , for each x ∈ C.

Necessary global optimality conditions for nonlinear programming problems with
quadratic constraints was given in [], by using polynomial over-estimators and a poly-
nomial version of a theorem of the alternative, as the following lemma.

Lemma  [] For the problem (QCNP), suppose that there exist a convex set C ⊇ D
and p ∈ R[x] such that, for each x ∈ C, ∇f (x) – ∇p(x) � . If x is a global minimizer
of (QCNP), then exist γ ∈ N , an sos-polynomial yi ∈ R[x] and ui ∈ S〈–f, . . . , –fm, g̃x〉,
i = , . . . , m+ such that min{yi(x), ui(x)} =  for i ∈ {, . . . , m+} and, for each x ∈ Rn,

m+∑

i=

yi(x)ui(x) +
[
g̃x (x)

]γ = , ()

where R[x] means the real polynomial on Rn, S〈f, . . . , fk〉 := {∏k
j= f ej

j , ej ∈ {, }, j = , . . . , k},
g(x) := p(x) – (∇f (x) – ∇p(x))T x and g̃x (x) := g(x) – g(x).

The following example shows how to use the global optimality conditions to check a
given point is or is not a global minimizer, and illustrates the case where the necessary
global optimality condition () is not satisfied at a feasible point which is not a global
minimizer whereas the necessary condition () holds at the point.

Example  Consider the problem

(P) min f (x) := sin x – x
 – x



s.t. f(x) := x
 + x

 –  ≤ .

Hence ∇f (x) =
(  cos(x) 

 ––x


)
, A =

(  
 

)
, and a = (, )T . Let x̄ = (, )T , we take A =

(  
 –

)
, then A is a Z-matrix, ∇f (x̄) – Ax̄ ≤ , and ∇f (x) – A =

(  cos(x)– 
 –x



) � .
A direct calculation shows that λ =  solves

∇f (x̄) + λ(Ax̄ + a) =  and A + λA � .

Hence the necessary global optimality condition () holds at x̄.
Let us consider another point x = (, )T . If ∇f (x) + λ(Ax + a) =  and λf(x) = 

then λ =  and A + λA = A, which is not a positive semidefinite matrix. Hence the neces-
sary global optimality condition () is not satisfied at x while the necessary condition ()
holds at x. Take p(x) = x

 , then ∇f (x) – ∇p(x) � , ∀x ∈ Rn and g̃x (x) = –x
 . Thus the

necessary condition () holds with γ =  since x
 ·  + (–x

 ) = .

In the following corollary, we see that our optimality condition yields Corollary . given
in [].
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Corollary  For the problem (QCNP), let f (x) = 
 xT Ax + aT

 x + c and let

Hf =

(
A a

aT
 c

)

()

be a Z-matrix. Suppose that each Hi is a Z-matrix, i = , . . . , m, and that there exists
x ∈ Rn, such that fi(x) < , i = , . . . , m. Then x̄ is a global minimizer of (QCNP) if and
only if there exists λ ∈ Rm

+ , such that λifi(x̄) = , i = , . . . , m,

Ax̄ + a +
m∑

i=

λi(Aix̄ + ai) =  and A +
m∑

i=

λiAi � . ()

Proof Take A = A in Theorem  and Theorem , we have ∇f (x̄) – Ax̄ = Ax̄ + a – Ax̄ =
a ≤ , since Hf is a Z-matrix and ∇f (x) – A = A – A =  �  and also ∇f (x) – A = A –
A =  � . So A = A satisfies all the conditions given in Theorem  and Theorem . If also
there exists x ∈ Rn, such that fi(x) < , i = , . . . , m, then by Theorem  and Theorem ,
we know that x̄ is a global minimizer of (QCNP) if and only if there exists λ ∈ Rm

+ , such
that λifi(x̄) = , i = , . . . , m,

Ax̄ + a +
m∑

i=

λi(Aix̄ + ai) =  and A +
m∑

i=

λiAi � . ()
�

3 Global optimality conditions for nonlinear programming problems with box
constraints

In this section, we will derive some global optimality conditions for nonlinear program-
ming problems with box constraints by using the results obtained in Section .

3.1 Global optimality conditions for general nonconvex minimization problems
with box constraints

We consider the following nonlinear programming problem:

(BP) min f (x)

s.t. x ∈ B :=
n∏

i=

[ui, vi],

where f : Rn → R is a twice continuously differentiable function, ui, vi ∈ R and ui ≤ vi,
i = , . . . , n.

Without loss of generality, we suppose that  ≤ ui < vi, i = , . . . , n. If ui = vi, we
can replace B by B̄ =

∏j=i–
j= Bj × ∏n

j=i+ Bj and replace f by f̄ , where f̄ (x) = f (x̄), x̄ =
(x, . . . , xi–, ui, xi+, . . . , xn)T and Bj = [uj, vj]. If ui < , we let yi = xi – ui, yj = xj, j �= i, then
yi ∈ [, vi – ui]. Hence, we can obtain the solution of problem (BP) by solving the following
problem:

(P) min f (y)

s.t. y ∈ B′,

where B′ :=
∏j=i–

j= Bj × [, vi – ui] × ∏n
j=i+ Bj.
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The feasible set B can be written as

B =
{

x ∈ Rn|x
i – (ui + vi)xi + uivi ≤ , i = , . . . , n

}
.

Thus we can formulate (BP) as an equivalent nonlinear problem with quadratic con-
straints:

(BP) min f (x)

s.t. fi(x) = x
i – (ui + vi)xi + uivi ≤ , i = , . . . , n. ()

For problem (BP), we let

u = (u, . . . , un)T ,

v = (v, . . . , vn)T .

Theorem  (Necessary condition) For the problem (BP), let x̄ ∈ B. Assume that there exists
a Z-matrix A ∈ Sn such that ∇f (x̄) – Ax̄ ≤  and ∇f (x) – A � , for each x ∈ B. If x̄ is a
global minimizer of (BP), then there exists λ ∈ Rn

+, such that λifi(x̄) = , i = , . . . , n,

∇f (x̄) + diag(λ)(x̄ – u – v) =  and A +  diag(λ) � . ()

Proof Let Ai = diag(ei), ai = –(ui + vi)ei, i = , . . . , n, where ei = (, . . . , , , , . . . , )T , the
ith component is  and the others are , then Hi =

( Ai ai
aT

i uivi

)
, i = , . . . , n, and each Hi is

a Z-matrix, as  ≤ ui < vi. It is obvious that there exists x ∈ B such that fi(x) < . For
instance, we can take x

i = (vi – ui)/, i = , . . . , n, then x = (x
 , . . . , x

n)T ∈ B and fi(x) < .
Since x̄ is a global minimizer of (BP) ⇔ x̄ is a global minimizer of (BP), by Theorem ,
there exists λ ∈ Rn

+, such that λifi(x̄) = , i = , . . . , n,

∇f (x̄) +
n∑

i=

λi(Aix̄ + ai) =  and A +
n∑

i=

λiAi � ,

i.e.

∇f (x̄) + diag(λ)(x̄ – u – v) =  and A +  diag(λ) � . �

Theorem  (Sufficient condition) For the problem (BP), let x̄ ∈ B. Assume that there exists
A ∈ Sn such that ∇f (x)–A � , for each x ∈ B, and there exists λ ∈ Rn

+, such that λifi(x̄) = ,
i = , . . . , n,

∇f (x̄) + diag(λ)(x̄ – u – v) =  and A +  diag(λ) � , ()

then x̄ is a global minimizer of (BP).

Proof It can be obtained directly from Theorem . �

We now present two examples to illustrate that a global minimizer satisfies our necessary
condition and sometimes also satisfies our sufficient condition while a local minimizer that
is not global fails to satisfy the necessary condition.
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Figure 1 The behavior of (P1).

Example  (Three-hump camelback function []) We consider the following nonlinear
programming problem with box constraints

(P) min –.x
 + x

 + x
 – xx + x



s.t.  ≤ x, x ≤ .

We know x̄ = (, ) is a global minimizer of (P), and ȳ = (., .)T is a local minimizer of
(P); see []. Let f (x) = –.x

 +x
 +x

 –xx +x
, u = (, )T , v = (, )T , then ∇f (x̄) =

(, )T . Take Az =
(  –

– 

)
, then Az is a Z-matrix, ∇f (x̄) – Azx̄ =  ≤  and ∇f (x) – Az � ,

for each x ∈ [u, v]. Then a direct calculation shows that λ = (λ,λ) = (, ) solve

λifi(x̄) = , i = , , ∇f (x̄) + diag(λ)(x̄ – u – v) =  and Az +  diag(λ) � ,

i.e. the necessary condition () holds at the global minimizer x̄. But the sufficient con-
dition () does not hold at x̄. Suppose that there exist A ∈ Sn and λ ∈ R

+, such that the
sufficient condition () holds. Then λ = λ =  and A � . Hence, ∇f (x) � A �  which
contradicts the fact that ∇f (x) is not positive semidefinite.

Note that there does not exist a Z-matrix Az which satisfies ∇f (ȳ) – Azȳ ≤  and
∇f (x) – Az � , for each x ∈ [u, v]. Hence, the necessary condition is not satisfied at the
local minimizer ȳ which is not global. See Figure .

Example  We consider the following nonlinear programming problem with box con-
straints

(P) min sin x + x
 – x

s.t.  ≤ x ≤ π ,  ≤ x ≤ .

Let x̄ = (π , ) and f (x) = sin x + x
 – x, u = (, )T , v = (π , )T , then ∇f (x) = (– +

cos x, x)T , ∇f (x) =
( – sin x 

 

)
, and ∇f (x̄) = (–, )T . Take A =

( – 
 

)
, then ∇f (x)–A � ,

for each x ∈ [u, v]. Then a direct calculation shows that λ = (λ,λ) = ( 
π

, ) solve

λifi(x̄) = , i = , , ∇f (x̄) + diag(λ)(x̄ – u – v) =  and A +  diag(λ) � ,

i.e. the sufficient condition () holds at x̄, hence x̄ is a global minimizer of (P). Similarly,
we can take a Z-matrix A′ =

(  
 

)
, then ∇f (x̄) – A′x̄ = (–, )T ≤ , ∇f (x) – A′ � , for
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each x ∈ [u, v], and λ = (λ,λ) = ( 
π

, ) solve

λifi(x̄) = , i = , , ∇f (x̄) + diag(λ)(x̄ – u – v) =  and A′ +  diag(λ) � ,

i.e. the necessary global optimality condition () is satisfied at the global minimizer x̄.
Let us consider another point ȳ = ( π

 , )T , then ∇f (ȳ) = (–, )T . It is obvious that both
the sufficient condition () and the necessary condition () do not hold at ȳ, since there
does not exist λ ∈ R

+ such that ∇f (ȳ) + diag(λ)(ȳ – u – v) = .

3.2 Global optimality conditions for nonconvex quadratic programming
problems with box constraints

We consider the following nonconvex quadratic program with box constraint:

(BQP) min f(x) =



xT Ax + aT
 x + c

s.t. x ∈ B,

where A ∈ Sn and a ∈ Rn.
For (BQP), we define

H =

(
A a

aT
 c

)

.

Corollary  (Sufficient condition) For problem (BQP), let x̄ ∈ B. If there exists λ ∈ Rn
+, such

that λifi(x̄) = , i = , . . . , n,

a + Ax̄ + diag(λ)(x̄ – u – v) =  and A +  diag(λ) � , ()

then x̄ is a global minimizer of (BQP).

Proof Take A = A, then the conclusion follows from Theorem . �

Another sufficient global optimality condition for nonconvex quadratic minimization
problem with box constraints was given in [] as the following corollary.

Corollary  [] For problem (BQP), let x̄ ∈ B. suppose that there exists a diagonal matrix
Q := diag(q, . . . , qn), qi ∈ Rn, i = , . . . , n, such that A – Q �  and

X̃(a + Ax̄) –



Q̂(v – u) ≤ , ()

then x̄ is a global minimizer of (BQP), where

x̃i :=

⎧
⎪⎪⎨

⎪⎪⎩

–, if x̄i = ui,

, if x̄i = vi,

(a + Ax̄)i, if x̄i ∈ (ui, vi),

X̃ := diag(̃x, . . . , x̃n),

()

and for q = (q, . . . , qn)T ∈ Rn, q̂i = min{, qi}, i = , . . . , n, Q̂ = diag(̂q, . . . , q̂n).
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Remark  The two sufficient global optimality conditions given in Corollaries  and  are
equivalent. If the sufficient condition () is satisfied, then we can prove that condition
() holds by taking qi = –λi and discussing x̄i in the following three cases: x̄i = ui, x̄i = vi

and x̄i ∈ (ui, vi). Conversely, the sufficient condition () holds if condition () is satis-
fied. We let λi = – x̃i(a+A x̄)i

vi–ui
, then λi ≥  and A +  diag(λ) � A – Q̂ � A – Q � , since

– x̃i(a+A x̄)i
vi–ui

≥ – 
 q̂i ≥ . If x̄i ∈ (ui, vi), then (a + Ax̄)i =  and λi = . Hence the sufficient

condition () holds.

Corollary  (Sufficient and necessary condition) For problem (BQP), if H is a Z-matrix,
then x̄ ∈ B is a global minimizer of (BQP) if and only if there exists λ ∈ Rn

+, such that
λifi(x̄) = , i = , . . . , n,

Ax̄ + a + diag(λ)(x̄ – u – v) =  and A +  diag(λ) � . ()

Proof The necessary condition for global optimality directly follows from Theorem , by
taking A = A.

Conversely, suppose that there exists λ ∈ Rn
+, such that λifi(x̄) = , i = , . . . , n,

Ax̄ + a + diag(λ)(x̄ – u – v) =  and A +  diag(λ) � ,

i.e.

∇
(

f +
n∑

i=

λifi

)

(x̄) =  and ∇

(

f +
m∑

i=

λifi

)

(x̄) � .

Hence, we have

f(x) +
n∑

i=

λifi(x) ≥ f(x̄) +
n∑

i=

λifi(x̄) = f(x̄), ∀x ∈ B.

Thus, x̄ is a global minimizer of (BQP), since
∑n

i= λifi(x) ≤ . �

Let us now give a numerical example to apply our sufficient and necessary global opti-
mality condition to a nonconvex quadratic program with box constraint.

Example  Consider the following quadratic program:

(P) min f(x) = x
 – x

 – xx

s.t.  ≤ x, x ≤ .

Let A =
(  –

– –

)
, a = , c = , u = (, )T , v = (, )T . Obviously, H is a Z-matrix. Let

x̄ = (, )T . By Ax̄ + a + diag(λ)(x̄ – u – v) = , we have λ = (, )T ∈ R
+. It is easy to verify

that λifi(x̄) = , i = , , where fi(x) = x
i – xi, i = , , and

A +  diag(λ) =

(
 –

– 

)

� .

Hence, the sufficient and necessary global optimality condition () holds at x̄. See Figure .
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Figure 2 The behavior of (P3).

Another sufficient and necessary global optimality condition for (BQP), when A is a
diagonal matrix, is given in [] as the following corollary.

Corollary  For problem (BQP), if A is a diagonal matrix, then x̄ is a global minimizer
of (BQP) if and only if




ãii(vi – ui) + x̃i(a + Ax̄)i ≤ , i = , . . . , n, ()

where ãii = max{, –aii}, aii, i = , . . . , n, are the diagonal elements of A, and x̃i is defined
by ().

Note that the sufficient and necessary global optimality condition () extends the global
optimality condition (). On one hand, in Corollary , A is a Z-matrix and not necessar-
ily a diagonal matrix. On the other hand, we can easily verify that condition () implies
condition (), by taking x̄i = ui, x̄i = vi, and x̄i ∈ (ui, vi) and taking aii ≥  and aii < .

Remark  In this paper, some global optimality conditions for nonlinear program with
box constraints are presented. In these conditions given by Theorem , Theorem , Corol-
lary  and , if the multiplier λ does exist, then λ is unique and

λi =

⎧
⎪⎪⎨

⎪⎪⎩

(∇f (x̄))i
vi–ui

, if x̄i = ui,
(∇f (x̄))i

ui–vi
, if x̄i = vi,

, if x̄i ∈ (ui, vi).

Hence, the global optimality conditions obtained in this paper are tractable.

For problem (BQP) and x̄ = (x̄, . . . , x̄n)T ∈ B, we define

Ix̄ :=
{

i ∈ {, . . . , n}|x̄i ∈ (ui, vi)
}

,

λx̄i :=

⎧
⎪⎪⎨

⎪⎪⎩

(a+A x̄)i
vi–ui

, if x̄i = ui,
(a+A x̄)i

ui–vi
, if x̄i = vi,

, if x̄i ∈ (ui, vi),

i = , . . . , n,

λx̄ := (λx̄ , . . . ,λx̄n )T .
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Therefore, Corollaries  and  can be written in a simple way.

Corollary  (Sufficient condition) For problem (BQP), let x̄ ∈ B. If λx̄ ≥  and

⎧
⎨

⎩
(a + Ax̄)i = , i ∈ Ix̄,

A +  diag(λx̄) � ,

then x̄ is a global minimizer of (BQP).

Corollary  (Sufficient and necessary condition) For problem (BQP), if H is a Z-matrix,
then x̄ ∈ B is a global minimizer of (BQP) if and only if λx̄ ∈ Rn

+, and

⎧
⎨

⎩
(a + Ax̄)i = , i ∈ Ix̄,

A +  diag(λx̄) � .
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