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Abstract
In this paper, we propose a hybrid type method which consists of a resolvent
operator technique and a generalized projection onto a moving half-space for
approximating a zero of a maximal monotone mapping in Banach spaces. The weak
convergence of the iterative sequence generated by the algorithm is also proved. Our
results extend and improve the recent ones announced by Zhang (Oper. Res. Lett.
40:564-567, 2012) and Wei and Zhou (Nonlinear Anal. 71:341-346, 2009).
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1 Introduction
Let E be a Banach space with norm ‖ · ‖, and E∗ be the dual space of E. 〈·, ·〉 denotes
the duality pairing of E and E∗. Let M : E → E∗ be a maximal monotone mapping. We
consider the following problem: Find x ∈ E such that

 ∈ Mx. (.)

This is the zero point problem of a maximal monotone mapping. We denote the set of
solutions of Problem (.) by VI(E, M) and suppose VI(E, M) �= ∅.

Problem (.) plays an important role in optimizations. This is because it can be reduced
to a convex minimization problem and a variational inequality problem. Many authors
have constructed many iterative algorithms to approximate a solution of Problem (.) in
several settings (see [–] and the references therein).

Recently, in [], Wei and Zhou proposed the following iterative algorithm.

Algorithm .
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E, r > ,
yn = (J + rnM)–J(xn + en),
Jzn = αnJxn + ( – αn)Jyn,
Hn = {v ∈ E : φ(v, zn) ≤ αnφ(v, xn) + ( – αn)φ(v, xn + en)},
Wn = {z ∈ E, 〈z – xn, Jx – Jxn〉 ≤ },
xn+ = �Hn∩Wn x,

(.)
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where {αn} ⊂ [, ] with αn ≤  – δ for some δ ∈ (, ), {rn} ⊂ (, +∞) with infn≥ rn > 
and the error sequence {en} ⊂ E such that ‖en‖ → , as n → ∞. They proved the iterative
sequence (.) converges strongly to �VI(E,M)x.

We note that, in Algorithm ., we want to compute the generalized projection of x

onto Hn ∩ Wn to obtain the next iterate. If the set Hn ∩ Wn is a specific half-space, then
the generalized projection onto it is easily executed. But Hn ∩ Wn may not be a half-space,
although both of Hn and Wn are half-spaces. If Hn ∩Wn is a general closed and convex set,
then it is not easy to compute a minimal general distance. This might seriously affect the
efficiency of Algorithm ..

In order to make up the defect, we will construct a new iterative algorithm in this paper
by referring to the idea of [] as follows.

In [], Zhang proposed a modified proximal point algorithm with errors for approximat-
ing a solution of Problem (.) in Hilbert spaces. More precisely, he proposed Algorithm .
and proved Theorems . and . as follows.

Algorithm . (i.e. Algorithm . of [])
Step . Select an initial x ∈ H (a Hilbert space) and set k = .
Step . Find yk ∈ H such that

yk = Jk(xk + ek), (.)

where Jk = (I + λkM)– is the resolvent operator, the positive sequence {λk} satisfies α :=
infk≥ λk >  and {ek} is an error sequence.

Step . Set K = {z ∈ H , 〈xk – yk + ek , z – yk〉 ≤ } and

xk+ = ( – βk)xk + βkPK
(
xk – ρk(xk – yk)

)
, (.)

where PK denotes the metric projection from H onto K and {βk}+∞
k= ⊂ (, ] and {ρk}+∞

k= ⊂
[, ) are real sequences.

Theorem . (i.e. Theorem . of []) Let {xk} be the sequence generated by Algorithm ..
If

(i) ‖ek‖ ≤ ηk‖xk – yk‖ for ηk ≥  with
∑∞

k= η
k < +∞,

(ii) {βk}+∞
k= ⊂ [c, d] for some c, d ∈ (, ),

(iii)  < infk≥ ρk ≤ supk≥ ρk < ,
then the sequence {xk} converges weakly to a solution of Problem (.) in Hilbert spaces.

Theorem . (i.e. Theorem . of []) Let {xk} be the sequence generated by Algorithm .
for ρk = . If

(i) limk→∞ ‖ek‖ = ,
(ii) {βk}+∞

k= ⊂ [c, ] for some c > ,
then the sequence {xk} converges weakly to a solution of Problem (.) in Hilbert spaces.

We note that the set K is a half-space, and hence Algorithm . is easier to execute
than Algorithm .. But, since the metric projection strictly depends on the inner product
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properties of Hilbert spaces, Algorithm . can no longer be applied for Problem (.) in
Banach spaces.

However, many important problems related to practical problems are generally defined
in Banach spaces. For example, the maximal monotone operator related to an elliptic
boundary value problem has a Sobolev space W m,p(
) as its natural domain of definition
[]. Therefore, it is meaningful to consider Problem (.) in Banach spaces. Motivated
and inspired by Algorithms . and ., the purpose of this paper is to construct a new
iterative algorithm for approximating a solution of Problem (.) in Banach spaces. In the
algorithm, we will replace the generalized projection onto Hn ∩ Wn constructed in Algo-
rithm . by a generalized projection onto a specific constructible half-space by using the
idea of Algorithm .. This will make up the defect of Algorithm . mentioned above.

2 Preliminaries
In the sequel, we use xn → x and xn ⇀ x to denote the strong convergence and weak
convergence of the sequence {xn} in E to x, respectively.

Let J : E → E∗ be the normalized duality mapping defined by

J(x) :=
{

v ∈ E∗ : 〈x, v〉 = ‖v‖ = ‖x‖}, ∀x ∈ E. (.)

It is well known that if E is smooth then J is single-valued and if E is uniformly smooth,
then J is uniformly norm-to-norm continuous on bounded subsets of E. We shall still
denote the single-valued duality mapping by J . Recall that if E is smooth, strictly convex
and reflexive, then the duality mapping J is strictly monotone, single-valued, one-to-one
and onto, for more details, refer to [].

The duality mapping J from a smooth Banach space E into E∗ is said to be weakly se-
quentially continuous if xn ⇀ x implies Jxn ⇀ Jx; see [] and the references therein.

Definition . ([]) A multi-valued operator M : E → E∗ with domain D(M) = {z ∈ E :
Mz �= ∅} and range R(M) =

⋃{Mz ∈ E∗ : z ∈ D(M)} is said to be
(i) monotone if 〈x – x, u – u〉 ≥  for each xi ∈ D(M) and ui ∈ M(xi), i = , ;

(ii) maximal monotone, if M is monotone and its graph G(M) = {(x, u) : u ∈ Mx} is not
properly contained in the graph of any other monotone operator. It is well known
that a monotone mapping M is maximal if and only if for (x, u) ∈ E × E∗,
〈x – y, u – v〉 ≥  for every (y, v) ∈ G(M) implies u ∈ Mx.

Let E be a smooth Banach space. Define

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E.

Clearly, from the definition of φ we have
(A) (‖x‖ – ‖y‖) ≤ φ(y, x) ≤ (‖x‖ + ‖y‖),
(A) φ(x, y) = φ(x, z) + φ(z, y) + 〈x – z, Jz – Jy〉,
(A) φ(x, y) = 〈x, Jx – Jy〉 + 〈y – x, Jy〉 ≤ ‖x‖‖Jx – Jy‖ + ‖y – x‖‖y‖.
Let E be a reflexive, strictly convex, and smooth Banach space. K denotes a nonempty,

closed, and convex subset of E. By Alber [], for each x ∈ E, there exists a unique element
x ∈ K (denoted by �K (x)) such that

φ(x, x) = min
y∈K

φ(y, x).
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The mapping �K : E → K defined by �K (x) = x is called the generalized projection oper-
ator from E onto K . Moreover, x is called the generalized projection of x. See [] for some
properties of �K . If E is a Hilbert space, then �K is coincident with the metric projection
PK from E onto K .

Lemma . ([]) Let E be a reflexive, strictly convex, and smooth Banach space, let C be a
nonempty, closed and convex subset of E and let x ∈ E. Then

φ(y,�Cx) + φ(�Cx, x) ≤ φ(y, x), ∀y ∈ C.

Lemma . ([]) Let C be a nonempty, closed, and convex subset of a smooth Banach
space E, and let x ∈ E. Then x = �C(x) if and only if

〈x – y, Jx – Jx〉 ≥ , ∀y ∈ C.

Lemma . ([]) Let E be a uniformly convex and smooth Banach space. Let {yn}, {zn} be
two sequences of E. If φ(yn, zn) →  and either {yn}, or {zn} is bounded, then yn – zn → .

Lemma . ([]) Let E be a reflexive Banach space and λ be a positive number. If T :
E → E∗ is a maximal monotone mapping, then R(J + λT) = E∗ and (J + λT)– : E∗ → E is
a demi-continuous single-valued maximal monotone mapping.

Lemma . ([]) Let E be a real reflexive, strictly convex, and smooth Banach space, T :
E → E∗ be a maximal monotone operator with T– �= ∅, then for ∀x ∈ E, y ∈ T– and
r > , we have

φ
(
y, QT

r x
)

+ φ
(
QT

r x, x
) ≤ φ(y, x),

where QT
r x = (J + rT)–Jx.

Lemma . ([]) Let {an} and {tn} be two sequences of nonnegative real numbers satisfy-
ing the inequality

an+ ≤ an + tn for all n ≥ .

If
∑∞

n= tn < ∞, then limn→∞ an exists.

Lemma . Let S be a nonempty, closed, and convex subset of a uniformly convex, smooth
Banach space E. Let {xn} be a bounded sequence in E. Suppose that, for all u ∈ S,

φ(u, xn+) ≤ ( + θn)φ(u, xn) (.)

for every n = , , . . . and
∑∞

n= θn < ∞. Then {�S(xn)} is a Cauchy sequence.

Proof Put un := �Sxn for all n ≥ . For ω ∈ S, we have φ(un, xn) ≤ φ(ω, xn). Thus, {un} is
bounded. By un+ = �Sxn+ and un = �Sxn ∈ S, we infer that

φ(un+, xn+) ≤ φ(un, xn+) ≤ φ(un, xn) + θnM∗,
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where M∗ = sup{φ(un, xn), n ≥ }. Since
∑∞

n= θn < ∞, it follows from Lemma . that
limn→∞ φ(un, xn) exists. Using (.), for all m ≥ , we have φ(un, xn+m) ≤ ∏m–

i= ( +
θn+i)φ(un, xn). Then we infer from un+m = �Sxn+m and un = �Sxn ∈ S that

φ(un, un+m) ≤ φ(un, xn+m) – φ(un+m, xn+m)

≤
m–∏

i=

( + θn+i)φ(un, xn) – φ(un+m, xn+m)

≤ e
∑m–

i= θn+iφ(un, xn) – φ(un+m, xn+m).

Therefore, limn→∞ φ(un, un+m) = , and hence we have, from Lemma ., limn→∞ ‖un –
un+m‖ = , for all m ≥ . Consequently, {un} is a Cauchy sequence. �

3 Main results
In this section, we construct a new iterative algorithm and prove two convergence the-
orems for two different iterative sequences generated by the new iterative algorithm for
solving Problem (.) in Banach spaces.

Algorithm .
Step . (Initiation) Arbitrarily select initial x ∈ E and set k = , where E is a reflexive,

strictly convex, and smooth Banach space.
Step . (Resolvent step) Find yk ∈ E such that

yk = QM
λk

(xk + ek), (.)

where QM
λk

= (J + λkM)–J , the positive sequence {λk} satisfies α := infk≥ λk >  and {ek} is
an error sequence.

Step . (Projection step) Set Ck = {z ∈ E : 〈z – yk , J(xk + ek) – J(yk)〉 ≤ } and

xk+ = J–(( – βk)Jxk + βkJ�Ck J–(Jxk – ρk(Jxk – Jyk)
))

, (.)

where {βk} ⊂ (, ], and {ρk} ⊂ (, ].
Step . Let k = k +  and return to Step .

Now we show the convergence of the iterative sequence generated by Algorithm . in
the Banach space E.

Theorem . Let E be a uniformly convex, uniformly smooth Banach space whose duality
mapping J is weakly sequentially continuous and M : E → E∗ be a maximal monotone
mapping such that VI(E, M) �= ∅. If

max
(‖xk + ek‖ – ‖xk‖,

∥
∥J(xk + ek) – Jxk

∥
∥
) ≤ ηk ,

∞∑

k=

ηk < ∞, (.)

and lim infk→∞ βkρk > , then the iterative sequence {xk} generated by Algorithm . con-
verges weakly to an element x̂ ∈ VI(E, M). Further, x̂ = limk→∞ �VI(E,M)(xk).
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Proof We split the proof into four steps.
Step . Show that {xk} is bounded.
Suppose x∗ ∈ VI(E, M), then we have  ∈ M(x∗). From (.), it follows that


λk

(
J(xk + ek) – Jyk

) ∈ M(yk).

By the monotonicity of M, we deduce that

〈

x∗ – yk , –

λk

(
J(xk + ek) – Jyk

)
〉

≥ , (.)

which leads to

x∗ ∈ Ck =
{

z ∈ E :
〈
z – yk , J(xk + ek) – J(yk)

〉 ≤ 
}

.

Let tk = �Ck J–(Jxk – ρk(Jxk – Jyk)). It follows from (.) that

φ
(
x∗, xk+

) ≤ ∥
∥x∗∥∥ – 

〈
x∗, ( – βk)Jxk + βkJtk

〉
+ ( – βk)‖Jxk‖ + βk‖Jtk‖

≤ ( – βk)φ
(
x∗, xk

)
+ βkφ

(
x∗, tk

)
. (.)

By Lemmas . and ., we deduce that

φ
(
x∗, tk

) ≤ φ
(
x∗, J–(Jxk – ρk(Jxk – Jyk)

))

≤ ∥
∥x∗∥∥ – 

〈
x∗, Jxk – ρk(Jxk – Jyk)

〉
+ ( – ρk)‖Jxk‖ + ρk‖Jyk‖

= ( – ρk)φ
(
x∗, xk

)
+ ρkφ

(
x∗, yk

)

≤ ( – ρk)φ
(
x∗, xk

)
+ ρk

(
φ
(
x∗, xk + ek

)
– φ(yk , xk + ek)

)

= φ
(
x∗, xk

)
+ ρk

(
φ
(
x∗, xk + ek

)
– φ

(
x∗, xk

))
– ρkφ(yk , xk + ek)

≤ φ
(
x∗, xk

)
+ ρkηk

(

∥
∥x∗∥∥ + 

)
. (.)

From (.) and (.), we have

φ
(
x∗, xk+

) ≤ φ
(
x∗, xk

)
+ βkρkηk

(

∥
∥x∗∥∥ + 

)
– βkρkφ(yk , xk + ek)

≤ φ
(
x∗, xk

)
+ βkρkηk

(

∥
∥x∗∥∥ + 

) ≤ φ
(
x∗, xk

)
+ Mηk , (.)

where M = supk≥(βkρk)(‖x∗‖+ ). Since
∑∞

k= ηk < ∞, (.) implies that limk→∞ φ(x∗, xk)
exists by Lemma .. Hence, {xk} is bounded. From (.), we have ‖xk + ek‖ ≤ ‖xk‖ + ηk ,
and hence {xk + ek} is also bounded.

Step . Show that {xk} and {yk} have the same weak accumulation points.
It follows from (.) that

βkρkφ(yk , xk + ek) ≤ φ
(
x∗, xk

)
– φ

(
x∗, xk+

)
+ βkρkηk

(

∥
∥x∗∥∥ + 

)
,

and hence

φ(yk , xk + ek) ≤ 
βkρk

(
φ
(
x∗, xk

)
– φ

(
x∗, xk+

))
+ ηk

(

∥
∥x∗∥∥ + 

)
.
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Since lim infk→∞ βkρk > , limk→∞ φ(x∗, xk) exists and
∑∞

k= ηk < ∞, we have

lim
k→∞

φ(yk , xk + ek) = . (.)

By Lemma ., we deduce that

lim
k→∞

∥
∥yk – (xk + ek)

∥
∥ = . (.)

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
k→∞

∥
∥Jyk – J(xk + ek)

∥
∥ = . (.)

It follows from (.) that

lim
k→∞

∥
∥Jxk – J(xk + ek)

∥
∥ = . (.)

Since ‖Jyk – Jxk‖ ≤ ‖Jyk – J(xk + ek)‖ + ‖J(xk + ek) – Jxk‖, it follows from (.) and (.)
that

lim
k→∞

‖Jyk – Jxk‖ = . (.)

Since J– is also uniformly norm-to-norm continuous on bounded sets, we have

lim
k→∞

‖yk – xk‖ = . (.)

Consequently, we see that {xk} and {yk} have the same weak accumulation points.
Step . Show that each weak accumulation point of the sequence {xk} is a solution of

Problem (.).
Since {xk} is bounded, let us suppose x̂ is a weak accumulation point of {xk}. Hence, we

can extract a subsequence that weakly converges to x̂. Without loss of generality, let us
suppose that xk ⇀ x̂ as k → ∞. Then from (.), we have yk ⇀ x̂ as k → ∞.

For any (v, u) ∈ G(M), it follows from the monotonicity of M and (.) that

〈

yk – v,

λk

(
J(xk + ek) – Jyk

)
– u

〉

≥ ,

which implies that

〈xk – v, –u〉 ≥ 〈xk – yk , –u〉 –
〈

yk – v,

λk

(
J(xk + ek) – Jyk

)
〉

≥ 〈xk – yk , –u〉 –

α

‖yk – v‖∥∥J(xk + ek) – Jyk
∥
∥. (.)

Taking the limits in (.), by (.), (.), and the boundedness of {yk}, we have

〈x̂ – v, –u〉 = lim
k→∞

〈xk – v, –u〉 ≥ .
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Since M is maximal monotone, by the arbitrariness of (v, u) ∈ G(M), we conclude that
(x̂, ) ∈ G(M) and hence x̂ is a solution of Problem (.), i.e., x̂ ∈ VI(E, M).

Step . Show that xk ⇀ x̂, as k → ∞ and x̂ = limk→∞ �VI(E,M)(xk).
Put uk = �VI(E,M)(xk). Since x̂ ∈ VI(E, M), we have φ(uk , xk) ≤ φ(x̂, xk), which implies that

{uk} is bounded. Since uk ∈ VI(E, M), we have from (.)

φ(uk , xk+) ≤ φ(uk , xk) + Mηk =
(

 +
Mηk

φ(uk , xk)

)

φ(uk , xk)

≤ (
 + M∗ηk

)
φ(uk , xk), (.)

where M∗ = supk≥( M
φ(uk ,xk ) ). Since

∑∞
k= ηk < ∞, it follows from Lemma . that {uk} is

a Cauchy sequence. Since VI(E, M) is closed, we see that {uk} converges strongly to z ∈
VI(E, M). By the uniform smoothness of E, we also have

lim
k→∞

‖Juk – Jz‖ = . (.)

On the other hand, it follows from x̂ ∈ VI(E, M), uk = �VI(E,M)xk , and Lemma . that

〈uk – x̂, Jxk – Juk〉 ≥ .

Let k → ∞, it follows from the weakly sequential continuity of J and (.) that 〈z – x̂, Jx̂ –
Jz〉 ≥ . Since E is strictly convex, we have z = x̂. Therefore, {xk} converges weakly to x̂ ∈
VI(E, M), where x̂ = limk→∞ �VI(E,M)xk . �

Next, we show the convergence of the iterative sequence when ρk = .

Theorem . Let E be a uniformly convex, uniformly smooth Banach space whose duality
mapping J is weakly sequentially continuous and M : E → E∗ be a maximal monotone
mapping such that VI(E, M) �= ∅. Let {xk} be the sequence generated by Algorithm . for
ρk = .

If {λk}, {βk}, and {ek} satisfy infk≥ λk = α > ,  < βk ≤ , lim infk→∞ βk > , and
limk→∞ ‖ek‖ = , then the iterative sequence {xk} converges weakly to an element x̂ ∈
VI(E, M). Further, x̂ = limk→∞ �VI(E,M)(xk).

Proof Suppose x∗ ∈ VI(E, M), then we have  ∈ M(x∗). It is similar to the proof of Theo-
rem ., we have

x∗ ∈ Ck =
{

z ∈ E :
〈
z – yk , J(xk + ek) – J(yk)

〉 ≤ 
}

.

Let tk = �Ck (xk). It follows from (.) for ρk =  that

φ
(
x∗, xk+

) ≤ ∥
∥x∗∥∥ – 

〈
x∗, ( – βk)Jxk + βkJtk

〉
+ ( – βk)‖Jxk‖ + βk‖Jtk‖

≤ ( – βk)φ
(
x∗, xk

)
+ βkφ

(
x∗, tk

)
. (.)

By Lemma ., we deduce that

φ
(
x∗, tk

)
= φ

(
x∗,�Ck xk

) ≤ φ
(
x∗, xk

)
– φ(tk , xk). (.)
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From (.) and (.), we have

φ
(
x∗, xk+

) ≤ φ
(
x∗, xk

)
– βkφ(tk , xk) ≤ φ

(
x∗, xk

)
, (.)

which implies that limk→∞ φ(x∗, xk) exists and hence {xk} is bounded. Consequently, {xk +
ek} is also bounded. Since lim infk→∞ βk > , from (.), we have

lim
k→∞

φ(tk , xk) = . (.)

Thus, it follows from Lemma . that

lim
k→∞

‖tk – xk‖ = , (.)

and hence {tk} is bounded. Since ‖(xk + ek) – tk‖ ≤ ‖xk – tk‖ + ‖ek‖, we have from
limk→∞ ‖ek‖ =  and (.)

lim
k→∞

∥
∥(xk + ek) – tk

∥
∥ = .

Hence, it follows from (A) that

lim
k→∞

φ(tk , xk + ek) = . (.)

From the definition of Ck , we have yk = �Ck (xk + ek). Hence, we obtain from Lemma .
and tk = �Ck (xk) ∈ Ck

φ(tk , yk) ≤ φ(tk , xk + ek) – φ(yk , xk + ek) ≤ φ(tk , xk + ek). (.)

It follows from (.) and (.) that

lim
k→∞

φ(tk , yk) = . (.)

From Lemma ., we obtain

lim
k→∞

‖tk – yk‖ = . (.)

Since ‖yk – xk‖ ≤ ‖yk – tk‖ + ‖tk – xk‖, we have from (.) and (.)

lim
k→∞

‖yk – xk‖ = . (.)

Since ‖xk + ek – yk‖ ≤ ‖xk + ek – xk‖ + ‖xk – yk‖, it follows from limk→∞ ‖ek‖ =  and (.)
that

lim
k→∞

‖xk + ek – yk‖ = . (.)

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
k→∞

∥
∥J(xk + ek) – Jyk

∥
∥ = . (.)
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By a similar proof to Step  and Step  in the proof of Theorem ., we can easily obtain
the desired conclusion. Therefore, we omit it. �

Remark . There are the following differences between Theorem . and the recent re-
sults announced by [, ] and []:

(i) When E = H (a Hilbert space), Theorem . reduces to Theorem . of Zhang []
(i.e. Theorem . of this paper). That is to say, Theorem . extends Theorem . of
Zhang [] from Hilbert spaces to more general Banach spaces. Furthermore, we see
that the convergence point of {xk} is limk→∞ �VI(E,M)(xk), which is more concrete
than that of Theorem . of Zhang [].

(ii) In Algorithm ., the set Ck is a half-space, and hence it is easier to compute the
generalized projection of the current iterate onto it than that onto a general closed
convex set Hn ∩ Wn or Hn constructed in [, ] to obtain the next iterate. Hence,
Algorithm . improves Algorithm . and those algorithms in [] from a numerical
point of view.

In the following, we give a simple example to compare Algorithm . constructed in []
with Algorithm . for ρk = .

Example . Let E = R, M : R →R and M(x) = x. It is obvious that M is maximal mono-
tone and VI(E, M) = {} �= ∅.

The numerical experiment result of Algorithm . Take rk = + 
k+ , αk = 

 – 
k+ , ek = ,

for all k ≥ , and initial point x = – 
 ∈ R. Then {xk} generated by Algorithm . is the

following sequence:

{
x = – 

 ∈R,
xk+ = k+k+

k+k+ xk , k ≥ ,
(.)

and xk →  as k → ∞, where  ∈ VI(E, M).

Proof By Algorithm ., we have y = 
+r

x = – 
 , z = – 

 > x, H = {v ∈ R,‖v – z‖ ≤
‖v – x‖} = [z – ( z–x

 ), +∞) = [– 
 , +∞), W = {v ∈ R, 〈v – x, x – x〉 ≤ } = R. There-

fore, H ∩ W = H = [– 
 , +∞) and x = P[– 

 ,+∞)(–

 ) = – 

 = ·+·+
·+·+ x. Suppose

that xk+ = k+k+
k+k+ xk . By Algorithm ., yk+ = k+

k+ xk+, and hence

 > zk+ = αk+xk+ + ( – αk+)
k + 

k + 
xk+ > xk+, (.)

Hk+ = {v ∈R : ‖v – zk+‖ ≤ ‖v – xk+‖} = [zk+ – zk+–xk+
 , +∞) ⊂ [xk+, +∞), Wk+ = {v ∈R :

〈v – xk+, x – xk+〉 ≤ } = [xk+, +∞). Therefore, Hk+ ∩Wk+ = Hk+ = [zk+ – zk+–xk+
 , +∞)

and

xk+ = P[zk+– zk+–xk+
 ,+∞)(x) = zk+ –

zk+ – xk+


. (.)

Combine (.) with (.), we obtain xk+ = (k+)+(k+)+
(k+)+(k+)+ xk+. By induction, (.)

holds. �
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Table 1 The numerical experiment result of Algorithm 1.1

k 0 1 2 3 4 5 6 7 ···
xk – 1

3 – 7
30 – 8

45 – 9
135 – 89

1,650 – 1,424
32,175 – 127,448

3,378,375 – 3,616,337
114,864,750 · · ·

Next, we give the numerical experiment results by using Table , which shows that the
iteration process of the sequence {xk} as initial point x = – 

 . From the figures, we can see
that {xk} converges to .

The numerical experiment result of Algorithm . for ρk =  Take λk =  + 
k+ , k ≥ ,

βk = , ek = , for all k ≥ , and initial point x = – 
 ∈ R. Then {xk} generated by Algo-

rithm . is the following sequence:

{
x = – 

 ,
xk+ = k+

k+ xk , k ≥ ,
(.)

and xk →  as k → ∞, where  ∈ VI(E, M).

Proof By (.),

 > y =


( + λ)
x =


 + 

+
x =

 + 
 ·  + 

x =



x = –



> x.

By Algorithm ., we have C = {z ∈ R : 〈z – y, x – y〉 ≤ } = [y, +∞). By (.), x =
PC (x) = y = – 

 > x. This is

{
x = – 

 ,
x = y = +

·+ x > x.

Suppose that

{
x = – 

 ,
xk+ = yk = k+

k+ xk > xk .
(.)

By (.),

 > yk+ =


 + λk+
xk+ =


 + 

(k+)+
xk+ =

(k + ) + 
(k + ) + 

xk+ > xk+. (.)

It follows from Algorithm . and (.) that Ck+ = {z ∈ E : 〈z – yk+, xk+ – yk+〉 ≤ } =
[yk+, +∞), and hence

xk+ = PCk+ xk+ = P[yk+,+∞)xk+ = yk+ =
(k + ) + 

(k + ) + 
xk+.

By induction, (.) holds. �

Next, we give the numerical experiment results by using Table , which shows that the
iteration process of the sequence {xk} as initial point x = – 

 . From the figures, we can see
that {xk} converges to .
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Table 2 The numerical experiment result of Algorithm 3.1

k 0 1 2 3 4 5 6 7 ···
xk – 1

3 – 2
15 – 6

105 – 8
315 – 8

693 – 16
3,003 – 16

6,435 – 128
109,395 · · ·

Remark . Comparing Table  with Table , we can intuitively see that the convergence
speed of Algorithm . for ρk =  is faster than that of Algorithm . constructed in [].

Remark . In [, ], the authors proposed several different iterative algorithms for
approximating zeros of m-accretive operators in Banach spaces. The nonexpansiveness of
the resolvent operator of the m-accretive operator is employed in theses algorithms. Since
the resolvent operator of a maximal monotone operator is not nonexpansive in Banach
spaces, these algorithms cannot be applied to Problem (.).

Remark . In [], the authors established viscosity iterative algorithms for approxi-
mating a common element of the set of fixed points of a nonexpansive mapping and the
set of solutions of the variational inequality for an inverse-strongly monotone mapping
in Hilbert spaces by using the nonexpansiveness of the metric projection operator. How-
ever, the metric projection operator is not nonexpansive in Banach spaces. Therefore, the
algorithms of [] cannot be applied to Problem (.) of this paper in Banach spaces.
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