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Abstract
Let {Yi , –∞ < i <∞} be a sequence of ρ–-mixing random variables without the
assumption of identical distributions, and {ai , –∞ < i <∞} be an absolutely
summable sequence of real numbers. In this paper, under some suitable conditions,
we establish the complete moment convergence for the partial sum of moving
average processes {Xn =∑∞

i=–∞ aiYi+n,n ≥ 1}. These results promote and improve the
corresponding results obtained by Li and Zhang (Stat. Probab. Lett. 70:191-197, 2004)
from NA to the case of a ρ–-mixing setting.

Keywords: complete moment convergence; moving average process; ρ–-mixing;
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1 Introduction
Let {Yi, –∞ < i < ∞} be a sequence of random variables and {ai, –∞ < i < ∞} be an abso-
lutely summable sequence of real numbers, and for n ≥  set Xn =

∑∞
i=–∞ aiYi+n. The limit

behavior of the moving average process {Xn, n ≥ } has been extensively investigated by
many authors. For example, Baek et al. [] have obtained the convergence of moving aver-
age processes, Burton and Dehling [] have obtained a large deviation principle, Ibragimov
[] has established the central limit theorem, Račkauskas and Suquet [] have proved the
functional central limit theorems for self-normalized partial sums of linear processes, and
Chen et al. [], Guo [], Kim et al. [, ], Ko et al. [], Li et al. [], Li and Zhang [], Qiu et
al. [], Wang and Hu [], Yang and Hu [], Zhang [], Zhen et al. [], Zhou et al. [],
Zhou and Lin [], Shen et al. [] have obtained the complete (moment) convergence
of moving average process based on a sequence of dependent (or mixing) random vari-
ables, respectively. But very few results for moving average process based on a ρ–-mixing
random variables are known. Firstly, we recall some definitions.

For two nonempty disjoint sets S, T of real numbers, we define dist(S, T) = min{|j – k|; j ∈
S, k ∈ T}. Let σ (S) be the σ -field generated by {Yk , k ∈ S}, and define σ (T) similarly.

Definition . A sequence {Yi, –∞ < i < ∞} is called ρ–-mixing, if

ρ–(s) = sup
{
ρ–(S, T); S, T ⊂ Z, dist(S, T) ≥ s

} →  as s → ∞,
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where

ρ–(S, T) =  ∨ sup{corr
(
f (Xi, i ∈ S), g(Xj, j ∈ T)

)
,

where the supremum is taken over all coordinatewise increasing real functions f on RS

and g on RT .

Definition . A sequence {Yi, –∞ < i < ∞} is called ρ∗-mixing if

ρ∗(s) = sup
{
ρ(S, T); S, T ⊂ Z, dist(S, T) ≥ s

} →  as s → ∞,

where

ρ(S, T) = sup
{∣
∣corr(f , g)

∣
∣; f ∈ L

(
σ (S)

)
, g ∈ L

(
σ (T)

)}
.

Definition . A sequence {Yi, i ∈ Z} is called negatively associated (NA) if for every pair
of disjoint subsets S, T of Z and any real coordinatewise increasing functions f on RS and
g on RT

Cov
{

f (Yi, i ∈ S), g(Yj, j ∈ T)
} ≤ .

Definition . A sequence {Yi, –∞ < i < ∞} of random variables is said to be stochasti-
cally dominated by a random variable Y if there exists a constant C such that

P
{|Yi| > x

} ≤ CP
{|Y | > x

}
, x ≥ , –∞ < i < ∞.

Definition . A real valued function l(x), positive and measurable on [,∞), is said to
be slowly varying at infinity if for each λ > , limx→∞ l(λx)

l(x) = .

Li and Zhang [] obtained the following complete moment convergence of moving av-
erage processes under NA assumptions.

Theorem A Suppose that {Xn =
∑∞

i=–∞ aiεi+n, n ≥ }, where {ai, –∞ < i < ∞} is a sequence
of real numbers with

∑∞
i=–∞ |ai| < ∞ and {εi, –∞ < i < ∞} is a sequence of identically dis-

tributed NA random variables with Eε = , Eε
 < ∞. Let h be a function slowly varying at

infinity,  ≤ q < , r >  + q/. Then E|ε|rh(|ε|q) < ∞ implies

∞∑

n=

nr/q––/qh(n)E

{∣
∣
∣
∣
∣

n∑

j=

Xj

∣
∣
∣
∣
∣

– εn/q

}+

< ∞

for all ε > .

Chen et al. [] also established the following results for moving average processes under
NA assumptions.

Theorem B Let q > ,  ≤ p < , r ≥ , rp 
= . Suppose that {Xn =
∑∞

i=–∞ aiεi+n, n ≥ },
where {ai, –∞ < i < ∞} is a sequence of real numbers with

∑∞
i=–∞ |ai| < ∞ and {εi, –∞ < i <



Zhang Journal of Inequalities and Applications  (2015) 2015:245 Page 3 of 13

∞} is a sequence of identically distributed NA random variables. If Eε =  and E|ε|rp < ∞,
then

∞∑

n=

nr–P

{

max
≤k≤n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣
≥ εn/p

}

< ∞

for all ε > . Furthermore if Eε =  and E|ε|rp < ∞ for q < rp, E|ε|rp log( + |ε|) < ∞ for
q = rp, E|ε|q < ∞ for q > rp, then

∞∑

n=

nr––q/pE

({

max
≤k≤n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣

– εn/q

}+)q

< ∞

for all ε > .

Recently, Zhou and Lin [] obtained the following complete moment convergence of
moving average processes under ρ-mixing assumptions.

Theorem C Let h be a function slowly varying at infinity, p ≥ , pα >  and α > /. Sup-
pose that {Xn, n ≥ } is a moving average process based on a sequence {Yi, –∞ < i < ∞} of
identically distributed ρ-mixing random variables. If EY =  and E|Y|p+δh(|Y|/α) < ∞
for some δ > , then for all ε > ,

∞∑

n=

npα––αh(n)E

{

max
≤k≤n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣

– εnα

}+

< ∞

and

∞∑

n=

npα–h(n)E

{

sup
k≥n

∣
∣
∣
∣
∣
k–α

k∑

j=

Xj

∣
∣
∣
∣
∣

– ε

}+

< ∞.

Obviously, ρ–-mixing random variables include NA and ρ∗-mixing random variables,
which have a lot of applications, their limit properties have aroused wide interest recently,
and a lot of results have been obtained; we refer to Wang and Lu [] for a Rosenthal-type
moment inequality and weak convergence, Budsaba et al. [, ] for complete conver-
gence for moving average process based on a ρ–-mixing sequence, Tan et al. [] for the
almost sure central limit theorem. But there are few results on the complete moment con-
vergence of moving average process based on a ρ–-mixing sequence. Therefore, in this
paper, we establish some results on the complete moment convergence for maximum par-
tial sums with less restrictions. Throughout the sequel, C represents a positive constant
although its value may change from one appearance to the next, I{A} denotes the indicator
function of the set A.

2 Preliminary lemmas
In this section, we list some lemmas which will be useful to prove our main results.

Lemma . (Zhou []) If l is slowly varying at infinity, then
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()
∑m

n= nsl(n) ≤ Cms+l(m) for s > – and positive integer m,
()

∑∞
n=m nsl(n) ≤ Cms+l(m) for s < – and positive integer m.

Lemma . (Wang and Lu []) For a positive real number q ≥ , if {Xn, n ≥ } is a se-
quence of ρ–-mixing random variables, with EXi = , E|Xi|q < ∞ for every i ≥ , then for
all n ≥ , there is a positive constant C = C(q,ρ–(·)) such that

E

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

Xi

∣
∣
∣
∣
∣

q)

≤ C

{ n∑

i=

E|Xi|q +

( n∑

i=

EX
i

) q

}

.

Lemma . (Wang et al. []) Let {Xn, n ≥ } be a sequence of random variables which is
stochastically dominated by a random variable X. Then for any a >  and b > ,

E|Xn|aI
{|Xn| ≤ b

} ≤ C
[
E|X|aI

{|X| ≤ b
}

+ baP
(|X| > b

)]
,

E|Xn|aI
{|Xn| > b

} ≤ CE|X|aI
{|X| > b

}
.

3 Main results and proofs
Theorem . Let l be a function slowly varying at infinity, p ≥ , α > /, αp > . As-
sume that {ai, –∞ < i < ∞} is an absolutely summable sequence of real numbers. Sup-
pose that {Xn =

∑∞
i=–∞ aiYi+n, n ≥ } is a moving average process generated by a sequence

{Yi, –∞ < i < ∞} of ρ–-mixing random variables which is stochastically dominated by a
random variable Y . If EYi =  for / < α ≤ , E|Y |pl(|Y |/α) < ∞ for p >  and E|Y |+δ < ∞
for p =  and some δ > , then for any ε > 

∞∑

n=

nαp––αl(n)E

{

max
≤k≤n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣

– εnα

}+

< ∞ (.)

and

∞∑

n=

nαp–l(n)E

{

sup
k≥n

∣
∣
∣
∣
∣
k–α

k∑

j=

Xj

∣
∣
∣
∣
∣

– ε

}+

< ∞. (.)

Proof Firstly to prove (.). Let f (n) = nαp––αl(n) and Y ()
xj = –xI{Yj < –x} + YjI{|Yj| ≤ x} +

xI{Yj > x} and Y ()
xj = Yj – Y ()

xj be the monotone truncations of {Yj, –∞ < j < ∞} for x > .
Then by the property of ρ–-mixing random variables (cf. Property P in Wang and Lu []),
{Y ()

xj – EY ()
xj , –∞ < j < ∞} and {Y ()

xj , –∞ < j < ∞} are two sequences of ρ–-mixing random
variables. Note that

∑n
k= Xk =

∑∞
i=–∞ ai

∑i+n
j=i+ Yj. Since

∑∞
i=–∞ |ai| < ∞, by Lemma .,

we have for x > nα , if α > 

x–

∣
∣
∣
∣
∣
E

∞∑

i=–∞
ai

i+n∑

j=i+

Y ()
xj

∣
∣
∣
∣
∣

≤ x–
∞∑

i=–∞
|ai|

i+n∑

j=i+

[
E|Yj|I

{|Yj| ≤ x
}

+ xP
(|Y | > x

)]

≤ Cx–n
[
E|Y |I{|Y | ≤ x

}
+ xP

(|Y | > x
)] ≤ Cn–α → , as n → ∞.
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If / < α ≤ , note αp > , this means p > . By E|Y |pl(|Y |/α) < ∞ and l is slowly varying at
infinity, for any  < ε < p – /α, we have E|Y |p–ε < ∞. Then noting EYi = , by Lemma .
we have

x–

∣
∣
∣
∣
∣
E

∞∑

i=–∞
ai

i+n∑

j=i+

Y ()
xj

∣
∣
∣
∣
∣

= x–

∣
∣
∣
∣
∣
E

∞∑

i=–∞
ai

i+n∑

j=i+

Y ()
xj

∣
∣
∣
∣
∣

≤ Cx–
∞∑

i=–∞
|ai|

i+n∑

j=i+

E|Yj|I
{|Yj| > x

} ≤ Cx–nE|Y |I{|Y | > x
}

≤ Cx/α–E|Y |I{|Y | > x
} ≤ CE|Y |/αI

{|Y | > x
}

≤ E|Y |p–εI
{|Y | > x

} → , as x → ∞.

Hence for x > nα large enough, we get

x–

∣
∣
∣
∣
∣
E

∞∑

i=–∞
ai

i+n∑

j=i+

Y ()
xj

∣
∣
∣
∣
∣

< ε/.

Therefore

∞∑

n=

f (n)E

{

max
≤k≤n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣

– εnα

}+

≤
∞∑

n=

f (n)
∫ ∞

εnα

P

{

max
≤k≤n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣
≥ x

}

dx

≤ C
∞∑

n=

f (n)
∫ ∞

nα

P

{

max
≤k≤n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣
≥ εx

}

dx

≤ C
∞∑

n=

f (n)
∫ ∞

nα

P

{

max
≤k≤n

∣
∣
∣
∣
∣

∞∑

i=–∞
ai

i+k∑

j=i+

Y ()
xj

∣
∣
∣
∣
∣
≥ εx/

}

dx

+ C
∞∑

n=

f (n)
∫ ∞

nα

P

{

max
≤k≤n

∣
∣
∣
∣
∣

∞∑

i=–∞
ai

i+k∑

j=i+

(
Y ()

xj – EY ()
xj

)
∣
∣
∣
∣
∣
≥ εx/

}

dx

=: I + I. (.)

Firstly we show I < ∞. Noting |Y ()
xj | < |Yj|I{|Yj| > x}, by Markov’s inequality and

Lemma ., we have

I ≤ C
∞∑

n=

f (n)
∫ ∞

nα

x–E max
≤k≤n

∣
∣
∣
∣
∣

∞∑

i=–∞
ai

i+k∑

j=i+

Y ()
xj

∣
∣
∣
∣
∣
dx

≤ C
∞∑

n=

f (n)
∫ ∞

nα

x–
∞∑

i=–∞
|ai|

i+n∑

j=i+

E
∣
∣Y ()

xj
∣
∣dx

≤ C
∞∑

n=

nf (n)
∫ ∞

nα

x–E|Y |I{|Y | > x
}

dx
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= C
∞∑

n=

nf (n)
∞∑

m=n

∫ (m+)α

mα

x–E|Y |I{|Y | > x
}

dx

≤ C
∞∑

n=

nf (n)
∞∑

m=n
m–E|Y |I{|Y | > mα

}

= C
∞∑

m=

m–E|Y |I{|Y | > mα
} m∑

n=

nαp––αl(n).

If p > , then αp –  – α > –, and, by Lemma ., we obtain

I ≤ C
∞∑

m=

mαp––αl(m)E|Y |I{|Y | > mα
}

= C
∞∑

m=

mαp––αl(m)
∞∑

k=m

E|Y |I{kα < |Y | ≤ (k + )α
}

= C
∞∑

k=

E|Y |I{kα < |Y | ≤ (k + )α
} k∑

m=

mαp––αl(m)

≤ C
∞∑

k=

kαp–αl(k)E|Y |I{kα < |Y | ≤ (k + )α
}

≤ CE|Y |pl
(|Y |/α)

< ∞.

If p = , notice that E|Y |+δ < ∞ implies E|Y |+δ′ l(|Y |/α) < ∞ for any  < δ′ < δ, then by
Lemma ., we obtain

I ≤ C
∞∑

m=

m–E|Y |I{|Y | > mα
} m∑

n=

n–l(n)

≤ C
∞∑

m=

m–E|Y |I{|Y | > mα
} m∑

n=

n–+αδ′
l(n)

≤ C
∞∑

m=

mαδ′–l(m)E|Y |I{|Y | > mα
}

≤ CE|Y |+δ′
l
(|Y |/α) ≤ CE|Y |+δ < ∞.

So, we get

I < ∞. (.)

Next we show I < ∞. By Markov’s inequality, the Hölder inequality, and Lemma ., we
conclude

I ≤ C
∞∑

n=

f (n)
∫ ∞

nα

x–rE max
≤k≤n

∣
∣
∣
∣
∣

∞∑

i=–∞
ai

i+k∑

j=i+

(
Y ()

xj – EY ()
xj

)
∣
∣
∣
∣
∣

r

dx

≤ C
∞∑

n=

f (n)
∫ ∞

nα

x–rE

[ ∞∑

i=–∞

(|ai| r–
r

)
(

|ai|/r max
≤k≤n

∣
∣
∣
∣
∣

i+k∑

j=i+

(
Y ()

xj – EY ()
xj

)
∣
∣
∣
∣
∣

)]r

dx
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≤ C
∞∑

n=

f (n)
∫ ∞

nα

x–r

( ∞∑

i=–∞
|ai|

)r–( ∞∑

i=–∞
|ai|E max

≤k≤n

∣
∣
∣
∣
∣

i+k∑

j=i+

(
Y ()

xj – EY ()
xj

)
∣
∣
∣
∣
∣

r)

dx

≤ C
∞∑

n=

f (n)
∫ ∞

nα

x–r
∞∑

i=–∞
|ai|

i+n∑

j=i+

E
∣
∣Y ()

xj – EY ()
xj

∣
∣r dx

+ C
∞∑

n=

f (n)
∫ ∞

nα

x–r
∞∑

i=–∞
|ai|

( i+n∑

j=i+

E
∣
∣Y ()

xj – EY ()
xj

∣
∣

)r/

dx

=: I + I, (.)

where r ≥  will be specialized later.

For I, if p > , take r > max{, p}, then by Cr inequality, Lemma ., and Lemma ., we

get

I ≤ C
∞∑

n=

f (n)
∫ ∞

nα

x–r
∞∑

i=–∞
|ai|

i+n∑

j=i+

[
E|Yj|rI

{|Yj| ≤ x
}

+ xrP
(|Yj| > x

)]
dx

≤ C
∞∑

n=

nf (n)
∫ ∞

nα

x–r[E|Y |rI
{|Y | ≤ x

}
+ xrP

(|Y | > x
)]

dx

≤ C
∞∑

n=

nf (n)
∞∑

m=n

∫ (m+)α

mα

[
x–rE|Y |rI

{|Y | ≤ x
}

+ P
(|Y | > x

)]
dx

≤ C
∞∑

n=

nf (n)
∞∑

m=n

[
mα(–r)–E|Y |rI

{|Y | ≤ (m + )α
}

+ mα–P
(|Y | > mα

)]

= C
∞∑

m=

[
mα(–r)–E|Y |rI

{|Y | ≤ (m + )α
}

+ mα–P
(|Y | > mα

)] m∑

n=

nf (n)

≤ C
∞∑

m=

mα(p–r)–l(m)
m∑

k=

E|Y |rI
{

kα < |Y | ≤ (k + )α
}

+ C
∞∑

m=

mαp–l(m)
∞∑

k=m

EI
{

kα < |Y | ≤ (k + )α
}

= C
∞∑

k=

E|Y |rI
{

kα < |Y | ≤ (k + )α
} ∞∑

m=k

mα(p–r)–l(m)

+ C
∞∑

k=

EI
{

kα < |Y | ≤ (k + )α
} k∑

m=

mαp–l(m)

≤ C
∞∑

k=

kα(p–r)l(k)E|Y |p|Y |r–pI
{

kα < |Y | ≤ (k + )α
}

+ C
∞∑

k=

kαpl(k)E|Y |p|Y |–pI
{

kα < |Y | ≤ (k + )α
}

≤ CE|Y |pl
(|Y |/α)

< ∞. (.)
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For I, if p = , take r > max{ +δ′, }, where  < δ′ < δ, then by the same argument as above
we have

I ≤ C
∞∑

m=

[
mα(–r)–E|Y |rI

{|Y | ≤ (m + )α
}

+ mα–P
(|Y | > mα

)] m∑

n=

nf (n)

≤ C
∞∑

m=

[
mα(–r)–E|Y |rI

{|Y | ≤ (m + )α
}

+ mα–P
(|Y | > mα

)] m∑

n=

n–+αδ′
l(n)

≤ C
∞∑

m=

[
mα(–r+δ′)–l(m)E|Y |rI

{|Y | ≤ (m + )α
}

+ mα(+δ′)–l(m)EI
{|Y | > mα

}]

≤ CE|Y |+δ′
l
(|Y |/α) ≤ CE|Y |+δ < ∞. (.)

For I, if  ≤ p < , take r > , note αp + r/ – αpr/ –  = (αp – )( – r/) < , by the Cr

inequality, Lemma ., and Lemma ., we obtain

I ≤ C
∞∑

n=

nr/f (n)
∫ ∞

nα

x–r[(E|Y |I
{|Y | ≤ x

})r/ + xrPr/(|Y | > x
)]

dx

≤ C
∞∑

n=

nr/f (n)
∞∑

m=n

∫ (m+)α

mα

[
x–r(E|Y |I

{|Y | ≤ x
})r/ + Pr/(|Y | > x

)]
dx

≤ C
∞∑

n=

nr/f (n)
∞∑

m=n

[
mα(–r)–(E|Y |I

{|Y | ≤ (m + )α
})r/ + mα–Pr/(|Y | > mα

)]

= C
∞∑

m=

[
mα(–r)–(E|Y |I

{|Y | ≤ (m + )α
})r/ + mα–Pr/(|Y | > mα

)] m∑

n=

nr/f (n)

≤ C
∞∑

m=

mα(p–r)+r/–l(m)
(
E|Y |p|Y |–pI

{|Y | ≤ (m + )α
})r/

+ C
∞∑

m=

mαp+r/–l(m)
(
E|Y |p|Y |–pI

{|Y | > mα
})r/

≤ C
∞∑

m=

mαp+r/–αpr/–l(m)
(
E|Y |p)r/ < ∞. (.)

For I, if p ≥ , take r > (αp – )/(α – /) > ; we have α(p – r) + r/ –  < –, and therefore
one gets

I ≤ C
∞∑

m=

[
mα(–r)–(E|Y |I

{|Y | ≤ (m + )α
})r/ + mα–Pr/(|Y | > mα

)] m∑

n=

nr/f (n)

≤ C
∞∑

m=

mα(p–r)+r/–l(m)
(
E|Y |I

{|Y | ≤ (m + )α
})r/

+ C
∞∑

m=

mαp+r/–l(m)
(
E|Y ||Y |–I

{|Y | > mα
})r/
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≤ C
∞∑

m=

mα(p–r)+r/–l(m)
(
E|Y |)r/ < ∞. (.)

Thus, (.) can be deduced by combining (.)-(.).
Now, we show (.). By Lemma . and (.) we have

∞∑

n=

nαp–l(n)E

{

sup
k≥n

∣
∣
∣
∣
∣
k–α

k∑

j=

Xj

∣
∣
∣
∣
∣

– ε

}+

=
∞∑

n=

nαp–l(n)
∫ ∞


P

{

sup
k≥n

∣
∣
∣
∣
∣
k–α

k∑

j=

Xj

∣
∣
∣
∣
∣

> ε + t

}

dt

=
∞∑

i=

i–∑

n=i–

nαp–l(n)
∫ ∞


P

{

sup
k≥n

∣
∣
∣
∣
∣
k–α

k∑

j=

Xj

∣
∣
∣
∣
∣

> ε + t

}

dt

≤ C
∞∑

i=

∫ ∞


P

{

sup
k≥i–

∣
∣
∣
∣
∣
k–α

k∑

j=

Xj

∣
∣
∣
∣
∣

> ε + t

}

dt
i–∑

n=i–

nαp–l(n)

≤ C
∞∑

i=

i(αp–)l
(
i)

∫ ∞


P

{

sup
k≥i–

∣
∣
∣
∣
∣
k–α

k∑

j=

Xj

∣
∣
∣
∣
∣

> ε + t

}

dt

≤ C
∞∑

i=

i(αp–)l
(
i)

∞∑

l=i

∫ ∞


P

{

max
l–≤k<l

∣
∣
∣
∣
∣
k–α

k∑

j=

Xj

∣
∣
∣
∣
∣

> ε + t

}

dt

≤ C
∞∑

l=

∫ ∞


P

{

max
l–≤k<l

∣
∣
∣
∣
∣
k–α

k∑

j=

Xj

∣
∣
∣
∣
∣

> ε + t

}

dt
l∑

i=

i(αp–)l
(
i)

≤ C
∞∑

l=

l(αp–)l
(
l)

∫ ∞


P

{

max
l–≤k<l

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣

> (ε + t)(l–)α

}

dt

≤ C
∞∑

l=

l(αp––α)l
(
l)

∫ ∞


P

{

max
≤k<l

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣

> ε(l–)α + y

}

dy

≤ C
∞∑

n=

nαp––αl(n)
∫ ∞


P

{

max
≤k<n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣

> εnα–α + y

}

dy

= C
∞∑

n=

nαp––αl(n)E

{

max
≤k<n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣

– εnα

}+

< ∞.

Hence the proof of Theorem . is completed. �

The next theorem treats the case αp = .

Theorem . Let l be a function slowly varying at infinity,  ≤ p < . Assume that
∑∞

i=–∞ |ai|θ < ∞, where θ belong to (, ) if p =  and θ =  if  < p < . Suppose that {Xn =
∑∞

i=–∞ aiYi+n, n ≥ } is a moving average process generated by a sequence {Yi, –∞ < i < ∞}
of ρ–-mixing random variables which is stochastically dominated by a random variable Y .
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If EYi =  and E|Y |pl(|Y |p) < ∞, then for any ε > 

∞∑

n=

n––/pl(n)E

{

max
≤k≤n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣

– εn/p

}+

< ∞. (.)

Proof Let g(n) = n––/pl(n). Similarly to the proof of (.), we have

∞∑

n=

g(n)E

{

max
≤k≤n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣

– εn/p

}+

≤ C
∞∑

n=

g(n)
∫ ∞

n/p
P

{

max
≤k≤n

∣
∣
∣
∣
∣

∞∑

i=–∞
ai

i+k∑

j=i+

Y ()
xj

∣
∣
∣
∣
∣
≥ εx/

}

dx

+ C
∞∑

n=

g(n)
∫ ∞

n/p
P

{

max
≤k≤n

∣
∣
∣
∣
∣

∞∑

i=–∞
ai

i+k∑

j=i+

(
Y ()

xj – EY ()
xj

)
∣
∣
∣
∣
∣
≥ εx/

}

dx

=: J + J. (.)

For J, by Markov’s inequality, the Cr inequality, Lemma ., and Lemma ., one gets

J ≤ C
∞∑

n=

g(n)
∫ ∞

n/p
x–θ E max

≤k≤n

∣
∣
∣
∣
∣

∞∑

i=–∞
ai

i+k∑

j=i+

Y ()
xj

∣
∣
∣
∣
∣

θ

dx

≤ C
∞∑

n=

ng(n)
∫ ∞

n/p
x–θ E|Y |θ I

{|Y | > x
}

dx

= C
∞∑

n=

ng(n)
∞∑

m=n

∫ (m+)/p

m/p
x–θ E|Y |θ I

{|Y | > x
}

dx

≤ C
∞∑

n=

ng(n)
∞∑

m=n
m(–θ )/p–E|Y |θ I

{|Y | > m/p}

= C
∞∑

m=

m(–θ )/p–E|Y |θ I
{|Y | > m/p}

m∑

n=

ng(n)

≤ C
∞∑

m=

m–θ/pl(m)E|Y |θ I
{|Y | > m/p}

= C
∞∑

m=

m–θ/pl(m)
∞∑

k=m

E|Y |θ I
{

k/p < |Y | < (k + )/p}

= C
∞∑

k=

E|Y |θ I
{

k/p < |Y | < (k + )/p}
k∑

m=

m–θ/pl(m)

≤ C
∞∑

k=

k–θ/pl(k)E|Y |θ I
{

k/p < |Y | < (k + )/p}

≤ CE|Y |pl
(|Y |p) < ∞. (.)
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For J, similar to the proof of I, take r = , by Lemma ., Lemma ., and Lemma ., we
conclude

J ≤ C
∞∑

n=

g(n)
∫ ∞

n/p
x–E| max

≤k≤n

∣
∣
∣
∣
∣

∞∑

i=–∞
ai

i+k∑

j=i+

(
Y ()

xj – EY ()
xj

)
∣
∣
∣
∣
∣



dx

≤ C
∞∑

n=

ng(n)
∫ ∞

n/p
x–[E|Y |I

{|Y | ≤ x
}

+ xP
(|Y | > x

)]
dx

= C
∞∑

n=

ng(n)
∞∑

m=n

∫ (m+)/p

m/p
x–[E|Y |I

{|Y | ≤ x
}

+ xP
(|Y | > x

)]
dx

≤ C
∞∑

n=

ng(n)
∞∑

m=n

[
m––/pE|Y |I

{|Y | ≤ (m + )/p} + m/p–P
(|Y | > m/p)]

= C
∞∑

m=

[
m––/pE|Y |I

{|Y | ≤ (m + )/p} + m/p–P
(|Y | > m/p)]

m∑

n=

ng(n)

≤ C
∞∑

m=

[
m–/pl(m)E|Y |I

{|Y | ≤ (m + )/p} + l(m)P
(|Y | > m/p)]

≤ CE|Y |pl
(|Y |p) < ∞. (.)

Hence from (.)-(.), (.) holds. �

For the complete convergence and strong law of large numbers, we have the following
corollary from the above theorems immediately.

Corollary . Under the assumptions of Theorem ., for any ε >  we have

∞∑

n=

nαp–l(n)P

{

max
≤k≤n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣

> εnα

}

< ∞. (.)

Under the assumptions of Theorem ., for any ε >  we have

∞∑

n=

n–l(n)P

{

max
≤k≤n

∣
∣
∣
∣
∣

k∑

j=

Xj

∣
∣
∣
∣
∣

> εn/p

}

< ∞; (.)

in particular, the assumptions EYi =  and E|Y |p < ∞ imply the following Marcinkiewicz-
Zygmund strong law of large numbers:

lim
n→∞


n/p

n∑

j=

Xj =  a.s. (.)

Remark . Corollary . provides complete convergence for the maximum of partial
sums, which extends the corresponding results of Budsaba et al. [, ] and Theorem 
of Baek et al. [] with less restrictions. Since ρ–-mixing random variables include NA and
ρ∗-mixing random variables, our results also hold for NA and ρ∗-mixing, and therefore
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Theorem . improves upon the above Theorem A from Li and Zhang [] with less re-
strictions, and our results also extend and generalize the above Theorem B from Chen et
al. [] with q =  partly.

Remark . Obviously, the assumption that {Yi, –∞ < i < ∞} is stochastically dominated
by a random variable Y is weaker than the assumption of identical distribution of the
random variables {Yi, –∞ < i < ∞}, therefore the above results also hold for identically
distributed random variables.

Remark . Let a = , ai = , i 
= , then Sn =
∑n

k= Xk =
∑n

k= Yk . Hence the above results
hold when {Xk , k ≥ } is a sequence of ρ–-mixing random variables which is stochastically
dominated by a random variable Y .
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