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Abstract
By using the relationship between orthogonal arrays and decompositions of
projection matrices and projection matrix inequalities, we present a method for
constructing a class of new orthogonal arrays which have higher percent saturations.
As an application of the method, many new mixed-level orthogonal arrays of run
sizes 108 and 144 are constructed.

MSC: 62K15; 05B15

Keywords: matrix inequality; orthogonal array; orthogonal projection matrix; matrix
image

1 Introduction
An n × m matrix A, having ki columns with pi levels, i = , , . . . , r, m =

∑r
i= ki, pi �= pj

for i �= j, is called an orthogonal array (OA) of strength d and size n if each n × d subma-
trix of A contains all possible  × d row vectors with the same frequency. Unless stated
otherwise, we use the notation Ln(pk

 · · ·pkr
r ) for an OA of strength . An orthogonal ar-

ray is said to have mixed levels if r ≥ . Orthogonal arrays have been used extensively in
statistical design of experiments, computer science and cryptography. Constructions of
OAs have been studied extensively in the literature; see Hedayet et al. [, ], Zhang et al.
[, ], Pang et al. [], Pang [], Zhang et al. [], Chen et al. [], Du et al. [], etc. Zhang
et al. [] present a method of construction of orthogonal arrays of strength two by using
a relationship between orthogonal arrays and decompositions of projection matrices. In
the construction of new mixed orthogonal arrays, two goals should be kept in mind, first,
we want the orthogonal array to be as close to a saturated main-effect plan as possible
so that there will be a large number of factors and second, we want the pi, the number
of levels, to be as large as possible so that the design has a high degree of flexibility (see
Mandeli []). In this paper by using projection matrix inequalities and further exploring
the relationship, matrix images of a class of orthogonal arrays can be found. Therefore we
construct a class of new orthogonal arrays. If, as in Mandeli [], we still define the percent
saturation of an OA Ln(pk

 · · ·pkr
r ) to be

∑r
i= ki(pi – )/(n – ) × %, then the orthogonal

arrays constructed in this paper have higher percent saturations.

2 Basic concepts and main theorems
The following definitions, notations, and results are needed in the sequel.
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Definition  A matrix A is said to be an orthogonal projection matrix if it is idempotent
(A = A) and symmetric (AT = A).

Definition  Suppose that an experiment is carried out according to an array A =
(aij)n×m = (a, . . . , am), and Y = (Y, . . . , Yn)T is the experimental data vector. In the anal-
ysis of variance S

j , the sum of squares of the jth factor, is defined as

S
j =

pj–∑

i=


|Iij|

(∑

s∈Iij

Ys

)

–

n

( n∑

s=

Ys

)

, ()

where Iij = {s : asj = i} and |Iij| is the number of elements in Iij. From (), S
j is a quadratic

form in Y and there exists a unique symmetric matrix Aj such that S
j = Y T AjY . The matrix

Aj is called the matrix image (MI) of the jth column aj of A, denoted by m(aj) = Aj. The
MI of a subarray of A is defined as the sum of the MIs of all its columns. In particular,
we denote the MI of A by m(A). Let r be the r ×  vector of ’s. Then m(r) = Pr where
Pr = 

r rT
r .

Let (r) = (, . . . , r – )T , ei(r) = ( · · ·
i
  · · ·)T

×r and Ir be the identity matrix of order r.
Then m((r)) = τr where τr = Ir – Pr . The following permutation matrices are very useful:

Nr = e(r)eT
 (r) + · · · + er–(r)eT

r (r) + er(r)eT
 (r)

and

K(p, q) =
p∑

i=

q∑

j=

ei(p)eT
j (q) ⊗ ej(q)eT

i (p),

where ⊗ is the usual Kronecker product in the theory of matrices. Sometimes, it is neces-
sary and easy to use the following properties of these two permutation matrices to obtain
the orthogonal arrays needed:

Nr(r) = r + (r), mod r,

K(p, q)
(
q ⊗ (p)

)
= (p) ⊗ q, K(p, q)

(
(q) ⊗ (p)

)
= (p) ⊗ (q)

and

K(p, q)(Pq ⊗ τp)KT (p, q) = τp ⊗ Pq, K(p, q)(τq ⊗ τp)KT (p, q) = τp ⊗ τq.

Lemma  For any permutation matrix S and any array L, m(S(L ⊗ r)) = S(m(L) ⊗ Pr)ST ,
and m(S(r ⊗ L)) = S(Pr ⊗ m(L))ST .

Lemma  Let A be an OA of strength , i.e.,

A = (a, . . . , am) =
(
S

(
r ⊗ (p)

)
, . . . , Sm

(
rm ⊗ (pm)

))
,

where rjpj = n and Si is a permutation matrix, for i = , . . . , m. The following statements are
equivalent.
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() A is an OA of strength .
() m(A) is a projection matrix.
() m(ai)m(aj) =  (i �= j).
() The projection matrix τn can be decomposed as τn = m(a) + · · · + m(am) + �, where

rk(�) = n –  –
∑m

j=(pj – ) is the rank of the matrix �.

Lemma  Suppose L and H are OAs satisfying m(L)m(H) = . Then K = (L, H) is also an
OA.

Lemma  Let (L, H) and K be OAs of run size n. Then (K , H) is also an OA if m(K) ≤ m(L),
where A ≤ B means that the difference B – A is nonnegative.

Lemmas , , , and  can be found in Zhang et al. [].
Now we state the following theorems.

Theorem  If L = [(r) ⊗ p, H] is an OA, then m(H) ≤ Ir ⊗ τp. If L = [p ⊗ (r), K] is an OA,
then m(K) ≤ τp ⊗ Ir .

Proof From Lemma , we have m(L) = τr ⊗ Pp + m(H). Since m(L) ≤ τrp, τrp = τr ⊗ Pp +
Ir ⊗ τp and m((r) ⊗ p) = τr ⊗ Pp, it follows that m(H) ≤ Ir ⊗ τp.

Similarly, we can prove that m(K) ≤ τp ⊗ Ir . �

Corollary If p is a prime and D(r, m; p) is a p-level difference matrix, then both D(r, m; p)⊕
(p) and (p)⊕D(r, m; p) are OAs, and m(D(r, m; p)⊕ (p)) ≤ Ir ⊗τp and m((p)⊕D(r, m; p)) ≤
τp ⊗ Ir .

Proof From Bose and Bush [], we see that

L =
[
(r) ⊗ p, D(r, m; p) ⊕ (p)

]

is an OA. From Theorem , it follows that m(D(r, m; p) ⊕ (p)) ≤ Ir ⊗ τp. Similarly, we can
prove that (p) ⊕ D(r, m; p) is an OA and m((p) ⊕ D(r, m; p)) ≤ τp ⊗ Ir . �

Theorem  If p is a prime and D(r, m; p) is a p-level difference matrix, then D(r, m; p) ⊕
q ⊕ (p) is an OA, and m(D(r, m; p) ⊕ q ⊕ (p)) ≤ Ir ⊗ Pq ⊗ τp.

Proof From Lemma  and Theorem , we have m(D(r, m; p) ⊕ (p) ⊕ q) ≤ Ir ⊗ τp ⊗ Pq,

m
(
D(r, m; p) ⊕ q ⊕ (p)

)

= m
((

Ir ⊗ K(q, p)
)(

D(r, m; p) ⊕ (p) ⊕ q
))

≤ (
Ir ⊗ K(q, p)

)
(Ir ⊗ τp ⊗ Pq)

(
Ir ⊗ K(q, p)

)T

= Ir ⊗ Pq ⊗ τp. �

Theorem  If τp ⊗ τq =
∑k

i= Si(τp ⊗ Pq)ST
i is an orthogonal decomposition of τp ⊗ τq,

then Ir ⊗ τp ⊗ τq =
∑k

i=(Ir ⊗ Si)(Ir ⊗ τp ⊗ Pq)(Ir ⊗ Si)T is an orthogonal decomposition
of Ir ⊗ τp ⊗ τq. If there exists an OA H such that m(H) ≤ Ir ⊗ τp, then L = [(Ir ⊗ S)(H ⊗
q), . . . , (Ir ⊗ Sk)(H ⊗ q)] is also an OA.
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Proof Since τp ⊗ τq =
∑k

i= Si(τp ⊗ Pq)ST
i , we have

Ir ⊗ τp ⊗ τq = Ir ⊗
( k∑

i=

Si(τp ⊗ Pq)ST
i

)

=
k∑

i=

(IrIrIr) ⊗ (
Si(τp ⊗ Pq)ST

i
)
.

Using the property (ABC) ⊗ (DEF) = (A ⊗ D)(B ⊗ E)(C ⊗ F), we obtain

Ir ⊗ τp ⊗ τq =
k∑

i=

(Ir ⊗ Si)(Ir ⊗ τp ⊗ Pq)(Ir ⊗ Si)T .

Because of the orthogonality in each step, the above decomposition of Ir ⊗ τp ⊗ τq is
orthogonal. By Lemma , we have

m
(
(Ir ⊗ Si)(H ⊗ q)

)
= (Ir ⊗ Si)(H ⊗ q)(Ir ⊗ Si)T ≤ (Ir ⊗ Si)(Ir ⊗ τp ⊗ Pq)(Ir ⊗ Si)T .

By Lemmas  and , we see that (Ir ⊗ Si)(H ⊗ q) and (Ir ⊗ Sj)(H ⊗ q) is orthogonal (i �= j).
It follows from Lemma  that L is an OA. �

3 Some examples
These matrix inequalities in Theorems , , and  are very useful for construction of or-
thogonal arrays. We illustrate their applications with some examples. We begin with OAs
L() and L() and their properties:

L
(
) =

(
() ⊗ ,  ⊗ (), a, b

)
=

⎡

⎢
⎢
⎢
⎣

        
        
        
        

⎤

⎥
⎥
⎥
⎦

T

.

For this OA L(), there exists a × permutation T (as follows) such that (()⊗ ,  ⊗
()) = T(a, b). From Lemma , we have m(L()) = τ, m(a, b) = τ – τ ⊗ P – P ⊗ τ =
τ ⊗ τ and m(() ⊗ ,  ⊗ ()) = T(τ ⊗ τ)TT

 . Hence

τ =
∑

i=

Ti(τ ⊗ τ)TT
i ,

where T = I and

T =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

        
        
        
        
        
        
        
        
        

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.



Pang et al. Journal of Inequalities and Applications  (2015) 2015:241 Page 5 of 9

On the other hand, we have τ – τ ⊗ P – P ⊗ τ = τ ⊗ τ. Also, τ ⊗ τ =
∑

i= Qi(τ ⊗
P)QT

i , where Q = diag(I, N, N
 )K(, ) and Q = diag(I, N

 , N)K(, ).
Consider the orthogonal array L():

L
(
) =

(
() ⊗ ,  ⊗ (), c, d, f

)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

               
               
               
               
               

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

.

From Lemma , we have τ =
∑

i= Si(τ ⊗P)ST
i +τ ⊗τ, where S = I and S = K(, ).

Moreover, we have τ ⊗ τ =
∑

i= Si(τ ⊗ P)ST
i , where S = diag(Q′

, Q′
, Q′

, Q′
)K(, ),

S = diag(Q′
, Q′

, Q′
, Q′

)K(, ), S = diag(Q′
, Q′

, Q′
, Q′

)K(, ), Q′
 = I, Q′

 = I ⊗ N,
Q′

 = N ⊗ I and Q′
 = N ⊗ N.

Example  (Construction of orthogonal arrays of run size ) Orthogonally decompose
the projection matrix τ as follows:

τ = I ⊗ τ + τ ⊗ P

= I ⊗ τ ⊗ τ + I ⊗ τ ⊗ P + I ⊗ P ⊗ τ

+ (P ⊗ τ + P ⊗ τ ⊗ τ + τ ⊗ I + P ⊗ τ ⊗ P) ⊗ P

= I ⊗ τ ⊗ τ + I ⊗ τ ⊗ P + (P ⊗ τ + P ⊗ τ ⊗ τ) ⊗ P

+ I ⊗ P ⊗ τ + (τ ⊗ I + P ⊗ τ ⊗ P) ⊗ P

= I ⊗ τ ⊗ τ +
(
I ⊗ τ + (P ⊗ τ + P ⊗ τ ⊗ τ) ⊗ P

) ⊗ P

+ Q
((

I ⊗ τ + (τ ⊗ I + P ⊗ τ ⊗ P) ⊗ P
) ⊗ P

)
QT ,

where Q = I ⊗ K(, ).
Now we want to find OAs H, H and H such that m(H) ≤ I ⊗ τ ⊗ τ, and m(H) ≤

I ⊗ τ + (P ⊗ τ + P ⊗ τ ⊗ τ) ⊗ P, and m(H) ≤ I ⊗ τ + (τ ⊗ I + P ⊗ τ ⊗ P) ⊗ P.
Let ⊕ be the Kronecker sum (mod ) in ordinary matrix theory and D(, , ) be a

difference matrix as follows:

D(, , ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

           
           
           
           
           
           
           
           
           
           
           
           

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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It follows from the corollary of Theorem  that H = L() = D(, , ) ⊕ () is an OA
and m(H) ≤ I ⊗ τ. From the property τ ⊗ τ =

∑
i= Qi(τ ⊗ P)QT

i and Theorem , we
have an orthogonal array H:

H = L
(
) =

[
(Ir ⊗ Q)(H ⊗ ), (Ir ⊗ Q)(H ⊗ )

]

and m(H) ≤ I ⊗ τ ⊗ τ.
From the orthogonal array L() in Zhang et al. [], we can get an orthogonal

array L
() = K(, )L() = [L()⊗, L()] satisfying m(L

( ×
)) ≤ τ = I ⊗τ +τ ⊗P. Deleting the orthogonal array L()⊗ from L

(),
we obtain an OA H = L() whose MI satisfies m(H) ≤ I ⊗ τ + (P ⊗ τ + P ⊗ τ ⊗
τ) ⊗ P.

By the definition of an OA, there exists a permutation matrix T such that TL()
contains the two columns  ⊗ ()⊗ and  ⊗ (()⊕ ())⊗. Deleting these two columns
from TL(), we obtain an OA H = L() satisfying m(H) ≤ I ⊗ τ + (τ ⊗
I + P ⊗ τ ⊗ P) ⊗ P.

Hence we can construct a new OA L() as follows:

L
(
) =

[
H, H ⊗ , Q(H ⊗ )

]
. ()

The percent saturation for this OA is .%.
Also, similarly constructing of H and by use of the orthogonal arrays L(),

L(), L() and L() in Zhang et al. [], L() in Hedayet et al.
[], L() and L() in Zhang et al. [], we can obtain seven OAs L(),
L(), L(), L(), L(), L() and L() whose MIs are
less than or equal to I ⊗ τ + (P ⊗ τ + P ⊗ τ ⊗ τ) ⊗ P.

On the other hand, by the definition of an OA, any OA of run size  with two factors
having two levels can contain the two columns  ⊗()⊗ and  ⊗(()⊕())⊗ through
row permutations. For example, there exists OA L() in Example , L(),
L(), L(), L(), L(), L(), L(), L() in Zhang
et al. [], L() in Hedayet et al. [], L(), L(), L(), L()
in Zhang et al. [], and L(), L(), L() in Xu []. Deleting these
two columns  ⊗ () ⊗  and  ⊗ (() ⊕ ()) ⊗  from these arrays, we can obtain 
OAs L(), L(), L(), L(), L(), L(), L(), L(),
L(), L(), L(), L(), L(), L(),
L(), L (), and L() whose MIs are less than or equal to I ⊗ τ +
(τ ⊗ I + P ⊗ τ ⊗ P) ⊗ P.

Replacing H in () by those seven OAs and H in () by these  OAs, respectively, we
can construct ( + ) × ( + ) –  =  OAs such as L(), etc. The orthogonal
arrays constructed not only are new but also have higher percent saturations.

Example  (Construction of orthogonal arrays of run size ) From the above properties
of OAs L() and L(), we have

τ =
∑

i=

Ti(τ ⊗ τ)TT
i ,



Pang et al. Journal of Inequalities and Applications  (2015) 2015:241 Page 7 of 9

where T = I and T is the above permutation matrix and

τ =
∑

i=

Si(τ ⊗ P)ST
i + τ ⊗ τ.

By using the properties I = III, TiITT
i = I, SiPST

i = P (i = , ), (ABC) ⊗ (DEF) =
(A ⊗ D)(B ⊗ E)(C ⊗ F), we can orthogonally decompose τ as follows:

τ = I ⊗ τ + τ ⊗ P

=
∑

i=

(Ti ⊗ Si)
(
(I ⊗ τ + τ ⊗ τ ⊗ P) ⊗ P

)
(Ti ⊗ Si)T + I ⊗ τ ⊗ τ.

From the L(), we have

τ ⊗ τ =
∑

i=

Si(τ ⊗ P)ST
i .

Hence, τ can be further decomposed as

τ =
∑

i=

(Ti ⊗ Si)
(
(I ⊗ τ + τ ⊗ τ ⊗ P) ⊗ P

)
(Ti ⊗ Si)T

+
∑

i=

(I ⊗ Si)(I ⊗ τ ⊗ P)(I ⊗ Si)T .

Now we want to find OAs H and H such that m(H) ≤ I ⊗ τ + τ ⊗ τ ⊗ P and
m(H) ≤ I ⊗ τ.

By the definition of an OA and through row permutation, any OA with two -level
columns can contain the two columns () ⊗ ,  ⊗ () ⊗ . For example, from the result
in Bose and Bush [], we see that K = [ ⊗ L(), () ⊕ D(, , )] is an OA, where
D(, , ) is a difference matrix in Example .

It is clear that K contains two columns ()⊗ and ()⊕ ()⊗, and (diag(I, N
 , N)⊗

I)[() ⊗ , () ⊕ () ⊗ ] = [() ⊗ ,  ⊗ () ⊗ ].
Set K = (diag(I, N

 , N) ⊗ I)K, we get an OA K = L(), which contains two
columns () ⊗  and  ⊗ () ⊗ . Deleting these two columns from K, we obtain an
OA H = L(), whose MI satisfies m(H) = τ – τ ⊗ P – P ⊗ τ ⊗ P = I ⊗ τ +
τ ⊗ τ ⊗ P.

Now we need to find another OA H such that m(H) ≤ I ⊗ τ. By using row permu-
tations of the orthogonal array L() (cf. []), we can obtain an OA L() as
follows:

L
(
)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

 x x x –y x y x –y –y –z –y y x –x –z y
 x x x z z y –x x z –x z z –x –y z z
 x –y –x y y y –x –x x –y –y z z –x –x y
 x –z y x –x y x –y z y y x –y x –x –y
 x x –x –y –y y z –x y –y y –x y x x z
 x –x z –z –x y x y y y –y –y –x –x x y
 x –x –x –x x y z x –x –y x –z z y y –z
 x y –y z –z y –z y –z y –x y z –z z –y
 x –x x y –z y –x z –y x y –y x x –y y

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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where i = (i, i, i, i)T , for i = , , . . . , , x = (, , , )T , –x = (, , , )T , y = (, , , )T , –y =
(, , , )T , z = (, , , )T and –z = (, , , )T .

Deleting the column () ⊗  from the L(), we obtain an OA H = L(). By
using Theorem , we see that m(H) ≤ I ⊗ τ.

From Theorem  the decomposition of τ, we construct a new OA L() as
follows:

L
(
)

=
[
(T ⊗ S)(H ⊗ ), (T ⊗ S)(H ⊗ ), (I ⊗ S)(H ⊗ ),

(I ⊗ S)(H ⊗ ), (I ⊗ S)(H ⊗ )
]
. ()

The percent saturation for this OA is .%. In fact, the percent saturations for the arrays
constructed by Wang and Wu [] are between .% and .% and the highest percent
saturation for the arrays with  runs constructed by Mandeli [] is .%.

Also, by the definition of an OA, any OA of run size  with two factors having three
levels can contain the two columns () ⊗  and  ⊗ () ⊗  through row permuta-
tions. For example, there exist OAs L(), L(), L() in Zhang et al. [],
L(), L(), L(), L(), L(), L(), L(),
L() in Zhang et al. [], L(), L() in Xu [], L() in Finney
[], etc. having () ⊗  and  ⊗ () ⊗ . Deleting these two columns, we can obtain 
OAs L(), L(), L(), L(), and so on. Replacing H in () by these
OAs, respectively, we can construct  OAs such as L(), etc. The orthogonal
arrays constructed not only are new but also have higher percent saturations.
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