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Abstract
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1 Introduction
In recent years, the fractional differential and fractional integrals have been adopted in
various fields of science and engineering, which can be used to describe certain phenom-
ena, reflect some physiochemical properties, and provide accurate models for the systems
under consideration. Some applications of fractional calculus include fluid flow, rheology,
dynamical processes in self-similar and porous structures, electrical networks, probabil-
ity and statistics, control theory of dynamical systems, chemical physics, optics, and signal
processing, economics, and so on. Therefore, they are receiving extensive attention from a
variety of domains. References [, ] introduced the definitions of fractional calculus, the-
orems and basic analytic solutions of the fractional equation in detail. At the same time,
the fractional difference equations, fractional sum equations, and fractional inequalities
also play important roles in many areas. In , Miller and Ross [] defined a fractional
sum of order α >  via the solution of a linear difference equation and proved some ba-
sic properties of this operator. After that, many authors followed up in various directions
[–].

In , Hirota [] defined the fractional order difference operator ∇α where α was a
real number, using Taylor’s series. In , Nagai [] adopted another definition for the
fractional difference by modifying Hirota’s definition. The definition in [] contained the
∇ operator and the term (–)j inside the summation index. Therefore this definition was
difficult use in studying the properties of solutions of fractional difference equations. To
avoid this, Deekshitulu and Mohan [] modified the definition and rearranged the terms
in the definition of Nagai []. Then they defined the fractional sum operator ∇–α and
the fractional difference operator ∇α . Recently, they discussed some basic inequalities,
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comparison theorems, and qualitative properties of the solutions of fractional difference
equations in [–]. Under the definition in [], they also considered an initial value
problem of fractional order and obtained some useful fractional difference inequalities of
Gronwall-Bellman type [].

In , Atici and Eloe [] introduced the definition of the fractional sum and the
fractional difference: ∇–α , ∇α , �–α , �α . In , based on the definition, Atici and Eloe
[] and Ferreira [] studied some discrete fractional Gronwall’s inequalities as regards
∇–α , �–α separately. They all adopted the same method: After establishing a comparison
theorem, they gave an explicit solution to the linear discrete fractional sum equation of
the initial value problem, which allowed them to state and prove an analog of Gronwall’s
inequality on discrete fractional calculus.

In , Cheng [] presented another form of definition. He provided some basic prop-
erties of fractional difference and summation, and established the theory symmetrical to
the fractional differential equation.

In this paper, we will introduce some inequalities and their applications based on the
definition in [] to demonstrate the qualitative properties of solutions to some fractional
summation equations. The proof is based on the iterative method.

Definition . [] Let ν be nonnegative real number, define the ν-order summation of
x(n) as

∇–νx(n) =

[
ν

n

]
∗ x(n) =

n∑
r=

[
ν

n – r

]
x(r),

where
[ ν

n
]

= ν(ν+)···(ν+n–)
n! , ∗ is the convolution operator.

Definition . [] Let μ be positive real number and m be the minimum positive integer
which is greater than μ (m –  ≤ μ ≤ m). Define the μ-order difference of x(n) as

∇μx(n) = ∇m∇–(m–μ)x(n),

where ∇m is the mth-order backward difference operator.

Definition . [] Define the discrete Mittag-Leffler function Fα,β(λ, n) as

Fα,β (λ, n) =
∞∑

k=

λk

[
αk + β

n

] (|λ| < 
)
,

Fα(λ, n) = Fα,(λ, n) =
∞∑

k=

λn

[
αk + 

n

] (|λ| < 
)
.

In [], Cheng gave the discrete fractional summation Gronwall inequality.

Theorem . [] Suppose that β > . Let un, an, and gn be nonnegative functions, where
gn is also monotone and nondecreasing and satisfies  ≤ gn ≤ M ( ≤ M < ),  ≤ n ≤ N . If

un ≤ an + gn∇–βun,
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then

un ≤ an +
∞∑

k=

(gn)k∇–kβan.

In [], Zhang et al. have extended the result and given the following conclusion.

Theorem . [] Let β > , p ≥ r > , un, an, gn be nonnegative functions, where gn is also
monotone and nondecreasing and satisfies  ≤ gn ≤ M ( ≤ M < ),  ≤ n ≤ N . If

(un)p ≤ an + gn∇–β (un)r ,

then

un ≤
{

an + Dn +
∞∑

k=

(Cgn)k∇–kβDn

} 
p

,

where

Dn = gn∇–β

{
r
p

k
r–p

p an +
p – r

p
k

r
p

}
,

C =
r
p

k
r–p

p , k > .

In order to prove our results, we need the following basic information.

Lemma . [] Let μ > , v > , then ∇–μ∇–vx(n) = ∇–(u+v)x(n).

Lemma . [] ∇–β
[ k

n

]
=

[ k+β

n

]
, k, n,β > .

2 Main results
Theorem . Suppose that β > , un, an, gn, hn are nonnegative functions, gn and hn are
also monotone and nondecreasing, un ≤ c, gn ≤ M, hn ≤ M (MM < ,  ≤ n ≤ N ). If

un ≤ an + gn∇–βhnun, (.)

then

un ≤ an +
∞∑

k=

gk
nhk

n∇–kβan. (.)

Proof Let Bun = gn∇–βhnun. We find that B is linear and nondecreasing under the condi-
tions that un, gn, hn are nonnegative functions and gn, hn are also nondecreasing. There-
fore, (.) turns into

un ≤ an + Bun.
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Then we have

un ≤ an + B(an + Bun) = an + Ban + Bun ≤ · · ·

≤ an +
m–∑
k=

Bkan + Bmun (.)

and

Bun = gn∇–βhnun ≤ cMM

[
 + β

n

]
,

Bun = gn∇–βhn
(
gn∇–βhnun

) ≤ c(MM)

[
 + β

n

]
,

...

Bmun = gm
n hm

n ∇–mβun ≤ c(MM)m

[
 + mβ

n

]
.

(.)

Noticing that |MM| < , then

∞∑
m=

(MM)m

[
 + mβ

n

]
= Fβ ,(MM, n) – .

Hence we have

lim
m→∞(MM)m

[
 + mβ

n

]
= .

From (.) we get

lim
m→∞ Bmun ≤ .

Due to the fact that Bmun ≥ , we have

lim
m→∞ Bmun = .

Taking the limit as m → ∞ on both sides of (.) we get

un ≤ an +
∞∑

k=

Bkan ≤ an +
∞∑

k=

gk
nhk

n∇–kβan.

This completes the proof of Theorem .. �

Remark . If hn ≡ , (.) becomes Theorem . of Chapter  in []:

un ≤ an +
∞∑

k=

gk
n∇–kβan.
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Corollary . With the conditions of Theorem ., let gn = a,  < aM < . If

un ≤ an + a∇–βhnun,

then

un ≤ an +
∞∑

k=

akhk
n∇–kβan.

Corollary . Suppose that the conditions of Corollary . hold, an is monotone increasing
and  < aM < . If

un ≤ an + a∇–βhnun,

then

un ≤ anFβ ,(aM, n).

Proof Under the conditions of Corollary . and an is monotone increasing, and we get

un ≤ an +
∞∑

k=

akhk
n∇–kβan ≤ an + an

∞∑
k=

akhk
n∇–kβ

[

n

]

≤ an

∞∑
k=

(aM)k

[
kβ + 

n

]
= anFβ ,(aM, n) ( < aM < ). �

Corollary . Suppose that the conditions of Theorem . hold, if an is monotone increas-
ing, then from

un ≤ an + gn∇–βhnun,

we get

un ≤ an

∞∑
k=

(MM)k∇–kβ

[

n

]
= anFβ ,(MM, n).

Theorem . Suppose that β > , un, and an are nonnegative functions, ϕ(t) is monotone
and nondecreasing, ϕ(t + s) ≤ ϕ(t) + ϕ(s), ϕ(t) ≤ Lt,  < L < . If

un ≤ an + ∇–βϕ(un), (.)

then

un ≤
∞∑

k=

∇–kβϕk(an). (.)
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Proof Let Bun = ∇–βϕ(un). Under the conditions that ϕ(a + b) ≤ ϕ(a) + ϕ(b) and ϕ(t) is
monotone and nondecreasing, we have

ϕ
(∇–βϕ(un)

)
= ϕ

( n∑
r=

[
ν

n – r

]
ϕ
(
u(r)

)) ≤
n∑

r=

[
ν

n – r

]
ϕ(u(r)

)
= ∇–βϕ(un),

ϕ(∇–βϕ(un)
) ≤ ∇–βϕ(un),

...

then for all n ∈ N+
 ,

un ≤ an + Bun = an + ∇–βϕ(un)

≤ an + ∇–βϕ(an + Bun) = an + ∇–βϕ
(
an + ∇–βϕ(un)

)
≤ an + ∇–βϕ(an) + ∇–βϕ

(∇–βϕ(un)
)

≤ an + ∇–βϕ(an) + ∇–βϕ(un)

≤ an + ∇–βϕ(an) + ∇–βϕ(an + ∇–βϕ(un)
)

≤ an + ∇–βϕ(an) + ∇–βϕ(an) + ∇–βϕ(un)

≤ · · ·
≤ an + ∇–βϕ(an) + ∇–βϕ(an) + ∇–βϕ(an) + · · ·

+ ∇–(m–)βϕm–(an) + ∇–mβϕm(un),

that is,

un ≤
m–∑
k=

∇–kβϕk(an) + ∇–mβϕm(un). (.)

Noticing that ϕ(un) ≤ Lun, |L| < , and un is bounded for  ≤ n ≤ N , suppose that
 < un ≤ C, then we get

∇–βϕ(un) ≤ L∇–βun ≤ L∇–βC = CL

[
 + β

n

]
,

∇–βϕ(un) ≤ CL

[
 + β

n

]
,

∇–βϕ(un) ≤ CL

[
 + β

n

]
,

...

∇–mβϕm(un) ≤ CLm

[
 + mβ

n

]
.

(.)
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From the fact that the series

∞∑
m=

Lm

[
 + mβ

n

]

converges to Fβ ,(L, n), |L| < , we have

lim
m→∞ Lm

[
 + mβ

n

]
= . (.)

Due to the fact that ∇–mβϕm(un) ≥ , from (.) and (.) we have

lim
m→∞∇–mβϕm(un) = ,

taking the limit as m → ∞ on both sides of (.), we have

un ≤
∞∑

k=

∇–kβϕk(an).

This completes the proof of Theorem .. �

By choosing some particular functions ϕ(t), we can get the corresponding results. For ex-
ample, suppose that an, un, β are the same as in Theorem .. Let ϕ(t) = 

 sin t ( ≤ t ≤ π
 ),

 ≤ un ≤ π
 , then ϕ(t) satisfies ϕ(t + s) ≤ ϕ(t) + ϕ(s), ϕ(t) ≤ 

 t. If

un ≤ an +


∇–β sin un,

then

un ≤
∞∑

k=

(



)k

∇–kβ sink an.

Furthermore, if an ≡ , then from sin t ≤ t, we have

un ≤
∞∑

k=

(



)k

∇–kβ ≤
∞∑

k=

(



)k
[

 + kβ

n

]
.

3 Applications
Consider the fractional difference equation

⎧⎨
⎩∇αy(n) = f

(
n, y(n)

)
,

∇α–y(n)|n=– = η,
(.)

where  < α < ,  ≤ n ≤ N < ∞.
From Proposition . in Chapter  of [], we know that the problem (.) is equivalent

to the summation equation

y(n) = η

[
α

n

]
+ ∇–αf

(
n, y(n)

)
. (.)
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Suppose that zn is the solution of the initial value problem

⎧⎨
⎩∇αz(n) = f

(
n, z(n)

)
,

∇α–z(n)|n=– = η̃,
(.)

 < α < ,  ≤ n ≤ N < ∞, then (.) is equivalent to the summation equation

z(n) = η̃

[
α

n

]
+ ∇–αf

(
n, z(n)

)
. (.)

Theorem . Suppose that f (n, t) satisfies the condition

∣∣f (n, z) – f (n, y)
∣∣ ≤ hn|z – y|, (.)

where hn is a monotone nondecreasing positive function, |hn| < . Then the solutions of (.)
rely on the initial value continuously.

Proof From (.), (.), and (.) we have

∣∣z(n) – y(n)
∣∣ ≤ |̃η – η|

[
α

n

]
+ ∇–α

∣∣f (n, z(n)
)

– f
(
n, y(n)

)∣∣

≤ |̃η – η|
[
α

n

]
+ ∇–αhn

∣∣z(n) – y(n)
∣∣.

From Corollary ., we have

∣∣z(n) – y(n)
∣∣ ≤ |̃η – η|

[
α

n

]
+

∞∑
k=

hk
n∇–kα |̃η – η|

[
α

n

]

= |̃η – η|
∞∑

k=

hk
n

[
kα + α

n

]
= |̃η – η|Fα,α(hn, n), |hn| < .

Then the solutions of (.) rely on the initial value continuously. �

Remark . The condition (.) generalizes the Lipschitz condition, then Theorem . is
a promotion of Theorem . in Chapter  of [].

Theorem . Suppose that f (n, t) satisfies the condition

∣∣f (n, z) – f (n, y)
∣∣ ≤ ϕ

(|z – y|), (.)

where ϕ(t) is the same as in Theorem .. Then the solutions of (.) rely on the initial value
continuously.
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Proof From (.), (.), and (.) we have

∣∣z(n) – y(n)
∣∣ ≤ |̃η – η|

[
α

n

]
+ ∇–α

∣∣f (n, z(n)
)

– f
(
n, y(n)

)∣∣

≤ |̃η – η|
[
α

n

]
+ ∇–αϕ

(∣∣z(n) – y(n)
∣∣).

By Theorem . we get

∣∣z(n) – y(n)
∣∣ ≤

∞∑
k=

∇–kαϕk

(
|̃η – η|

[
α

n

])

≤ |̃η – η|
∞∑

k=

Lk

[
kα + α

n

]
= |̃η – η|Fα,α(L, n).

Then the solutions of (.) rely on the initial value continuously. �
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