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Abstract
The main purpose of this paper is to establish the strong duality theorem for the
parametric formulation of continuous-time linear fractional programming problems.
We also consider the so-called extended form of continuous-time linear fractional
programming problems that assume the vector-valued functions to be measurable
and bounded on the time interval [0, T ]. The by-product of the main result is the
establishment of the strong duality theorem for the extended form of
continuous-time linear fractional programming problems.
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1 Introduction
The theory of continuous-time linear programming problem has received considerable
attention for a long time. Tyndall [, ] treated rigorously a continuous-time linear pro-
gramming problem with the constant matrices, originating from the ‘bottleneck problem’
proposed by Bellman []. Levinson [] generalized the results of Tyndall by considering the
time-dependent matrices in which the functions shown in the objective and constraints
were assumed to be continuous on the time interval [, T]. Meidan and Perold [], Papa-
georgiou [] and Schechter [] have also obtained some interesting results of continuous-
time linear programming problem. Anderson et al. [–], Fleischer and Sethuraman []
and Pullan [–] investigated a subclass of continuous-time linear programming prob-
lem, which is called the separated continuous-time linear programming problem and can
be used to model the job-shop scheduling problems. Weiss [] proposed a simplex-like
algorithm to solve the separated continuous-time linear programming problem.

The continuous-time fractional programming problem was investigated by Zalmai [–
]. In this paper, we propose the parametric formulation of a class of continuous-time
linear fractional programming problems, and we establish the weak and strong duality
theorems. We first derive many useful convergent properties for the sequences of the op-
timal solutions of parametric continuous-time linear fractional programming problems.
Using these convergent properties, we can prove the strong duality theorem for the para-
metric formulation of continuous-time linear fractional programming problems.

Wen and Wu [] developed a discrete approximation method to numerically solve the
continuous-time linear fractional programming problems. The weak and strong duality
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theorems were also established in Wen and Wu [] by assuming the vector-valued func-
tions to be continuous on the time interval [, T]. If the vector-valued functions are as-
sumed to be measurable and bounded on the time interval [, T], then the problem is
called the extended form of continuous-time linear fractional programming problems.
Using the strong duality theorem for the parametric formulation of continuous-time lin-
ear fractional programming problems, we can also establish the weak and strong duality
theorems for the extended form of continuous-time linear fractional programming prob-
lems. The main purpose of this paper is to establish the strong duality theorem for the
parametric formulation of continuous-time linear fractional programming problems. The
by-product of the main result is to extend the strong duality theorem in Wen and Wu [].

This paper is organized as follows. In Section , we introduce the primal and dual pair of
continuous-time linear fractional programming problems, where the vector-valued func-
tions are assumed to be measurable and bounded on the time interval [, T]. Some el-
ementary properties are obtained in order to prove the strong duality theorem. In Sec-
tions  and , we propose the parametric formulations of primal and dual problems, and
derive some useful convergent properties for the sequences of optimal solutions of the
corresponding parametric problems. In Section , the strong duality theorem for the para-
metric formulation is established. In Section , using the strong duality theorem for the
parametric formulation, we shall establish the strong duality theorem for the extended
form of continuous-time linear fractional programming problems.

2 Continuous-time linear fractional programming problems
For f ∈ L([, T],R), we recall

‖f ‖ =
(∫ T


f (t) dt

)/

.

Let MB([, T],R) be the space of all measurable and bounded functions from a time inter-
val [, T] into the Euclidean space R. If f ∈ MB([, T],R), then there exists a positive con-
stant C such that |f (t)| ≤ C for all t ∈ [, T]. For x = (x, . . . , xq) ∈ L([, T],Rq

+), we mean
xj ∈ L([, T],R+) for each j = , . . . , q, where xj denotes the jth component of x. Similarly,
for f = (f, . . . , fq) ∈ MB([, T],Rq), we mean fj ∈ MB([, T],R) for each j = , . . . , q.

The continuous-time linear fractional programming problem (CLFP) is formulated as
follows:

(CLFP) max
f +

∫ T
 (f(t))�x(t) dt

h +
∫ T

 (h(t))�x(t) dt

subject to Bx(t) ≤ g(t) +
∫ t


Kx(s) ds for all t ∈ [, T],

x ∈ L([, T],Rq
+
)
,

where h > , f ≥ , f ∈ MB([, T],Rq), h ∈ MB([, T],Rq
+), g ∈ MB([, T],Rp

+), B =
[Bij]p×q and K = [Kij]p×q are p × q constant matrices satisfying the following conditions:

• Kij ≥  for all i = , . . . , p and j = , . . . , q;
• Bij ≥  and

∑p
i= Bij >  for all i = , . . . , p and j = , . . . , q.
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The dual problem of primal problem (CLFP) is defined as follows:

(DCLFP) minimize β

subject to B�z(t) + βh(t) ≥ f(t) +
∫ T

t
K�z(s) ds for all t ∈ [, T],

– βh +
∫ T



(
g(t)

)�z(t) dt ≤ –f, ()

z ∈ L([, T],Rp
+
)
.

Given a primal problem (P), there are many ways to formulate the dual problem (DP)
such that the weak and strong duality theorems hold true between the primal and dual
pair of problems (P) and (DP). Although the dual problem (DCLFP) is not formulated
as a type of continuous-time linear fractional programming problems, it does not lose
the generality because the weak and strong duality theorems have been proven to hold
true between the problems (CLFP) and (DCFLP) as shown in Wen and Wu [] when the
functions f and g were assumed to be continuous on [, T]. In this paper, we are going to
derive the weak and strong duality theorems when the functions f and g are assumed to
be measurable and bounded on [, T].

Since the vector-valued function g is assumed to be nonnegative on [, T], it is easy to
see that the primal problem (CLFP) is feasible with the trivial feasible solution x(t) =  for
all t ∈ [, T]. Since each fi is bounded on [, T] for i = , . . . , q, we see that

max
t∈[,T]

fi(t) < ∞

for each i = , . . . , q. The arguments presented in Wen and Wu [], Proposition ., are
still valid and guarantee the feasibility of dual problem (DCLFP) when the vector-valued
functions f and g are assumed to be measurable and bounded on [, T].

Theorem . (Weak duality theorem) Considering the primal and dual pair of prob-
lems (CLFP) and (DCLFP), for any feasible solutions x and (z,β) of problems (CLFP) and
(DCFLP), respectively, we have

f +
∫ T

 (f(t))�x(t) dt

h +
∫ T

 (h(t))�x(t) dt
≤ β .

In other words, the optimal objective value of primal problem (CLFP) is less than or equal
to the optimal objective value of dual problem (DCLFP).

Proof The arguments presented in Wen and Wu [], Theorem ., are still valid when
the vector-valued functions f and g are assumed to be measurable and bounded on [, T]
here. �

According to the approach proposed by Charnes and Cooper [], we can transform
the original problem (CLFP) into a continuous-time linear programming problem. Since
h > , we can define

α =


h +
∫ T

 (h(t))�x(t) dt
and y = αx. ()
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Then the original problem (CLFP) can be converted to a continuous-time linear program-
ming problem as follows:

(AP) max αf +
∫ T



(
f(t)

)�y(t) dt

subject to By(t) ≤ αg(t) +
∫ t


Ky(s) ds for all t ∈ [, T],

αh +
∫ T



(
h(t)

)�y(t) dt = ,

α ≥ ,

y ∈ L([, T],Rq
+
)
.

The following result will be useful for further discussions.

Proposition . Considering the problems (AP) and (DCLFP), for any feasible solutions
(y,α) with α >  and (z,β) of problems (CLFP) and (DCFLP), respectively, we have

αf +
∫ T



(
f(t)

)�y(t) dt ≤ β .

In other words, the optimal objective value of problem (AP) is less than or equal to the
optimal objective value of problem (DCLFP).

Proof Let x = y/α. Then x is a feasible solution of problem (CLFP). Using the weak duality
Theorem ., we have

αf +
∫ T



(
f(t)

)�y(t) dt = α ·
(

f +
∫ T



(
f(t)

)�x(t) dt
)

=
f +

∫ T
 (f(t))�x(t) dt

h +
∫ T

 (h(t))�x(t) dt
≤ β .

This completes the proof. �

We say that the vector-valued function h is Lipschitz continuous on [, T] if and only if
there exists a constant γ such that

∣∣hj(t) – hj(t)
∣∣ ≤ γ · |t – t|

for all t, t ∈ [, T] and for each j = , . . . , q.

Theorem . (Wen and Wu []; Strong duality theorem) Suppose that the vector-valued
functions f and g are continuous on [, T], and that the vector-valued function h is Lipschitz
continuous on [, T]. Let

σ = min{Bij : Bij > },

ν = max
j=,...,q

{ p∑
i=

Kij

}
,
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τ = max
{∣∣fj(t)

∣∣ : j = , . . . , q and t ∈ [, T]
}

,

ζ = max
{

gi(t) : i = , . . . , p and t ∈ [, T]
}

.

Then there exist optimal solutions x∗, (y∗,α∗), and (z∗,β∗) of problems (CLFP), (AP), and
(DCLFP), respectively, such that α∗ >  and

f +
∫ T

 (f(t))�x∗(t) dt

h +
∫ T

 (h(t))�x∗(t) dt
= β∗ = α∗f +

∫ T



(
f(t)

)�y∗(t) dt,

where x∗ = y∗/α∗; that is, there is no duality gap between the primal and dual pair of prob-
lems (CLFP) and (DCLFP), and the optimal objective values of problems (AP) and (DCLFP)
are equal. Moreover, for j = , . . . , q and t ∈ [, T], we have

α∗ ≤ /h and
∣∣y∗

j (t)
∣∣ ≤ ζ

hσ
· exp

(
qνT
σ

)
a.e. in [, T]. ()

For i = , . . . , p and t ∈ [, T], we have

 ≤ β∗ ≤ ζ · p · τ · T · exp( νT
σ

) + σ · f

σ · h
and

∣∣z∗
i (t)

∣∣ ≤ τ

σ
· exp

(
νT
σ

)
a.e. in [, T].

()

We also remark that, in Wen and Wu [], the decision variables x and z were assumed
to be in L∞([, T],Rq

+) and L∞([, T],Rp
+), respectively. Since the proof of strong duality

theorem in Wen and Wu [] was based on the weak convergence in L([, T],R), it means
that the strong duality theorem should be true in the situation that the decision variables
x and z are assumed to be in L([, T],Rq

+) and L([, T],Rp
+), respectively. This is the rea-

son why we consider the space L([, T],R) in this paper. The purpose of this paper is to
derive the strong duality theorem when the vector-valued functions f and g are assumed
to be measurable and bounded on [, T] based on the parametric formulation that will be
discussed in the next section.

3 Parametric formulation of primal problems
Suppose that the vector-valued functions f and g in the primal problem (CLFP) can be
parameterized as the vector-valued functions fε and gε for ε >  in which fε and gε are
assumed to be continuous functions on [, T] and gε(t) ≥  for all t ∈ [, T]. The vector-
valued function h is assumed to be Lipschitz continuous on [, T].

We also assume that the vector-valued functions f and g are measurable and bounded
on [, T] satisfying g(t) ≥  for all t ∈ [, T] and the following conditions:

Vε =
{

t ∈ [, T] : f(t) 	= fε(t)
}

and μ(Vε) < q · ε, ()

Uε =
{

t ∈ [, T] : g(t) 	= gε(t)
}

and μ(Uε) < p · ε, ()

where μ denotes the Lebesgue measure. In this case, we see that

lim
ε→+

fε(t) = f(t) a.e. in [, T] ()
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and

lim
ε→+

gε(t) = g(t) a.e. in [, T]. ()

Since the vector-valued functions f and g are measurable and bounded on [, T], there
exist positive constants τ and ζ such that

∣∣fj,(t)
∣∣ ≤ τ for all t ∈ [, T] and for all j = , . . . , q ()

and

gi,(t) ≤ ζ for all t ∈ [, T] and for all i = , . . . , p, ()

where fj, is the jth component of f and gi, is the ith component of g.
For each ε > , since the functions fε and gε are continuous on [, T], we define

τj,ε = max
t∈[,T]

∣∣fj,ε(t)
∣∣ and τε = max{τ,ε , . . . , τq,ε}

and

ζi,ε = max
t∈[,T]

gi,ε(t) and ζε = max{ζ,ε , . . . , ζp,ε},

where fj,ε is the jth component of fε and gi,ε is the ith component of gε .
For ε ≥ , we consider the following parametric optimization problem:

(CLFPε) max
f +

∫ T
 (fε(t))�x(t) dt

h +
∫ T

 (h(t))�x(t) dt

subject to Bx(t) ≤ gε(t) +
∫ t


Kx(s) ds for all t ∈ [, T],

x ∈ L([, T],Rq
+
)
,

where the vector-valued functions satisfy the following conditions:
• for each ε > , the vector-valued functions fε and gε are assumed to be continuous

functions on [, T] and gε(t) ≥  for all t ∈ [, T];
• the vector-valued function h is assumed to be Lipschitz continuous on [, T];
• the vector-valued functions f and g are assumed to be measurable and bounded on

[, T] satisfying g(t) ≥  for all t ∈ [, T];
• for each ε > , we assume that μ(Uε) < p · ε and μ(Vε) < q · ε in () and (),

respectively.
According to the approach proposed by Charnes and Cooper [], we can similarly

transform the problem (CLFPε) into the following parametric optimization problem:

(APε) max αf +
∫ T



(
fε(t)

)�y(t) dt

subject to By(t) ≤ αgε(t) +
∫ t


Ky(s) ds for all t ∈ [, T], ()
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αh +
∫ T



(
h(t)

)�y(t) dt = , ()

α ≥ ,

y ∈ L([, T],Rq
+
)
.

Using Theorem ., the problem (APε) has an optimal solution (y∗
ε ,α∗

ε ) with α∗
ε >  for all

ε > .
Let L∞([, T],R) be the space of all measurable and essentially bounded functions from

a time interval [, T] into the Euclidean space R. For f ∈ L∞([, T],R), we recall

‖f ‖∞ = ess sup
t∈[,T]

∣∣f (t)
∣∣ = inf

{
k :

∣∣f (t)
∣∣ ≤ k a.e.

}
,

where the Lebesgue measure is considered. Therefore we have |f (t)| ≤ ‖f ‖∞ a.e. in [, T].
Let {fk}∞k= be a sequence of functions in L∞([, T],R). We say that the sequence {fk}∞k=

is uniformly essentially bounded on [, T] if and only if there exists a positive constant C
such that ‖fk‖∞ ≤ C for each k. If {fk}∞k= is a sequence of vector-valued functions, then we
say that the sequence {fk}∞k= is uniformly essentially bounded if and only if there exists a
positive constant C such that ‖fik‖∞ ≤ C for each i and k, where fik is the ith component
of fk .

Let {fk}∞k= be a sequence of functions in L([, T],R). We say that the sequence {fk}∞k=

is uniformly bounded on [, T] with respect to ‖ · ‖ if and only if there exists a positive
constant C such that ‖fk‖ ≤ C for each k. If {fk}∞k= is a sequence of vector-valued func-
tions, then we say that the sequence {fk}∞k= is uniformly bounded with respect to ‖ · ‖ if
and only if there exists a positive constant C such that ‖fik‖ ≤ C for each i and k, where
fik is the ith component of fk .

Since each fε is continuous on [, T], it is clearly that fε is bounded on [, T]. However,
the sequence {fεk }∞k= is not necessarily uniformly bounded on [, T], since we may not
have a constant such that each fεk is bounded by this same constant. In this paper, we shall
assume that the sequence {fεk }∞k= is uniformly essentially bounded on [, T]. It is clear that
if the sequence {fk}∞k= is uniformly essentially bounded on [, T], then it is also uniformly
bounded on [, T] with respect to ‖ · ‖, since L∞([, T],R) ⊂ L([, T],R). The following
lemmas are very useful.

Lemma . (Riesz and Sz.-Nagy [], p.) Let {fk}∞k= be a sequence in L([, T],R). If the
sequence {fk}∞k= is uniformly bounded with respect to ‖ ·‖, then exists a subsequence {fkj}∞j=

that weakly converges to f ∈ L([, T],R). In other words, for any g ∈ L([, T],R), we have

lim
j→∞

∫ T


fkj (t)g(t) dt =

∫ T


f(t)g(t) dt.

Lemma . (Levinson []) If the sequence {fk}∞k= is uniformly bounded on [, T] with re-
spect to ‖ · ‖ and weakly converges to f ∈ L([, T],R), then

f(t) ≤ lim sup
k→∞

fk(t) a.e. in [, T]
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and

f(t) ≥ lim inf
k→∞

fk(t) a.e. in [, T].

The following result is useful for deriving the strong duality theorem.

Proposition . Given a sequence {εk}∞k= in R+ \ {} with εk → + as k → ∞, suppose
that the sequences {fεk }∞k= and {gεk }∞k= are uniformly essentially bounded on [, T]. Given
a sequence {(y∗

εk
,α∗

εk
)}∞k= of optimal solutions of problems (APεk ) with α∗

εk
> , there exist

a subsequence {εki}∞i= with εki → + as i → ∞ and a feasible solution (y∗
,α∗

) of problem
(AP) such that the subsequence {y∗

εki
}∞i= weakly converges to y∗

, and the following limits
hold true:

lim
i→∞α∗

εki
= α∗

,

lim
i→∞

∫ T



(
f(t)

)�y∗
εki

(t) dt =
∫ T



(
f(t)

)�y∗
(t) dt, ()

lim
i→∞

∫ T



(
fεki

(t)
)�y∗

εki
(t) dt =

∫ T



(
f(t)

)�y∗
(t) dt. ()

Proof Let y∗
j,εk

be the jth component of y∗
εk

. Since the sequence {gεk }∞k= is uniformly essen-
tially bounded, there exists a positive constant ζ̂ satisfying ‖gi,εk ‖∞ ≤ ζ̂ for each i and k.
According to (), we have α∗

εk
≤ /h and

∣∣y∗
j,εk

(t)
∣∣ ≤ ζεk

hσ
· exp

(
qνT
σ

)
≤ ζ̂

hσ
· exp

(
qνT
σ

)
a.e. in [, T]

for each k, which says that the sequence {α∗
εk

}∞k= is bounded, and the sequence {y∗
εk

}∞k=

is uniformly essentially bounded on [, T], i.e., uniformly bounded with respect to ‖ · ‖

on [, T]. Using Lemma ., there exists a subsequence {y∗
,ε()

ki

}∞i= of {y∗
,εk

}∞k= that weakly

converges to some ŷ, ∈ L([, T],R). Using Lemma . again, there exists a subsequence
{y∗

,ε()
ki

}∞i= of {y∗
,ε()

ki

}∞i= that weakly converges to some ŷ, ∈ L([, T],R). By induction,

there exists a subsequence {y∗
j,ε(j)

ki

}∞i= of {y∗
j,ε(j–)

ki

}∞i= that weakly converges to some ŷj, ∈
L([, T],R) for j = , . . . , q. Therefore we can construct a subsequence {y∗

ε
(q)
ki

}∞i= that weakly

converges to ŷ ∈ L([, T],Rq). On the other hand, since {α∗
ε

(q)
ki

}∞i= is a bounded sequence

of real numbers, there exists a subsequence {α∗
εki

}∞i= of {α∗
ε

(q)
ki

}∞i= that converges to some α∗
.

In this case, using the weak convergence, we have

lim
i→∞

∫ T



(
a(t)

)�y∗
εki

(t) dt =
∫ T



(
a(t)

)�ŷ(t) dt for any a ∈ L([, T],Rq) ()

and

lim
i→∞α∗

εki
= α∗

. ()
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Using the feasibility of (y∗
εki

,α∗
εki

), we have

 = α∗
εki

h +
∫ T



(
h(t)

)�y∗
εki

(t) dt ()

and

 ≤ By∗
εki

(t) ≤ α∗
εki

gεki
(t) +

∫ t


Ky∗

εki
(s) ds for all t ∈ [, T]. ()

By taking the limit superior from () and () and using the weak convergence and (),
we obtain

 ≤ lim sup
i→∞

By∗
εki

(t) ≤ α∗
g(t) +

∫ t


K ŷ(s) ds a.e. in [, T] ()

and

α∗
h +

∫ T



(
h(t)

)�ŷ(t) dt = . ()

Using Lemma ., we have

lim sup
i→∞

y∗
εki

(t) ≥ ŷ(t) ≥ lim inf
i→∞ y∗

εki
(t) ≥  a.e. in [, T]. ()

Since B ≥ , using (), we also have

Bŷ(t) ≤ lim sup
i→∞

By∗
εki

(t) ≤ α∗
g(t) +

∫ t


K ŷ(s) ds a.e. in [, T]. ()

Let N be the subset of [, T] such that the inequality () is violated, and let N be the
subset of [, T] such that ŷ(t) � . We define N = N ∪ N. Then, from (), we see that
the set N has measure zero. Now, we define

y∗
(t) =

⎧⎨
⎩

ŷ(t) if t /∈ N ,

 if t ∈ N .
()

Then we see that y∗
(t) ≥  for all t ∈ [, T] and y∗

(t) = ŷ(t) a.e. in [, T].
• For t /∈ N , from (), we have

By∗
(t) = Bŷ(t) ≤ α∗

g(t) +
∫ t


K ŷ(s) ds = α∗

g(t) +
∫ t


Ky∗

(s) ds.

• For t ∈ N , using (), we also have

By∗
(t) =  ≤ α∗

g(t) +
∫ t


K ŷ(s) ds = α∗

g(t) +
∫ t


Ky∗

(s) ds.
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From (), we can obtain

α∗
h +

∫ T



(
h(t)

)�y∗
(t) dt = α∗

h +
∫ T



(
h(t)

)�ŷ(t) dt = .

This shows that (y∗
,α∗

) is a feasible solution of problem (AP). Since y∗
(t) = ŷ(t) a.e. in

[, T], from (), we see that the subsequence {y∗
εki

}∞i= weakly converges to y∗
.

Since f is assumed to be measurable and bounded on [, T], it follows that f ∈
L([, T],Rq). Since {y∗

εki
}∞i= weakly converges to y∗

, this proves the limit (). We remain
to prove the limit (). Since the sequence {fεk (t)} is uniformly essentially bounded on
[, T], there exists a positive constant τ̂ such that ‖fj,εk ‖∞ ≤ τ̂ for each j and k. Now we
have

∣∣∣∣
∫ T



(
fεki

(t)
)�y∗

εki
(t) dt –

∫ T



(
f(t)

)�y∗
εki

(t) dt
∣∣∣∣

=
∣∣∣∣
∫ T



[
fεki

(t) – f(t)
]�y∗

εki
(t) dt

∣∣∣∣
=

∣∣∣∣
∫

Vεki

[
fεki

(t) – f(t)
]�y∗

εki
(t) dt

∣∣∣∣ (using assumption ())

≤ μ(Vεki
) ·

q∑
j=

(̂τ + τ) · ∥∥y∗
j,εki

∥∥∞ (τ satisfies ())

< q · εki · (̂τ + τ) ·
q∑

j=

∥∥y∗
j,εki

∥∥∞ (using assumption ())

and
∣∣∣∣
∫ T



(
fεki

(t)
)�y∗

εki
(t) dt –

∫ T



(
f(t)

)�y∗
(t) dt

∣∣∣∣
≤

∣∣∣∣
∫ T



(
fεki

(t)
)�y∗

εki
(t) dt –

∫ T



(
f(t)

)�y∗
εki

(t) dt
∣∣∣∣

+
∣∣∣∣
∫ T



(
f(t)

)�y∗
εki

(t) dt –
∫ T



(
f(t)

)�y∗
(t) dt

∣∣∣∣

< q · εki · (̂τ + τ) ·
q∑

j=

∥∥y∗
j,εki

∥∥∞ +
∣∣∣∣
∫ T



(
f(t)

)�y∗
εki

(t) dt –
∫ T



(
f(t)

)�y∗
(t) dt

∣∣∣∣.

Since εki → + as i → ∞, the limit () follows from the limit () immediately, and the
proof is complete. �

4 Parametric formulation of dual problems
For any ε ≥ , we consider the following parametric optimization problem:

(DCLFPε) minimize β

subject to B�z(t) + βh(t) ≥ fε(t) +
∫ T

t
K�z(s) ds

for all t ∈ [, T], ()
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– βh +
∫ T



(
gε(t)

)�z(t) dt ≤ –f, ()

z ∈ L([, T],Rp
+
)
.

We see that (CLFPε) and (DCLFPε) are a primal and dual pair of problems for any ε ≥ .

Lemma . For each ε > , we define the real-valued function

ρε(t) =
τε

σ
· exp

[
ν(T – t)

σ

]
()

on [, T]. If (ẑε , β̄ε) is a feasible solution of the dual problem (DCLFPε), then there exists a
feasible solution (z̄ε(t), β̄ε) of dual problem (DCLFPε) such that z̄ε(t) ≤ ẑε(t) and z̄i,ε(t) ≤
ρε(t) for each i and t ∈ [, T], where z̄i,ε is the ith component of z̄ε .

Proof Since fε and gε are assumed to be continuous on [, T] for ε > , the result follows
from Wen and Wu [], Lemma ., immediately. �

Proposition . Given a sequence {εk}∞k= inR+ \{} with εk → + as k → ∞, suppose that
the sequences {fεk }∞k= and {gεk }∞k= are uniformly essentially bounded on [, T]. Given a se-
quence {(z∗

εk
,β∗

εk
)}∞k= of optimal solutions of problems (DCLFPεk ), there exist a subsequence

{εkj}∞j= with εkj → + as j → ∞ and a feasible solution (z∗
,β∗

) of problem (DCLFP) such
that the following limit holds true:

lim
j→∞β∗

εkj
= β∗

 .

Proof For each ε > , since fε and gε are continuous on [, T], Theorem . says that the
dual problem (DCLFPε) has an optimal solution (z∗

ε ,β∗
ε ), where z∗

ε = (z∗
,ε , . . . , z∗

p,ε). Now,
we consider the real-valued function ρε defined in (), and write ρε as a p-dimensional
vector-valued function with all entries ρε . Using Lemma ., there exists a feasible solution
(ẑε ,β∗

ε ) of (DCLFPε) such that

ẑε(t) ≤ z∗
ε (t) and ẑε(t) ≤ ρε(t) for all t ∈ [, T]. ()

Since the sequence {fεk (t)} is uniformly essentially bounded on [, T], there exists a posi-
tive constant τ̂ such that ‖fj,εk ‖∞ ≤ τ̂ for each j and k. Let

τ ∗ = max{̂τ , τ},

where τ satisfies (). In this case, we define the real-valued function

ρ(t) =
τ ∗

σ
· exp

[
ν(T – t)

σ

]
()

on [, T]. We also write ρ as a p-dimensional vector-valued function with all entries ρ.
Then

ẑε(t) ≤ ρε(t) ≤ ρ(t) for all t ∈ [, T] and for all ε > 
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and, from (),

∣∣fj,(t)
∣∣ ≤ τ ∗ for all t ∈ [, T] and for all j = , . . . , n. ()

From (), we can obtain

σρ(t) = τ ∗ + ν ·
∫ T

t
ρ(s) ds for all t ∈ [, T]. ()

The assumption of Bij says that
∑

i Bij ≥ σ for each j. By () and (), for each j = , . . . , n,
we have

∑
i

Bijρ(t) ≥ σρ(t) ≥ ∣∣fj,(t)
∣∣ +

∑
i

∫ T

t
|Kij|ρ(s) ds

≥ fj,(t) +
∑

i

∫ T

t
Kijρ(s) ds for all t ∈ [, T], ()

which shows that

B�ρ(t) ≥ f(t) +
∫ T

t
K�ρ(s) ds for all t ∈ [, T].

Since β∗
εk

≥  and the vector-valued function h is nonnegative, we have

B�ρ(t) + β∗
εk

h(t) ≥ B�ρ(t) ≥ f(t) +
∫ T

t
K�ρ(s) ds for all t ∈ [, T]. ()

Since the sequences {fεk }∞k= and {gεk }∞k= are uniformly essentially bounded on [, T], from
(), we see that the sequence {β∗

εk
}∞k= is bounded, and the sequence {z∗

εk
}∞k= is uniformly

essentially bounded on [, T]. From (), we also see that {ẑεk }∞k= is uniformly essentially
bounded on [, T], i.e., uniformly bounded with respect to ‖·‖ on [, T]. Using Lemma .
and the induction argument given in the proof of Proposition ., there exists a subse-
quence {ẑ

ε
(p)
kj

}∞j= that weakly converges to some ẑ ∈ L([, T],Rp). On the other hand,

since the sequence {β∗
ε

(p)
kj

}∞j= is bounded, there exists a subsequence {β∗
εkj

}∞j= of {β∗
ε

(p)
kj

}∞j=

that converges to some β∗
 . Therefore we have

lim
j→∞

∫ T


ẑ�

εkj
(t)c(t) dt =

∫ T


ẑ�

 (t)c(t) dt for any c ∈ L([, T],Rp) ()

and

lim
j→∞β∗

εkj
= β∗

 . ()

By the feasibility of (ẑεkj
,β∗

εkj
), we have

B�ẑεkj
(t) + β∗

εkj
h(t) ≥ fεkj

(t) +
∫ T

t
K�ẑεkj

(s) ds for all t ∈ [, T] ()
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and

– β∗
εkj

h +
∫ T


g�

εkj
(t)ẑεkj

(t) dt ≤ –f. ()

Since g is assumed to be measurable and bounded on [, T], it follows that g ∈
L([, T],Rq). From (), we also have

lim
j→∞

∫ T



(
g(t)

)�ẑεkj
(t) dt =

∫ T



(
g(t)

)�ẑ(t) dt. ()

Since the sequence {gεk } is uniformly essentially bounded on [, T], there exists a positive
constant ζ̂ such that ‖gi,εk ‖∞ ≤ ζ̂ for each i and k. Now we have

∣∣∣∣
∫ T



(
gεkj

(t)
)�ẑεkj

(t) dt –
∫ T



(
g(t)

)�ẑεkj
(t) dt

∣∣∣∣
=

∣∣∣∣
∫ T



[
gεkj

(t) – g(t)
]�ẑεkj

(t) dt
∣∣∣∣

=
∣∣∣∣
∫

Uεkj

[
gεkj

(t) – g(t)
]�ẑεkj

(t) dt
∣∣∣∣ (using assumption ())

≤ μ(Uεkj
) ·

q∑
i=

(̂ζ + ζ) · ‖zi,εkj
‖∞ (ζ satisfies ())

< p · εkj · (̂ζ + ζ) ·
q∑

i=

‖zi,εkj
‖∞ (using assumption ())

and

∣∣∣∣
∫ T



(
gεkj

(t)
)�zεkj

(t) dt –
∫ T



(
g(t)

)�ẑ(t) dt
∣∣∣∣

≤
∣∣∣∣
∫ T



(
gεkj

(t)
)�ẑεkj

(t) dt –
∫ T



(
g(t)

)�ẑεkj
(t) dt

∣∣∣∣
+

∣∣∣∣
∫ T



(
g(t)

)�ẑεkj
(t) dt –

∫ T



(
g(t)

)�ẑ(t) dt
∣∣∣∣

< p · εkj · (̂ζ + ζ) ·
q∑

i=

‖zi,εkj
‖∞ +

∣∣∣∣
∫ T



(
g(t)

)�ẑεkj
(t) dt –

∫ T



(
g(t)

)�ẑ(t) dt
∣∣∣∣.

Since εkj → + as i → ∞, using (), we obtain

lim
j→∞

∫ T


g�

εkj
(t)ẑεkj

(t) dt =
∫ T


g�

 (t)ẑ(t) dt. ()

By taking the limit inferior from () and (), and using the weak convergence and the
limits (), (), and (), we obtain

[
lim inf

j→∞ B�ẑεkj
(t)

]
+ β∗

 h(t) ≥ f(t) +
∫ T

t
K�ẑ(s) ds a.e. in [, T] ()
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and

– β∗
h +

∫ T


g�

 (t)ẑ(t) dt ≤ –f. ()

Using Lemma ., we also have

ẑ(t) ≥ lim inf
j→∞ ẑεkj

(t) ≥  a.e. in [, T] ()

and

ẑ(t) ≤ lim sup
j→∞

ẑεkj
(t) a.e. in [, T]. ()

Since ẑεkj
(t) ≤ ρ(t) for all t ∈ [, T], from (), we also have

ẑ(t) ≤ ρ(t) a.e. in [, T]. ()

Since B ≥ , using () and (), we have

B�ẑ(t) + β∗
 h(t) ≥

[
lim inf

j→∞ B�ẑεkj
(t)

]
+ β∗

 h(t)

≥ f(t) +
∫ T

t
K�ẑ(s) ds a.e. in [, T]. ()

Let N be the subset of [, T] such that the inequality () is violated, and let N be the
subset of [, T] such that ẑ(t) � . We define N = N ∪ N. Then, from (), we see that
the set N has measure zero. Now we define

z∗
(t) =

⎧⎨
⎩

ẑ(t) if t /∈ N ,

ρ(t) if t ∈ N .

Then z∗
(t) ≥  for all t ∈ [, T] and z∗

(t) = ẑ(t) a.e. in [, T]. We are going to claim that
(z∗

,β∗
) is a feasible solution of dual Problem (DCLP). From (), we have

– β∗
h +

∫ T


g�

 (t)z∗
(t) dt = –β∗

h +
∫ T


g�

 (t)ẑ(t) dt ≤ –f. ()

• Suppose that t /∈ N . From (), we have

B�z∗
(t) + β∗

 h(t) = B�ẑ(t) + β∗
 h(t)

≥ f(t) +
∫ T

t
K�ẑ(s) ds = f(t) +

∫ T

t
K�z∗

(s) ds.

• Suppose that t ∈ N . From (), we see that

z∗
(t) ≤ ρ(t) a.e. in [, T]. ()
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Using (), (), and (), we also have

B�z∗
(t) + β∗

 h(t) = B�ρ(t) + β∗
 h(t)

≥ f(t) +
∫ T

t
K�ρ(s) ds

≥ f(t) +
∫ T

t
K�z∗

(s) ds.

From (), we conclude that (z∗
,β∗

) is indeed a feasible solution of dual problem (DCLP).
This completes the proof. �

5 Strong duality theorem for the parametric formulation
According to Propositions . and ., we are going to establish the strong duality theorem
based on the parametric formulations of continuous-time linear fractional programming
problems (CLFPεk ) and (DCLFPεk ) for εk → + as k → ∞.

Theorem . (Strong duality theorem) Given a sequence {εk}∞k= in R+ \ {} with εk → +
as k → ∞, suppose that the sequences of functions {fεk } and {gεk } are uniformly essentially
bounded on [, T]. Then the following statements hold true.

(i) For each k, there exist optimal solutions x∗
εk

, (y∗
εk

,α∗
εk

), and (z∗
εk

,β∗
εk

) of problems
(CLFPεk ), (APεk ), and (DCLFPεk ), respectively, such that

f +
∫ T

 f�
εk

(t)x∗
εk

(t) dt

h +
∫ T

 (h(t))�x∗
εk

(t) dt
= β∗

εk
= α∗

εk
f +

∫ T


f�
εk

(t)y∗
εk

(t) dt, ()

where α∗
εk

>  and x∗
εk

= y∗
εk

/α∗
εk

.
(ii) There exist a subsequence {εkj}∞j= of {εk}∞k= with εkj → + as j → ∞ and the feasible

solutions (y∗
,α∗

) and (z∗
,β∗

) of problems (AP) and (DCLFP), respectively, such
that the following limits hold true:

lim
j→∞α∗

εkj
= α∗

,

lim
j→∞β∗

εkj
= β∗

 ,

lim
j→∞

∫ T


f�
εkj

(t)y∗
εkj

(t) dt =
∫ T



(
f(t)

)�y∗
(t) dt,

and the following equality is satisfied:

α∗
f +

∫ T



(
f(t)

)�y∗
(t) dt = β∗

 . ()

If α∗
 > , then x∗

 = y∗
/α∗

 , (y∗
,α∗

), and (z∗
,β∗

) are the optimal solutions of problems
(CLFP), (AP), and (DCLFP), respectively, such that the following equalities hold
true:

α∗
f +

∫ T



(
f(t)

)�y∗
(t) dt = β∗

 =
f +

∫ T
 (f(t))�x∗

(t) dt

h +
∫ T

 (h(t))�x∗
(t) dt

. ()
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(iii) We further assume that the vector-valued function f satisfies the following
inequality:

q∑
j=

∫ T


fj,(t) dt ≤ f · σ

ζ̂
· exp

(
–

qνT
σ

)
, ()

where fj, is the jth component of f, and ζ̂ satisfies ‖gj,εk ‖∞ ≤ ζ̂ for each j and k. If
α∗

 = , then (y∗
, ) is the feasible solution of problem (AP), and y∗

 and (z∗
,β∗

) are
the optimal solutions of problems (CLFP) and (DCLFP), respectively, such that

∫ T



(
f(t)

)�y∗
(t) dt = β∗

 =
f +

∫ T
 (f(t))�y∗

(t) dt

h +
∫ T

 (h(t))�y∗
(t) dt

=
f + β∗


h + 

.

Proof Since fεk and gεk are assumed to be continuous on [, T], part (i) follows from The-
orem . immediately. To prove part (ii), using Proposition ., there exists a subsequence
{εk(◦)

j
}∞j= of {εk}∞k= with ε

(◦)
kj

→ + as j → ∞ such that

lim
j→∞β∗

ε
(◦)
kj

= β∗
 . ()

Now, using Proposition ., there exists a subsequence {εkj}∞j= of {εk(◦)
j

}∞j= with εkj → +
as j → ∞ such that

lim
j→∞α∗

εkj
f +

∫ T


f�
εkj

(t)y∗
εkj

(t) dt = α∗
f +

∫ T



(
f(t)

)�y∗
(t) dt, ()

where the sequence {y∗
εkj

}∞j= weakly converges to y∗
. From (), we have

β∗
εkj

= α∗
εkj

f +
∫ T


f�
εkj

(t)y∗
εkj

(t) dt.

Therefore, using () and (), we obtain the equality (). Suppose that α∗
 > , by Propo-

sition . and the equality (), it follows that (y∗
,α∗

) and (z∗
,β∗

) are the optimal solutions
of problems (AP) and (DCLFP), respectively. On the other hand, let x∗

 = y∗
/α∗

. Since
x∗

εkj
= y∗

εkj
/α∗

εkj
and the sequence {y∗

εkj
}∞j= weakly converges to y∗

, it follows that

lim
j→∞

∫ T



(
h(t)

)�x∗
εkj

(t) dt =
(

lim
j→∞


α∗

εkj

)
·
(

lim
j→∞

∫ T



(
h(t)

)�y∗
εkj

(t) dt
)

=

α∗


·
∫ T



(
h(t)

)�y∗
(t) dt =

∫ T



(
h(t)

)�x∗
(t) dt ()

and similarly

lim
j→∞

∫ T



(
f(t)

)�x∗
εkj

(t) dt =
∫ T



(
f(t)

)�x∗
(t) dt. ()
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Since the sequence {fεk } is uniformly essentially bounded on [, T], there exists a positive
constant τ̂ such that ‖fi,εk ‖∞ ≤ τ̂ for each i and k. Now we have

∣∣∣∣
∫ T



(
fεkj

(t)
)�x∗

εkj
(t) dt –

∫ T



(
f(t)

)�x∗
εkj

(t) dt
∣∣∣∣

=
∣∣∣∣
∫ T



[
fεkj

(t) – f(t)
]�x∗

εkj
(t) dt

∣∣∣∣
=

∣∣∣∣
∫

Vεkj

[
fεkj

(t) – f(t)
]�x∗

εkj
(t) dt

∣∣∣∣ (using assumption ())

≤ μ(Vεkj
) ·

q∑
i=

(̂τ + τ) · ∥∥x∗
i,εkj

∥∥∞

< q · εkj · (̂τ + τ) ·
q∑

i=

∥∥x∗
i,εkj

∥∥∞ (using assumption ())

and
∣∣∣∣
∫ T



(
fεkj

(t)
)�x∗

εkj
(t) dt –

∫ T



(
f(t)

)�x∗
(t) dt

∣∣∣∣
≤

∣∣∣∣
∫ T



(
fεkj

(t)
)�x∗

εkj
(t) dt –

∫ T



(
f(t)

)�x∗
εkj

(t) dt
∣∣∣∣

+
∣∣∣∣
∫ T



(
f(t)

)�x∗
εkj

(t) dt –
∫ T



(
f(t)

)�x∗
(t) dt

∣∣∣∣

< q · εkj · (̂τ + τ) ·
q∑

i=

∥∥x∗
i,εkj

∥∥∞ +
∣∣∣∣
∫ T



(
f(t)

)�x∗
εkj

(t) dt –
∫ T



(
f(t)

)�x∗
(t) dt

∣∣∣∣.

Since εkj → + as j → ∞, using (), we obtain

lim
j→∞

∫ T


f�
εkj

(t)x∗
εkj

(t) dt =
∫ T



(
f(t)

)�x∗
(t) dt. ()

Now, using (), (), (), and Proposition ., we obtain the equalities (). By the weak
duality Theorem ., we conclude that x∗

 and (z∗
,β∗

 ) are the optimal solutions of problems
(CLFP) and (DCLFP), respectively.

To prove part (iii), since α∗
 = , we see that (y∗

, ) is a feasible solution of problem (AP).
Therefore we have

∫ T



(
h(t)

)�y∗
(t) dt = 

and

By∗
(t) ≤

∫ t


Ky∗

(s) ds for all t ∈ [, T],

which implies

By∗
(t) –

∫ t


Ky∗

(s) ds ≤  ≤ g(t) for all t ∈ [, T].
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This shows that y∗
 is a feasible solution of problem (CLFP) with the objective value

f +
∫ T

 (f(t))�y∗
(t) dt

h +
∫ T

 (h(t))�y∗
(t) dt

=
f +

∫ T
 (f(t))�y∗

(t) dt
h + 

. ()

Since α∗
 = , the equality () says that

β∗
 =

∫ T



(
f(t)

)�y∗
(t) dt. ()

Using () and weak duality Theorem ., we obtain

f + β∗


h + 
=

f +
∫ T

 (f(t))�y∗
(t) dt

h + 
=

f +
∫ T

 (f(t))�y∗
(t) dt

h +
∫ T

 (h(t))�y∗
(t) dt

≤ β∗
 . ()

Let ŷj, be the jth component of ŷ. From () and (), we obtain

ŷj,(t) ≤ lim sup
i→∞

y∗
j,εki

(t) ≤ lim sup
i→∞

ζεki

hσ
· exp

(
qνT
σ

)

≤ ζ̂

hσ
· exp

(
qνT
σ

)
a.e. in [, T].

Let y∗
j, be the jth component of y∗

. Using (), we also obtain

y∗
j,(t) ≤ ζ̂

hσ
· exp

(
qνT
σ

)
a.e. in [, T]. ()

Now, using (), (), and (), we have

β∗
 =

∫ T



(
f(t)

)�y∗
(t) dt ≤ ζ̂

hσ
· exp

(
qνT
σ

)
·

q∑
j=

∫ T


fj,(t) dt ≤ f

h
,

which is equivalent to

f + β∗


h + 
≥ β∗

 .

Therefore, using (), we obtain

f +
∫ T

 (f(t))�y∗
(t) dt

h +
∫ T

 (h(t))�y∗
(t) dt

=
f + β∗


h + 

= β∗
 .

By the weak duality Theorem . again, we conclude that y∗
 and (z∗

,β∗
) are the optimal

solutions of problems (CLFP) and (DCLFP), respectively. This completes the proof. �

6 Strong duality theorem for the extended form
Based on Theorem . and Lusin’s theorem, we are going to extend the strong duality
Theorem . by assuming the functions f and g to be measurable and bounded on [, T].
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Theorem . (Rudin [], p.; Lusin’s theorem) Suppose that ζ is a measurable function
on X such that ζ (x) =  for x /∈ A, where A ⊂ X and μ(A) < ∞. Given ε > , there exists a
continuous function ζε on X such that

μ
({

x ∈ X : ζ (x) 	= ζε(x)
})

< ε.

Moreover, we may arrange it so that

sup
x∈X

∣∣ζε(x)
∣∣ ≤ sup

x∈X

∣∣ζ (x)
∣∣. ()

Consider the primal and dual pair of problems (CLFP) and (DCLFP). We take f = f and
g = g. Therefore we have

∣∣fj(t)
∣∣ ≤ τ for all t ∈ [, T] and for all j = , . . . , q

and

gi(t) ≤ ζ for all t ∈ [, T] and for all i = , . . . , p,

where fj is the jth component of f and gi is the ith component of g.

Lemma . Given ε > , there exists a vector-valued continuous function fε on [, T] such
that Vε = {t ∈ [, T] : f(t) 	= fε(t)} satisfies μ(Vε) < q · ε and τε ≤ τ.

Proof Since f is measurable on [, T] and μ([, T]) < ∞, by Lusin’s theorem ., given
ε > , there exists a continuous function fj,ε such that the set

Vj,ε =
{

t ∈ [, T] : fj(t) 	= fj,ε(t)
}

has measure μ(Vj,ε) < ε. Let Vε =
⋃q

j= Vj,ε . We define the vector-valued function

fε(t) =
(
f,ε(t), . . . , fq,ε(t)

)
.

Then

Vε =
{

t ∈ [, T] : f(t) 	= fε(t)
}

and μ(Vε) < q · ε.

According to (), we can arrange fε such that

sup
t∈[,T]

∣∣fj,ε(t)
∣∣ ≤ sup

t∈[,T]

∣∣fj(t)
∣∣

for each j = , . . . , q. Since we take f = f , we have

τj,ε = max
t∈[,T]

∣∣fj,ε(t)
∣∣ = sup

t∈[,T]

∣∣fj,ε(t)
∣∣ ≤ sup

t∈[,T]

∣∣fj(t)
∣∣ = sup

t∈[,T]

∣∣fj,(t)
∣∣ ≤ τ
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for each j = , . . . , q, which says that

τε = max{τ,ε , . . . , τq,ε} ≤ τ.

This completes the proof. �

Lemma . Given ε > , there exists a vector-valued continuous function gε(t) ≥  on
[, T] such that Uε = {t ∈ [, T] : g(t) 	= gε(t)} with μ(Uε) < p · ε and ζε ≤ ζ.

Proof Since g is measurable on [, T] and μ([, T]) < ∞, using Lusin’s theorem and the
similar argument from the proof of Lemma ., there exists a vector-valued continuous
function ĝε on [, T] such that

Ûε =
{

t ∈ [, T] : g(t) 	= ĝε(t)
}

and μ(Ûε) < p · ε.

We define gε(t) = |ĝε(t)|. Then gε(t) ≥  for all t ∈ [, T] and the vector-valued function
gε is also continuous on [, T]. For t /∈ Ûε , we have

gε(t) =
∣∣ĝε(t)

∣∣ =
∣∣g(t)

∣∣ = g(t).

Equivalently, if g(t) 	= gε(t), then t ∈ Ûε , which says that

Uε =
{

t ∈ [, T] : g(t) 	= gε(t)
} ⊆ Ûε and μ(Uε) ≤ μ(Ûε) < p · ε.

Finally, since we take g = g, according to (), we can arrange gε such that

ζi,ε = max
t∈[,T]

∣∣gi,ε(t)
∣∣ = sup

t∈[,T]

∣∣gi,ε(t)
∣∣ ≤ sup

t∈[,T]

∣∣gi(t)
∣∣ = sup

t∈[,T]

∣∣gi,(t)
∣∣ ≤ ζ

for each i = , . . . , p, which says that ζε ≤ ζ. This completes the proof. �

Now, we are in a position to obtain the strong duality theorem in the extended form.

Theorem . (Strong duality theorem - extended form) Consider the primal and dual
pair of problems (CLFP) and (DCLFP). Then the following statements hold true:

(i) There exist feasible solutions (y∗,α∗) and (z∗,β∗) of problems (AP) and (DCLFP),
respectively, such that

α∗f +
∫ T



(
f(t)

)�y∗(t) dt = β∗.

(ii) If α∗ > , then x∗ = y∗/α∗, (y∗,α∗), and (z∗,β∗
 ) are the optimal solutions of problems

(CLFP), (AP), and (DCLFP), respectively, such that

α∗f +
∫ T



(
f(t)

)�y∗(t) dt = β∗ =
f +

∫ T
 (f(t))�x∗(t) dt

h +
∫ T

 (h(t))�x∗(t) dt
.
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(iii) We further assume that the vector-valued function f satisfies the following
inequality:

q∑
j=

∫ T


fj(t) dt ≤ f · σ

ζ
· exp

(
–

qνT
σ

)
.

If α∗ = , then (y∗, ) is the feasible solution of problem (AP), and y∗ and (z∗,β∗) are
the optimal solutions of problems (CLFP) and (DCLFP), respectively, such that

∫ T



(
f(t)

)�y∗(t) dt = β∗ =
f +

∫ T
 (f(t))�y∗(t) dt

h +
∫ T

 (h(t))�y∗(t) dt
=

f + β∗

h + 
.

Proof Given a sequence {εk}∞k= in R+ \ {} with εk → + as k → ∞, since f and g are
assumed to be measurable and bounded on [, T], we can obtain the sequences of vector-
valued continuous functions {fεk }∞k= and {gεk }∞k= satisfying τεk ≤ τ and ζεk ≤ ζ, respec-
tively, which also says that the sequences {fεk }∞k= and {gεk }∞k= are uniformly essentially
bounded on [, T]. We also have μ(Uε) < p · ε and μ(Vε) < q · ε from Lemmas . and ..
Since ζε ≤ ζ from Lemma ., it says that ‖gi,εk ‖∞ ≤ ζ for each i and k. If we identify the
problem (AP) with problem (AP), the primal problem (CLFP) with problem (CLFP), and
the dual problem (DCLFP) with problem (DCFLP) by taking f = f and g = g, then the
result follows from Theorem . by taking ζ̂ = ζ. This completes the proof. �

Theorem . (Strong duality theorem - extended form) Consider the primal and dual
pair of problems (CLFP) and (DCLFP). Suppose that the vector-valued function f satisfies
the following inequality:

q∑
j=

∫ T


fj(t) dt ≤ f · σ

ζ
· exp

(
–

qνT
σ

)
. ()

Then the primal and dual pair of problems (CLFP) and (DCLFP) have no duality gap.

Proof The result follows from parts (ii) and (iii) of Theorem . immediately. �

Since the vector-valued function f is bounded by τ, i.e., |fj(t)| ≤ τ for all t ∈ [, T] and
for all j = , . . . , q, we also have the following interesting result.

Theorem . (Strong duality theorem - extended form) Consider the primal and dual
pair of problems (CLFP) and (DCLFP). Suppose that the bound τ satisfies

τ ≤ f · σ
q · T · ζ

· exp

(
–

qνT
σ

)
. ()

Then the primal and dual pair of problems (CLFP) and (DCLFP) have no duality gap.

Proof Since

q∑
j=

∫ T


fj(t) dt ≤

q∑
j=

∫ T



∣∣fj(t)
∣∣dt ≤ q · T · τ,
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the inequality () is satisfied automatically by using (). The result follows from Theo-
rem . immediately. �
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