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Abstract
In this paper, we propose a hybrid type method which consists of a resolvent
operator technique and a generalized projection onto a moving half-space for
approximating a zero of a maximal monotone mapping in Banach spaces. The weak
convergence of the iterative sequence generated by the algorithm is also proved. Our
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40:564-567, 2012) and Wei and Zhou (Nonlinear Anal. 71:341-346, 2009).
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1 Introduction
Let E be a Banach space with norm ‖ · ‖, and E∗ be the dual space of E. 〈·, ·〉 denotes
the duality pairing of E and E∗. Let M : E → E∗ be a maximal monotone mapping. We
consider the following problem: Find x ∈ E such that

 ∈ Mx. (.)

This is the zero point problem of a maximal monotone mapping. We denote the set of
solutions of Problem (.) by VI(E, M) and suppose VI(E, M) �= ∅.

Problem (.) plays an important role in optimizations. This is because it can be reduced
to a convex minimization problem and a variational inequality problem. Many authors
have constructed many iterative algorithms to approximate a solution of Problem (.) in
several settings (see [–] and the references therein).

Recently, in [], Wei and Zhou proposed the following iterative algorithm.

Algorithm .
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E, r > ,
yn = (J + rnM)–J(xn + en),
Jzn = αnJxn + ( – αn)Jyn,
Hn = {v ∈ E : φ(v, zn) ≤ αnφ(v, xn) + ( – αn)φ(v, xn + en)},
Wn = {z ∈ E, 〈z – xn, Jx – Jxn〉 ≤ },
xn+ = �Hn∩Wn x,

(.)
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where {αn} ⊂ [, ] with αn ≤  – δ for some δ ∈ (, ), {rn} ⊂ (, +∞) with infn≥ rn > 
and the error sequence {en} ⊂ E such that ‖en‖ → , as n → ∞. They proved the iterative
sequence (.) converges strongly to �VI(E,M)x.

We note that, in Algorithm ., we want to compute the generalized projection of x

onto Hn ∩ Wn to obtain the next iterate. If the set Hn ∩ Wn is a specific half-space, then
the generalized projection onto it is easily executed. But Hn ∩ Wn may not be a half-space,
although both of Hn and Wn are half-spaces. If Hn ∩Wn is a general closed and convex set,
then it is not easy to compute a minimal general distance. This might seriously affect the
efficiency of Algorithm ..

In order to make up the defect, we will construct a new iterative algorithm in this paper
by referring to the idea of [] as follows.

In [], Zhang proposed a modified proximal point algorithm with errors for approximat-
ing a solution of Problem (.) in Hilbert spaces. More precisely, he proposed Algorithm .
and proved Theorems . and . as follows.

Algorithm . (i.e. Algorithm . of [])
Step . Select an initial x ∈ H (a Hilbert space) and set k = .
Step . Find yk ∈ H such that

yk = Jk(xk + ek), (.)

where Jk = (I + λkM)– is the resolvent operator, the positive sequence {λk} satisfies α :=
infk≥ λk >  and {ek} is an error sequence.

Step . Set K = {z ∈ H , 〈xk – yk + ek , z – yk〉 ≤ } and

xk+ = ( – βk)xk + βkPK
(
xk – ρk(xk – yk)

)
, (.)

where PK denotes the metric projection from H onto K and {βk}+∞
k= ⊂ (, ] and {ρk}+∞

k= ⊂
[, ) are real sequences.

Theorem . (i.e. Theorem . of []) Let {xk} be the sequence generated by Algorithm ..
If

(i) ‖ek‖ ≤ ηk‖xk – yk‖ for ηk ≥  with
∑∞

k= η
k < +∞,

(ii) {βk}+∞
k= ⊂ [c, d] for some c, d ∈ (, ),

(iii)  < infk≥ ρk ≤ supk≥ ρk < ,
then the sequence {xk} converges weakly to a solution of Problem (.) in Hilbert spaces.

Theorem . (i.e. Theorem . of []) Let {xk} be the sequence generated by Algorithm .
for ρk = . If

(i) limk→∞ ‖ek‖ = ,
(ii) {βk}+∞

k= ⊂ [c, ] for some c > ,
then the sequence {xk} converges weakly to a solution of Problem (.) in Hilbert spaces.

We note that the set K is a half-space, and hence Algorithm . is easier to execute
than Algorithm .. But, since the metric projection strictly depends on the inner product
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properties of Hilbert spaces, Algorithm . can no longer be applied for Problem (.) in
Banach spaces.

However, many important problems related to practical problems are generally defined
in Banach spaces. For example, the maximal monotone operator related to an elliptic
boundary value problem has a Sobolev space W m,p(
) as its natural domain of definition
[]. Therefore, it is meaningful to consider Problem (.) in Banach spaces. Motivated
and inspired by Algorithms . and ., the purpose of this paper is to construct a new
iterative algorithm for approximating a solution of Problem (.) in Banach spaces. In the
algorithm, we will replace the generalized projection onto Hn ∩ Wn constructed in Algo-
rithm . by a generalized projection onto a specific constructible half-space by using the
idea of Algorithm .. This will make up the defect of Algorithm . mentioned above.

2 Preliminaries
In the sequel, we use xn → x and xn ⇀ x to denote the strong convergence and weak
convergence of the sequence {xn} in E to x, respectively.

Let J : E → E∗ be the normalized duality mapping defined by

J(x) :=
{

v ∈ E∗ : 〈x, v〉 = ‖v‖ = ‖x‖}, ∀x ∈ E. (.)

It is well known that if E is smooth then J is single-valued and if E is uniformly smooth,
then J is uniformly norm-to-norm continuous on bounded subsets of E. We shall still
denote the single-valued duality mapping by J . Recall that if E is smooth, strictly convex
and reflexive, then the duality mapping J is strictly monotone, single-valued, one-to-one
and onto, for more details, refer to [].

The duality mapping J from a smooth Banach space E into E∗ is said to be weakly se-
quentially continuous if xn ⇀ x implies Jxn ⇀ Jx; see [] and the references therein.

Definition . ([]) A multi-valued operator M : E → E∗ with domain D(M) = {z ∈ E :
Mz �= ∅} and range R(M) =

⋃{Mz ∈ E∗ : z ∈ D(M)} is said to be
(i) monotone if 〈x – x, u – u〉 ≥  for each xi ∈ D(M) and ui ∈ M(xi), i = , ;

(ii) maximal monotone, if M is monotone and its graph G(M) = {(x, u) : u ∈ Mx} is not
properly contained in the graph of any other monotone operator. It is well known
that a monotone mapping M is maximal if and only if for (x, u) ∈ E × E∗,
〈x – y, u – v〉 ≥  for every (y, v) ∈ G(M) implies u ∈ Mx.

Let E be a smooth Banach space. Define

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E.

Clearly, from the definition of φ we have
(A) (‖x‖ – ‖y‖) ≤ φ(y, x) ≤ (‖x‖ + ‖y‖),
(A) φ(x, y) = φ(x, z) + φ(z, y) + 〈x – z, Jz – Jy〉,
(A) φ(x, y) = 〈x, Jx – Jy〉 + 〈y – x, Jy〉 ≤ ‖x‖‖Jx – Jy‖ + ‖y – x‖‖y‖.
Let E be a reflexive, strictly convex, and smooth Banach space. K denotes a nonempty,

closed, and convex subset of E. By Alber [], for each x ∈ E, there exists a unique element
x ∈ K (denoted by �K (x)) such that

φ(x, x) = min
y∈K

φ(y, x).
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The mapping �K : E → K defined by �K (x) = x is called the generalized projection oper-
ator from E onto K . Moreover, x is called the generalized projection of x. See [] for some
properties of �K . If E is a Hilbert space, then �K is coincident with the metric projection
PK from E onto K .

Lemma . ([]) Let E be a reflexive, strictly convex, and smooth Banach space, let C be a
nonempty, closed and convex subset of E and let x ∈ E. Then

φ(y,�Cx) + φ(�Cx, x) ≤ φ(y, x), ∀y ∈ C.

Lemma . ([]) Let C be a nonempty, closed, and convex subset of a smooth Banach
space E, and let x ∈ E. Then x = �C(x) if and only if

〈x – y, Jx – Jx〉 ≥ , ∀y ∈ C.

Lemma . ([]) Let E be a uniformly convex and smooth Banach space. Let {yn}, {zn} be
two sequences of E. If φ(yn, zn) →  and either {yn}, or {zn} is bounded, then yn – zn → .

Lemma . ([]) Let E be a reflexive Banach space and λ be a positive number. If T :
E → E∗ is a maximal monotone mapping, then R(J + λT) = E∗ and (J + λT)– : E∗ → E is
a demi-continuous single-valued maximal monotone mapping.

Lemma . ([]) Let E be a real reflexive, strictly convex, and smooth Banach space, T :
E → E∗ be a maximal monotone operator with T– �= ∅, then for ∀x ∈ E, y ∈ T– and
r > , we have

φ
(
y, QT

r x
)

+ φ
(
QT

r x, x
) ≤ φ(y, x),

where QT
r x = (J + rT)–Jx.

Lemma . ([]) Let {an} and {tn} be two sequences of nonnegative real numbers satisfy-
ing the inequality

an+ ≤ an + tn for all n ≥ .

If
∑∞

n= tn < ∞, then limn→∞ an exists.

Lemma . Let S be a nonempty, closed, and convex subset of a uniformly convex, smooth
Banach space E. Let {xn} be a bounded sequence in E. Suppose that, for all u ∈ S,

φ(u, xn+) ≤ ( + θn)φ(u, xn) (.)

for every n = , , . . . and
∑∞

n= θn < ∞. Then {�S(xn)} is a Cauchy sequence.

Proof Put un := �Sxn for all n ≥ . For ω ∈ S, we have φ(un, xn) ≤ φ(ω, xn). Thus, {un} is
bounded. By un+ = �Sxn+ and un = �Sxn ∈ S, we infer that

φ(un+, xn+) ≤ φ(un, xn+) ≤ φ(un, xn) + θnM∗,
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where M∗ = sup{φ(un, xn), n ≥ }. Since
∑∞

n= θn < ∞, it follows from Lemma . that
limn→∞ φ(un, xn) exists. Using (.), for all m ≥ , we have φ(un, xn+m) ≤ ∏m–

i= ( +
θn+i)φ(un, xn). Then we infer from un+m = �Sxn+m and un = �Sxn ∈ S that

φ(un, un+m) ≤ φ(un, xn+m) – φ(un+m, xn+m)

≤
m–∏

i=

( + θn+i)φ(un, xn) – φ(un+m, xn+m)

≤ e
∑m–

i= θn+iφ(un, xn) – φ(un+m, xn+m).

Therefore, limn→∞ φ(un, un+m) = , and hence we have, from Lemma ., limn→∞ ‖un –
un+m‖ = , for all m ≥ . Consequently, {un} is a Cauchy sequence. �

3 Main results
In this section, we construct a new iterative algorithm and prove two convergence the-
orems for two different iterative sequences generated by the new iterative algorithm for
solving Problem (.) in Banach spaces.

Algorithm .
Step . (Initiation) Arbitrarily select initial x ∈ E and set k = , where E is a reflexive,

strictly convex, and smooth Banach space.
Step . (Resolvent step) Find yk ∈ E such that

yk = QM
λk

(xk + ek), (.)

where QM
λk

= (J + λkM)–J , the positive sequence {λk} satisfies α := infk≥ λk >  and {ek} is
an error sequence.

Step . (Projection step) Set Ck = {z ∈ E : 〈z – yk , J(xk + ek) – J(yk)〉 ≤ } and

xk+ = J–(( – βk)Jxk + βkJ�Ck J–(Jxk – ρk(Jxk – Jyk)
))

, (.)

where {βk} ⊂ (, ], and {ρk} ⊂ (, ].
Step . Let k = k +  and return to Step .

Now we show the convergence of the iterative sequence generated by Algorithm . in
the Banach space E.

Theorem . Let E be a uniformly convex, uniformly smooth Banach space whose duality
mapping J is weakly sequentially continuous and M : E → E∗ be a maximal monotone
mapping such that VI(E, M) �= ∅. If

max
(‖xk + ek‖ – ‖xk‖,

∥
∥J(xk + ek) – Jxk

∥
∥
) ≤ ηk ,

∞∑

k=

ηk < ∞, (.)

and lim infk→∞ βkρk > , then the iterative sequence {xk} generated by Algorithm . con-
verges weakly to an element x̂ ∈ VI(E, M). Further, x̂ = limk→∞ �VI(E,M)(xk).
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Proof We split the proof into four steps.
Step . Show that {xk} is bounded.
Suppose x∗ ∈ VI(E, M), then we have  ∈ M(x∗). From (.), it follows that


λk

(
J(xk + ek) – Jyk

) ∈ M(yk).

By the monotonicity of M, we deduce that

〈

x∗ – yk , –

λk

(
J(xk + ek) – Jyk

)
〉

≥ , (.)

which leads to

x∗ ∈ Ck =
{

z ∈ E :
〈
z – yk , J(xk + ek) – J(yk)

〉 ≤ 
}

.

Let tk = �Ck J–(Jxk – ρk(Jxk – Jyk)). It follows from (.) that

φ
(
x∗, xk+

) ≤ ∥
∥x∗∥∥ – 

〈
x∗, ( – βk)Jxk + βkJtk

〉
+ ( – βk)‖Jxk‖ + βk‖Jtk‖

≤ ( – βk)φ
(
x∗, xk

)
+ βkφ

(
x∗, tk

)
. (.)

By Lemmas . and ., we deduce that

φ
(
x∗, tk

) ≤ φ
(
x∗, J–(Jxk – ρk(Jxk – Jyk)

))

≤ ∥
∥x∗∥∥ – 

〈
x∗, Jxk – ρk(Jxk – Jyk)

〉
+ ( – ρk)‖Jxk‖ + ρk‖Jyk‖

= ( – ρk)φ
(
x∗, xk

)
+ ρkφ

(
x∗, yk

)

≤ ( – ρk)φ
(
x∗, xk

)
+ ρk

(
φ
(
x∗, xk + ek

)
– φ(yk , xk + ek)

)

= φ
(
x∗, xk

)
+ ρk

(
φ
(
x∗, xk + ek

)
– φ

(
x∗, xk

))
– ρkφ(yk , xk + ek)

≤ φ
(
x∗, xk

)
+ ρkηk

(

∥
∥x∗∥∥ + 

)
. (.)

From (.) and (.), we have

φ
(
x∗, xk+

) ≤ φ
(
x∗, xk

)
+ βkρkηk

(

∥
∥x∗∥∥ + 

)
– βkρkφ(yk , xk + ek)

≤ φ
(
x∗, xk

)
+ βkρkηk

(

∥
∥x∗∥∥ + 

) ≤ φ
(
x∗, xk

)
+ Mηk , (.)

where M = supk≥(βkρk)(‖x∗‖+ ). Since
∑∞

k= ηk < ∞, (.) implies that limk→∞ φ(x∗, xk)
exists by Lemma .. Hence, {xk} is bounded. From (.), we have ‖xk + ek‖ ≤ ‖xk‖ + ηk ,
and hence {xk + ek} is also bounded.

Step . Show that {xk} and {yk} have the same weak accumulation points.
It follows from (.) that

βkρkφ(yk , xk + ek) ≤ φ
(
x∗, xk

)
– φ

(
x∗, xk+

)
+ βkρkηk

(

∥
∥x∗∥∥ + 

)
,

and hence

φ(yk , xk + ek) ≤ 
βkρk

(
φ
(
x∗, xk

)
– φ

(
x∗, xk+

))
+ ηk

(

∥
∥x∗∥∥ + 

)
.
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Since lim infk→∞ βkρk > , limk→∞ φ(x∗, xk) exists and
∑∞

k= ηk < ∞, we have

lim
k→∞

φ(yk , xk + ek) = . (.)

By Lemma ., we deduce that

lim
k→∞

∥
∥yk – (xk + ek)

∥
∥ = . (.)

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
k→∞

∥
∥Jyk – J(xk + ek)

∥
∥ = . (.)

It follows from (.) that

lim
k→∞

∥
∥Jxk – J(xk + ek)

∥
∥ = . (.)

Since ‖Jyk – Jxk‖ ≤ ‖Jyk – J(xk + ek)‖ + ‖J(xk + ek) – Jxk‖, it follows from (.) and (.)
that

lim
k→∞

‖Jyk – Jxk‖ = . (.)

Since J– is also uniformly norm-to-norm continuous on bounded sets, we have

lim
k→∞

‖yk – xk‖ = . (.)

Consequently, we see that {xk} and {yk} have the same weak accumulation points.
Step . Show that each weak accumulation point of the sequence {xk} is a solution of

Problem (.).
Since {xk} is bounded, let us suppose x̂ is a weak accumulation point of {xk}. Hence, we

can extract a subsequence that weakly converges to x̂. Without loss of generality, let us
suppose that xk ⇀ x̂ as k → ∞. Then from (.), we have yk ⇀ x̂ as k → ∞.

For any (v, u) ∈ G(M), it follows from the monotonicity of M and (.) that

〈

yk – v,

λk

(
J(xk + ek) – Jyk

)
– u

〉

≥ ,

which implies that

〈xk – v, –u〉 ≥ 〈xk – yk , –u〉 –
〈

yk – v,

λk

(
J(xk + ek) – Jyk

)
〉

≥ 〈xk – yk , –u〉 –

α

‖yk – v‖∥∥J(xk + ek) – Jyk
∥
∥. (.)

Taking the limits in (.), by (.), (.), and the boundedness of {yk}, we have

〈x̂ – v, –u〉 = lim
k→∞

〈xk – v, –u〉 ≥ .
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Since M is maximal monotone, by the arbitrariness of (v, u) ∈ G(M), we conclude that
(x̂, ) ∈ G(M) and hence x̂ is a solution of Problem (.), i.e., x̂ ∈ VI(E, M).

Step . Show that xk ⇀ x̂, as k → ∞ and x̂ = limk→∞ �VI(E,M)(xk).
Put uk = �VI(E,M)(xk). Since x̂ ∈ VI(E, M), we have φ(uk , xk) ≤ φ(x̂, xk), which implies that

{uk} is bounded. Since uk ∈ VI(E, M), we have from (.)

φ(uk , xk+) ≤ φ(uk , xk) + Mηk =
(

 +
Mηk

φ(uk , xk)

)

φ(uk , xk)

≤ (
 + M∗ηk

)
φ(uk , xk), (.)

where M∗ = supk≥( M
φ(uk ,xk ) ). Since

∑∞
k= ηk < ∞, it follows from Lemma . that {uk} is

a Cauchy sequence. Since VI(E, M) is closed, we see that {uk} converges strongly to z ∈
VI(E, M). By the uniform smoothness of E, we also have

lim
k→∞

‖Juk – Jz‖ = . (.)

On the other hand, it follows from x̂ ∈ VI(E, M), uk = �VI(E,M)xk , and Lemma . that

〈uk – x̂, Jxk – Juk〉 ≥ .

Let k → ∞, it follows from the weakly sequential continuity of J and (.) that 〈z – x̂, Jx̂ –
Jz〉 ≥ . Since E is strictly convex, we have z = x̂. Therefore, {xk} converges weakly to x̂ ∈
VI(E, M), where x̂ = limk→∞ �VI(E,M)xk . �

Next, we show the convergence of the iterative sequence when ρk = .

Theorem . Let E be a uniformly convex, uniformly smooth Banach space whose duality
mapping J is weakly sequentially continuous and M : E → E∗ be a maximal monotone
mapping such that VI(E, M) �= ∅. Let {xk} be the sequence generated by Algorithm . for
ρk = .

If {λk}, {βk}, and {ek} satisfy infk≥ λk = α > ,  < βk ≤ , lim infk→∞ βk > , and
limk→∞ ‖ek‖ = , then the iterative sequence {xk} converges weakly to an element x̂ ∈
VI(E, M). Further, x̂ = limk→∞ �VI(E,M)(xk).

Proof Suppose x∗ ∈ VI(E, M), then we have  ∈ M(x∗). It is similar to the proof of Theo-
rem ., we have

x∗ ∈ Ck =
{

z ∈ E :
〈
z – yk , J(xk + ek) – J(yk)

〉 ≤ 
}

.

Let tk = �Ck (xk). It follows from (.) for ρk =  that

φ
(
x∗, xk+

) ≤ ∥
∥x∗∥∥ – 

〈
x∗, ( – βk)Jxk + βkJtk

〉
+ ( – βk)‖Jxk‖ + βk‖Jtk‖

≤ ( – βk)φ
(
x∗, xk

)
+ βkφ

(
x∗, tk

)
. (.)

By Lemma ., we deduce that

φ
(
x∗, tk

)
= φ

(
x∗,�Ck xk

) ≤ φ
(
x∗, xk

)
– φ(tk , xk). (.)



Liu Journal of Inequalities and Applications  (2015) 2015:260 Page 9 of 13

From (.) and (.), we have

φ
(
x∗, xk+

) ≤ φ
(
x∗, xk

)
– βkφ(tk , xk) ≤ φ

(
x∗, xk

)
, (.)

which implies that limk→∞ φ(x∗, xk) exists and hence {xk} is bounded. Consequently, {xk +
ek} is also bounded. Since lim infk→∞ βk > , from (.), we have

lim
k→∞

φ(tk , xk) = . (.)

Thus, it follows from Lemma . that

lim
k→∞

‖tk – xk‖ = , (.)

and hence {tk} is bounded. Since ‖(xk + ek) – tk‖ ≤ ‖xk – tk‖ + ‖ek‖, we have from
limk→∞ ‖ek‖ =  and (.)

lim
k→∞

∥
∥(xk + ek) – tk

∥
∥ = .

Hence, it follows from (A) that

lim
k→∞

φ(tk , xk + ek) = . (.)

From the definition of Ck , we have yk = �Ck (xk + ek). Hence, we obtain from Lemma .
and tk = �Ck (xk) ∈ Ck

φ(tk , yk) ≤ φ(tk , xk + ek) – φ(yk , xk + ek) ≤ φ(tk , xk + ek). (.)

It follows from (.) and (.) that

lim
k→∞

φ(tk , yk) = . (.)

From Lemma ., we obtain

lim
k→∞

‖tk – yk‖ = . (.)

Since ‖yk – xk‖ ≤ ‖yk – tk‖ + ‖tk – xk‖, we have from (.) and (.)

lim
k→∞

‖yk – xk‖ = . (.)

Since ‖xk + ek – yk‖ ≤ ‖xk + ek – xk‖ + ‖xk – yk‖, it follows from limk→∞ ‖ek‖ =  and (.)
that

lim
k→∞

‖xk + ek – yk‖ = . (.)

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
k→∞

∥
∥J(xk + ek) – Jyk

∥
∥ = . (.)
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By a similar proof to Step  and Step  in the proof of Theorem ., we can easily obtain
the desired conclusion. Therefore, we omit it. �

Remark . There are the following differences between Theorem . and the recent re-
sults announced by [, ] and []:

(i) When E = H (a Hilbert space), Theorem . reduces to Theorem . of Zhang []
(i.e. Theorem . of this paper). That is to say, Theorem . extends Theorem . of
Zhang [] from Hilbert spaces to more general Banach spaces. Furthermore, we see
that the convergence point of {xk} is limk→∞ �VI(E,M)(xk), which is more concrete
than that of Theorem . of Zhang [].

(ii) In Algorithm ., the set Ck is a half-space, and hence it is easier to compute the
generalized projection of the current iterate onto it than that onto a general closed
convex set Hn ∩ Wn or Hn constructed in [, ] to obtain the next iterate. Hence,
Algorithm . improves Algorithm . and those algorithms in [] from a numerical
point of view.

In the following, we give a simple example to compare Algorithm . constructed in []
with Algorithm . for ρk = .

Example . Let E = R, M : R →R and M(x) = x. It is obvious that M is maximal mono-
tone and VI(E, M) = {} �= ∅.

The numerical experiment result of Algorithm . Take rk = + 
k+ , αk = 

 – 
k+ , ek = ,

for all k ≥ , and initial point x = – 
 ∈ R. Then {xk} generated by Algorithm . is the

following sequence:

{
x = – 

 ∈R,
xk+ = k+k+

k+k+ xk , k ≥ ,
(.)

and xk →  as k → ∞, where  ∈ VI(E, M).

Proof By Algorithm ., we have y = 
+r

x = – 
 , z = – 

 > x, H = {v ∈ R,‖v – z‖ ≤
‖v – x‖} = [z – ( z–x

 ), +∞) = [– 
 , +∞), W = {v ∈ R, 〈v – x, x – x〉 ≤ } = R. There-

fore, H ∩ W = H = [– 
 , +∞) and x = P[– 

 ,+∞)(–

 ) = – 

 = ·+·+
·+·+ x. Suppose

that xk+ = k+k+
k+k+ xk . By Algorithm ., yk+ = k+

k+ xk+, and hence

 > zk+ = αk+xk+ + ( – αk+)
k + 

k + 
xk+ > xk+, (.)

Hk+ = {v ∈R : ‖v – zk+‖ ≤ ‖v – xk+‖} = [zk+ – zk+–xk+
 , +∞) ⊂ [xk+, +∞), Wk+ = {v ∈R :

〈v – xk+, x – xk+〉 ≤ } = [xk+, +∞). Therefore, Hk+ ∩Wk+ = Hk+ = [zk+ – zk+–xk+
 , +∞)

and

xk+ = P[zk+– zk+–xk+
 ,+∞)(x) = zk+ –

zk+ – xk+


. (.)

Combine (.) with (.), we obtain xk+ = (k+)+(k+)+
(k+)+(k+)+ xk+. By induction, (.)

holds. �
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Table 1 The numerical experiment result of Algorithm 1.1

k 0 1 2 3 4 5 6 7 ···
xk – 1

3 – 7
30 – 8

45 – 9
135 – 89

1,650 – 1,424
32,175 – 127,448

3,378,375 – 3,616,337
114,864,750 · · ·

Next, we give the numerical experiment results by using Table , which shows that the
iteration process of the sequence {xk} as initial point x = – 

 . From the figures, we can see
that {xk} converges to .

The numerical experiment result of Algorithm . for ρk =  Take λk =  + 
k+ , k ≥ ,

βk = , ek = , for all k ≥ , and initial point x = – 
 ∈ R. Then {xk} generated by Algo-

rithm . is the following sequence:

{
x = – 

 ,
xk+ = k+

k+ xk , k ≥ ,
(.)

and xk →  as k → ∞, where  ∈ VI(E, M).

Proof By (.),

 > y =


( + λ)
x =


 + 

+
x =

 + 
 ·  + 

x =



x = –



> x.

By Algorithm ., we have C = {z ∈ R : 〈z – y, x – y〉 ≤ } = [y, +∞). By (.), x =
PC (x) = y = – 

 > x. This is

{
x = – 

 ,
x = y = +

·+ x > x.

Suppose that

{
x = – 

 ,
xk+ = yk = k+

k+ xk > xk .
(.)

By (.),

 > yk+ =


 + λk+
xk+ =


 + 

(k+)+
xk+ =

(k + ) + 
(k + ) + 

xk+ > xk+. (.)

It follows from Algorithm . and (.) that Ck+ = {z ∈ E : 〈z – yk+, xk+ – yk+〉 ≤ } =
[yk+, +∞), and hence

xk+ = PCk+ xk+ = P[yk+,+∞)xk+ = yk+ =
(k + ) + 

(k + ) + 
xk+.

By induction, (.) holds. �

Next, we give the numerical experiment results by using Table , which shows that the
iteration process of the sequence {xk} as initial point x = – 

 . From the figures, we can see
that {xk} converges to .
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Table 2 The numerical experiment result of Algorithm 3.1

k 0 1 2 3 4 5 6 7 ···
xk – 1

3 – 2
15 – 6

105 – 8
315 – 8

693 – 16
3,003 – 16

6,435 – 128
109,395 · · ·

Remark . Comparing Table  with Table , we can intuitively see that the convergence
speed of Algorithm . for ρk =  is faster than that of Algorithm . constructed in [].

Remark . In [, ], the authors proposed several different iterative algorithms for
approximating zeros of m-accretive operators in Banach spaces. The nonexpansiveness of
the resolvent operator of the m-accretive operator is employed in theses algorithms. Since
the resolvent operator of a maximal monotone operator is not nonexpansive in Banach
spaces, these algorithms cannot be applied to Problem (.).

Remark . In [], the authors established viscosity iterative algorithms for approxi-
mating a common element of the set of fixed points of a nonexpansive mapping and the
set of solutions of the variational inequality for an inverse-strongly monotone mapping
in Hilbert spaces by using the nonexpansiveness of the metric projection operator. How-
ever, the metric projection operator is not nonexpansive in Banach spaces. Therefore, the
algorithms of [] cannot be applied to Problem (.) of this paper in Banach spaces.
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