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Abstract

By using the relationship between orthogonal arrays and decompositions of
projection matrices and projection matrix inequalities, we present a method for
constructing a class of new orthogonal arrays which have higher percent saturations.
As an application of the method, many new mixed-level orthogonal arrays of run
sizes 108 and 144 are constructed.
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1 Introduction

An n x m matrix A, having k; columns with p; levels, i = 1,2,...,r, m = Z,ll ki, pi 7 pj
for i #j, is called an orthogonal array (OA) of strength d and size n if each n x d subma-
trix of A contains all possible 1 x d row vectors with the same frequency. Unless stated
otherwise, we use the notation LV,(plf1 -+ pkr) for an OA of strength 2. An orthogonal ar-
ray is said to have mixed levels if r > 2. Orthogonal arrays have been used extensively in
statistical design of experiments, computer science and cryptography. Constructions of
OAs have been studied extensively in the literature; see Hedayet et al. [1, 2], Zhang et al.
[3, 7], Pang et al. [5], Pang [6], Zhang et al. [7], Chen et al. [8], Du et al. [9], etc. Zhang
et al. [3] present a method of construction of orthogonal arrays of strength two by using
a relationship between orthogonal arrays and decompositions of projection matrices. In
the construction of new mixed orthogonal arrays, two goals should be kept in mind, first,
we want the orthogonal array to be as close to a saturated main-effect plan as possible
so that there will be a large number of factors and second, we want the p;, the number
of levels, to be as large as possible so that the design has a high degree of flexibility (see
Mandeli [10]). In this paper by using projection matrix inequalities and further exploring
the relationship, matrix images of a class of orthogonal arrays can be found. Therefore we
construct a class of new orthogonal arrays. If, as in Mandeli [10], we still define the percent
saturation of an OA L, (pll(1 --pkytobe Y1, ki(pi —1)/(n —1) x 100%, then the orthogonal

arrays constructed in this paper have higher percent saturations.

2 Basic concepts and main theorems

The following definitions, notations, and results are needed in the sequel.
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Definition 1 A matrix A is said to be an orthogonal projection matrix if it is idempotent
(A? = A) and symmetric (AT = A).

Definition 2 Suppose that an experiment is carried out according to an array A =
(@) nxm = (a1,...,am), and Y = (17, ...,Y,)T is the experimental data vector. In the anal-
ysis of variance sz, the sum of squares of the jth factor, is defined as

pj-1

2 n 2
$-2 o (2n) -2(2x) o)
! |1ij| n s=1

i=0 sel;

where [;; = {s: a,; = i} and |[;j] is the number of elements in I;;. From (1), sz is a quadratic
formin Y and there exists a unique symmetric matrix A; such that 51.2 = YTA;Y. The matrix
Aj is called the matrix image (MI) of the jth column g; of A, denoted by m(a;) = A;. The
MI of a subarray of A is defined as the sum of the MIs of all its columns. In particular,
we denote the MI of A by m(A). Let 1, be the r x 1 vector of 1's. Then m(1,) = P, where
P, =11,1T.

Let (r) = (0,...,r=1)T,e;(r)=(0---0 10 0)], and I, be the identity matrix of order .
Then m((r)) = t, where 7, = I, — P,. The following permutation matrices are very useful:

N, =ei(r)e; () +--- + e, (r)e] (1) + e (ref ()

and

p q
Kp,q)=)Y_ > elpef (@) ®eiq)e] (p),

i=1 j=1

where ® is the usual Kronecker product in the theory of matrices. Sometimes, it is neces-
sary and easy to use the following properties of these two permutation matrices to obtain
the orthogonal arrays needed:

N,.(r)=1,+(r), modr,

Kp,9)(1,0@)=p)®l;, Kp,9(ae®)=p @)
and
Kp.q) Py @)K (p,q) =1, ®P;,  K(p,q)(1;®@ 1)K () =1, ® 1.

Lemma 1 For any permutation matrix S and any array L, m(S(L ®1,)) = S(m(L) ® P,)ST,
and m(SQ1, ® L)) = S(P, @ m(L))ST.

Lemma 2 Let A be an OA of strength 1, i.e.,
A= (ﬂl; X nﬂm) = (Sl(lrl ® (pl)), .. ';Sm(lrm ® (pm)));

where rip; = n and S; is a permutation matrix, fori =1,...,m. The following statements are
equivalent.
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(1) A isan OA of strength 2.

(2) m(A) is a projection matrix.

(3) m(a)m(a;) =0 (i #j).

(4) The projection matrix t, can be decomposed as t, = m(ay) + - - - + m(a,,) + A, where
k(A)=n-1- Z].'Zl(pj —1) is the rank of the matrix A.

Lemma 3 Suppose L and H are OAs satisfying m(L)ym(H) = 0. Then K = (L, H) is also an
OA.

Lemma4 Let (L, H) and K be OAs of run size n. Then (K, H) is also an OA if m(K) < m(L),
where A < B means that the difference B — A is nonnegative.

Lemmas 1, 2, 3, and 4 can be found in Zhang et al. [3].
Now we state the following theorems.

Theorem 1 IfL = [(r) ® 1,,H] is an OA, then m(H) <I, ® 1p. If L = [1, ® (r),K] is an OA,
then m(K) < 1, ® I,.

Proof From Lemma 2, we have m(L) = v, ® P, + m(H). Since m(L) < T, Ty = T, @ Py +
I, ® 7, and m((r) @ 1,) = 7, ® Py, it follows that m(H) <I, ® 1,,.
Similarly, we can prove that m(K) < 1, ® I,. O

Corollary Ifp isaprimeand D(r, m;p) is a p-level difference matrix, then both D(r, m; p) ®
(p) and (p) ® D(r, m; p) are OAs, and m(D(r, m; p) ® (p)) < I, ® 1, and m((p) ® D(r, m; p)) <
Ty ® I

Proof From Bose and Bush [11], we see that
L=[(r) ® L, D(r,m; p) ® (v)]

is an OA. From Theorem 1, it follows that m(D(r, m; p) ® (p)) < I, ® 1. Similarly, we can
prove that (p) @ D(r, m; p) is an OA and m((p) ® D(r,m; p)) < 1, @ I,. a

Theorem 2 If p is a prime and D(r,m; p) is a p-level difference matrix, then D(r, m;p) @
0, ® (p) is an OA, and m(D(r,m;p) ® 0, & (p)) <1, ® P; Q 1,

Proof From Lemma 1 and Theorem 1, we have m(D(r, m;p) ® (p) © 04) <I, ® 1, @ Py,

m(D(r,m;p) ® 0, ® (p))
=m((I, ® K(q,p)) (D(r,m;p) ® (p) ® 0,))
< (L, ® K(q,p) I ® 7, ® P)(I, ® K(q,p))"
=1, ®P; Q1. O
Theorem 3 If 7, ® 7, = Zle Si(t, ® Py)ST is an orthogonal decomposition of T, ® 14,
then I, ® 1, ® 7, = Zf;l(], @S @1, ® P ® S:)T is an orthogonal decomposition

of I, @ 1, @ v,. If there exists an OA H such that m(H) < I, ® v, then L = [(I, ® $))(H ®
1,),..., (I, ® SK)(H ® 1,)] is also an OA.
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Proof Since 1, ® T, = P Si(t, ® P,)S!, we have

k
Ir® Tp ® Tq :]r® (ZSI(TP®Pq)SlT)

i=1
k
=Y (11 ® (Si(z, ® P)ST).

i=1
Using the property (ABC) ® (DEF) = (A ® D)(B® E)(C ® F), we obtain

k
LR®T,®7,=Y (L, ®S) ®1,®P),®S)".
i=1

Because of the orthogonality in each step, the above decomposition of I, ® 7, ® 1, is
orthogonal. By Lemma 1, we have

m((lr ® Sl)(H ® lq)) = (Ir ® Sl)(H ® lq)(lr ® Si)T = (Ir ® Si)(lr ® Tp ® Pq)(lr ® Si)T-

By Lemmas 3 and 4, we see that (I, ® S;)(H ® 1,) and (I, ® S;)(H ® 1,) is orthogonal (i #j).
It follows from Lemma 2 that L is an OA. O

3 Some examples

These matrix inequalities in Theorems 1, 2, and 3 are very useful for construction of or-
thogonal arrays. We illustrate their applications with some examples. We begin with OAs
Lo(3%) and L,4(4°) and their properties:

0
Ls(3%) = () ® 13,15 ® (3),4,b) = 1
1

S O O ©
NN NN O
N o= O
(=3 S
= o N -
—_ N O N
N O =N
S R NN

For this OA Lo (3*), there exists a 9 x 9 permutation T; (as follows) such that ((3) ® 13,13 ®
(3)) = T»(a,b). From Lemma 2, we have m(Lo(3%)) = 79, m(a,b) =79 — 73 @ P53 — P3 @ 75 =
73 ® 13 and m((3) ® 13,13 ® (3)) = To(13 ® 13) T . Hence

2
Tg = Z Ti(‘L'g ® Tg)TiT,

i=1

where T} = Iy and

S
1l
S ©O O O O O o O
SO O O O = O O O O
_ O O O O O O © O
SO O O B O O O O O
SO O B O O O O O O
S O O O O O o+~ O
S B O O O O O O O
S O O O o o~ O O
SO O O O O = O O O
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On the other hand, wehave 79 — 13 @ P3 —P3 ® 13 = T3 ® 73. Also, 3, Q 73 = Z?:l Qi3 ®
P3)Q!, where Q; = diag(l5, N3, N3)K (3, 3) and Q, = diag(l3, N3, N3)K(3,3).
Consider the orthogonal array L;(4°):

Li(4%) = ((4) ® 14,14 ® (4), ¢, d,f)

0000111122223333T
0123 01230123012 3
=01 2 3 103 2 2 3 013 2120
012323 0132150120 3 2
01233 21010322 301

From Lemma 2, we have 7j4 = Zil Si(ta ®P4)ST + 74 @14, where S = Iis and Sy = K (4, 4).

Moreover, we have 7, ® 74 = Z?:s Si(ta ® P4)SiT, where S = diag(Q;, Qj, Q5, QK (4,4),
Sa = diag(Q), Q3, Q, QK (4,4), S5 = diag(Q;, Q) Q) Q3)K(4,4), Q) =1u, Q=1 @ Ny,
Q; =N, ®Iand Q) =N, ® N,.

Example 1 (Construction of orthogonal arrays of run size 108) Orthogonally decompose
the projection matrix 193 as follows:
7108 = 12 ® T9 + T12 ® Py
=R+ RTBRP;+11r QP33R 13
+(Pe®+Ps @@+ 13014+ P53 Q1o @ Py) @ Py
=B+ uBAP;+(Ps®n+P301 Q1) ® Py
+1h P33+ (3RL+P3QT @) ® Py
“hhRBRB+ (OB+PR®nL+POnOT)QP;)®P;
+Q((h2® 13+ (13 ® L4 + Ps ® T2 ® P2) ® P3) ® P3)Q7,
where Q = I, ® K(3,3).
Now we want to find OAs H;, H, and H3 such that m(H;) < 1, ® 13 ® 13, and m(H,) <
Ly®T3+(Ps®@T+P3R@TaQ@Ty) @Ps,and m(Hz) <Ip @ 3+ (3 @14 + P3 @ 10 ® Po) ® Ps.

Let @ be the Kronecker sum (mod3) in ordinary matrix theory and D(12,12,3) be a
difference matrix as follows:

00 01100102 20
0 0 00 2 0202001
0010 0 2120010
0 0 22 01001100
0122 001120 2 2
D(12,12,3) = 01 2121 2 2 2 2 10
010 0 2 2 0211 2 2
011212200 2 0 2
02121002 2111
0210012112 21
0 2212 2110101
02011110101 2
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It follows from the corollary of Theorem 1 that H = L3¢(3'2) = D(12,12,3) @ (3) is an OA
and m(H) < I3 ® 13. From the property 73 ® t3 = Zil Qi(rz ® Pg)QiT and Theorem 3, we
have an orthogonal array H;:

Hi =Lios(3*) = [([, ® Q)(H ® 13), (I, ® Q2)(H ® 13) ]

and m(H;) <l @ 13 ® 13.

From the orthogonal array L3s(623%2%) in Zhang et al. [4], we can get an orthogonal
array L} (6%3*2°%) = K(12,3)L36(6%3*2°) = [L12(2°) ® 13, L36(623%)] satisfying m (L} (6*3* x
2%)) < 136 = [12 @ 73 + T12 ® P3. Deleting the orthogonal array L;5(2°) ® 13 from L3 (6%32°),
we obtain an OA H, = L34(623%) whose MI satisfies m(H,) <12 Q@3+ (P @ o + P53 Q 75 ®
T7) ® Ps.

By the definition of an OA, there exists a permutation matrix T such that TLss(623%2°)
contains the two columns 15 ® (2) ® 13 and 13 ® ((2) @ (2)) ® 13. Deleting these two columns
from TL36(623%2%), we obtain an OA Hj = L36(623%27) satisfying m(H3) < Iy ® 73 + (13 ®
I+ P3s Q@ 1y ® Py) ® Ps.

Hence we can construct a new OA L;o5(6*33227) as follows:

Lios(6*3%°27) = [Hy, Hy ® 13, Q(H3 ® 13)]. (2)

The percent saturation for this OA is 84.2%.

Also, similarly constructing of H, and by use of the orthogonal arrays Lss(3%2220),
L36(3%213), L36(6'3221) and L36(3'2%7) in Zhang et al. [3], L36(6'3'2!%) in Hedayet et al.
[2], L36(31221) and L34(6'3%21°) in Zhang et al. [4], we can obtain seven OAs L3s(3%221),
L36(3'2'8), L36(6'3%22), L36(6'3'2%), L36(623%), L36(3'%2%) and L36(6'3%2') whose Mls are
less than orequalto 1y @ 13+ (P @ T2 + P3 @ T, ® T3) ® Ps.

On the other hand, by the definition of an OA, any OA of run size 36 with two factors
having two levels can contain the two columns 14 ® (2) ® 13 and 13 ® ((2) © (2)) ® 13 through
row permutations. For example, there exists OA L3s(9'3'%) in Example 2, L36(18'22),
L36(31221), L36(2%%), L36(31227), Ly (6131222), Ly(3222°), L36(3321%), L36(6!32211) in Zhang
etal. [3], L36(6'3121%) in Hedayet et al. [2], L36(6'38210), L35(6%3°23), L34(6%3°22), L36(6328)
in Zhang et al. [4], and L36(6231210), L34(63312%), L36(633223) in Xu [12]. Deleting these
two columns 15 ® (2) ® 13 and 13 ® ((2) @ (2)) ® 13 from these arrays, we can obtain 17
OAs L36(9'3"), L36(18"), L36(3'%2°), L36(2%3), L36(3'2%°), L36(6'3'?), L36(322'%), L36(32™),
L36(6'3%2%),  L3s(6'3'2%),  L3s(6'3%2%),  L3e(673%2Y),  L36(6%3°),  Ls6(6°2°),
L36(623'28), L3g (623122), and L36(62322!) whose Mls are less than or equal to Iy ® 73 +
(3014 +P3 @ 7o ® Py) ® Ps.

Replacing H; in (2) by those seven OAs and Hj in (2) by these 17 OAs, respectively, we
can construct (7 +1) x (17 + 1) — 1 = 143 OAs such as Lp3(6°3282°), etc. The orthogonal
arrays constructed not only are new but also have higher percent saturations.

Example 2 (Construction of orthogonal arrays of run size 144) From the above properties
of OAs Lo(3*) and Li6(4°), we have

2

Tg = Z Ti(ts @ 1) T},

i=1
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where T} = I and T, is the above permutation matrix and

2

Ti6 = ZSL‘(D; ®P4)SlT + Ty ® T4.

i=1

By using the properties ]9 = 191919, Tilg TiT = 19, SiP16SiT = P16 (l =1, 2), (ABC) ® (DEF) =
(A®D)(B® E)(C ® F), we can orthogonally decompose 7144 as follows:

Tiaa = lo @ T16 + T9 @ Py
2

= Z(Ti @SN U ®Ta+T30T3RPs) ®Pa)(T; ®S) +1 ® T4 @ 1

i=1

From the L;5(4°), we have

5
T4 @ Ta = ZSi(u ® P4)S,*T'

i=3

Hence, 1144 can be further decomposed as

2
Tiaq = Z(Ti ®S)(To ® T4+ 73R T3 ® Ps) @ Pu)(T; ® S))"
-1
5
+ 2(19 ®S)Io ® T4 ® Pa)(Iy ® ).

i=3

Now we want to find OAs H; and H, such that m(H;) <y @ 174 + 13 ® 73 ® P4 and
m(Hy) <1y ® 14.

By the definition of an OA and through row permutation, any OA with two 3-level
columns can contain the two columns (3) ® 115, 13 ® (3) ® 14. For example, from the result
in Bose and Bush [11], we see that K7 = [13 ® L12(12),(3) & D(12,12,3)] is an OA, where
D(12,12,3) is a difference matrix in Example 1.

It is clear that K; contains two columns (3) ® 13, and (3) @ (3) ® 14, and (diag(l3, N3, N3) ®
I)[B)®112,3) @ (3) ®14] = [(3) ® 112,13 ® (3) ® L4].

Set K, = (diag(l3, N2,N3) ® 13)K;, we get an OA K, = L3(12!312), which contains two
columns (3) ® 132 and 13 ® (3) ® 14. Deleting these two columns from K, we obtain an
OA H; = L3¢(1231°), whose MI satisfies m(H;) = 136 — 13 @ Py ~P3 @ 173 ® Py = Iy @ 74 +
3Q 173 @ Py.

Now we need to find another OA H, such that m(H,) < Iy ® 14. By using row permu-
tations of the orthogonal array L3s(9'2%) (cf [13]), we can obtain an OA L3(912!°) as

follows:
L (91216)

[0 x ©x x -y x y x -y -y -z -y y x —-x -z Yy |
1l x » x z z y -x x z —-x 2z z —-x -y 2z Z
2 x =y —x y Yy y —x —-x X -y -y 2z zZ —x —-Xx Y
3 x —z y x —-=xy x -y z y ¥y x -y x -x -y

=4 x x —-x -y -y y z -—=x y -y y —-=x Yy x X z|
5 x —x z -z —-xy x Yy y y -y -y —x —-x X Y
6 x —x —x —-x x Yy zZ X —Xx -y Xx -z z Yy Yy -z
7 Xy -y z -z y -z y -2z Yy =X Yy z -z z -y
18 * —x ¥ y -z y -x z -y x ¥y -y x x -y y|

Page 7 of 9
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where i = (,4,i,i)7, for i = 0,1,...,8, x = (0,0,1,1)7, —x = (1,1,0,0)7, y = (0,1,0,1)7, —y =
(1,0,1,0)7,2=(0,1,1,0)T and ~z = (1,0,0,1)7.

Deleting the column (9) ® 1, from the L35(912!), we obtain an OA H, = L36(2'¢). By
using Theorem 1, we see that m(H,) < Iy ® 14.

From Theorem 3 the decomposition of 7144, we construct a new OA L44(1223202%8) as
follows:

Ll44 (122320 24-8)
= [(T1 ® $1)(H1 ® 14), (T2 ® S2)(H1 @ 14), (I ® S3)(Ha ® 14),

s ® S4)(Hz ® 14), (Is ® S5)(H2 ® 14)]. 3)

The percent saturation for this OA is 76.4%. In fact, the percent saturations for the arrays
constructed by Wang and Wu [14] are between 49.7% and 53.8% and the highest percent
saturation for the arrays with 144 runs constructed by Mandeli [10] is 62.2%.

Also, by the definition of an OA, any OA of run size 36 with two factors having three
levels can contain the two columns (3) ® 13 and 13 ® (3) ® 14 through row permuta-
tions. For example, there exist OAs L3 (623%21), L34(6'322!), L3(3222°) in Zhang et al. 3],
L36(12'3'2), L36(6'3'22%), L36(3132%), Lse(3'2M), L36(6%3°2%), L3s(6'3521°), Ly6(623%2°),
L36(6'3°2%) in Zhang et al. [4], L36(633%23), L36(633%2!) in Xu [12], L36(637) in Finney
[15], etc. having (3) ® 113 and 13 ® (3) ® 14. Deleting these two columns, we can obtain 14
OAs L36(6%3%), L36(623°21), L36(61211), L36(6131°2%), and so on. Replacing H, in (3) by these
OAs, respectively, we can construct 195 OAs such as L144(6°31°2%8), etc. The orthogonal
arrays constructed not only are new but also have higher percent saturations.
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