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1 Introduction
Assuming that f , g ∈ L(R+), ‖f ‖ = {∫ ∞

 f (x) dx} 
 > , ‖g‖ > , we have the following

Hilbert integral inequality (cf. []):

∫ ∞



∫ ∞



f (x)g(y)
x + y

dx dy < π‖f ‖‖g‖, (.)

where the constant factor π is best possible. If a = {am}∞m=, b = {bn}∞n= ∈ l, ‖a‖ =
{∑∞

m= a
m} 

 > , ‖b‖ > , then we have the following discrete Hilbert inequality:

∞∑

m=

∞∑

n=

ambn

m + n
< π‖a‖‖b‖, (.)

with the same best constant factor π . Inequalities (.) and (.) are important in analy-
sis and its applications (cf. [, ]). On the other hand, we have the following Mulholland
inequality with the same best constant factor π (cf. [, ]):

∞∑

m=

∞∑

n=

ambn

ln mn
< π

{ ∞∑

m=

ma
m

∞∑

n=

nb
n

} 


. (.)

In , by introducing an independent parameter λ ∈ (, ], Yang [] gave an extension
of (.). Generalizing the results from [], Yang [] gave some extensions of (.) and (.) as
follows: If p > , 

p + 
q = , λ +λ = λ ∈ R, kλ(x, y) is a non-negative homogeneous function

of degree –λ satisfying

k(λ) =
∫ ∞


kλ(t, )tλ– dt ∈ R+,
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φ(x) = xp(–λ)–, ψ(x) = xq(–λ)–, f (x), g(y) ≥ ,

f ∈ Lp,φ(R+) =
{

f
∣
∣
∣ ‖f ‖p,φ :=

{∫ ∞


φ(x)

∣
∣f (x)

∣
∣p dx

} 
p

< ∞
}

,

g ∈ Lq,ψ (R+), and ‖f ‖p,φ ,‖g‖q,ψ > , then

∫ ∞



∫ ∞


kλ(x, y)f (x)g(y) dx dy < k(λ)‖f ‖p,φ‖g‖q,ψ , (.)

where the constant factor k(λ) is best possible. Moreover, if kλ(x, y) is finite and
kλ(x, y)xλ– (kλ(x, y)yλ–) is decreasing for x >  (y > ), then for am, bn ≥ ,

a = {am}∞m= ∈ lp,φ =

{

a
∣
∣
∣ ‖a‖p,φ :=

{ ∞∑

m=

φ(m)|am|p
} 

p

< ∞
}

,

and b = {bn}∞n= ∈ lq,ψ , ‖a‖p,φ ,‖b‖q,ψ > , we have

∞∑

m=

∞∑

n=

kλ(m, n)ambn < k(λ)‖a‖p,φ‖b‖q,ψ , (.)

where the constant factor k(λ) is still the best possible. Clearly, for p = q = , λ = ,
k(x, y) = 

x+y and λ = λ = 
 , (.) reduces to (.), while (.) reduces to (.).

Some other results about Hilbert-type inequalities can be found in [–]. On half-
discrete Hilbert-type inequalities with the general non-homogeneous kernels, Hardy et
al. provided a few results in Theorem  of []. But they did not prove that the constant
factors are best possible. In , Yang [] gave a result with the kernel 

(+nx)λ by intro-
ducing a variable and proved that the constant factor is best possible. Recently, Wang and
Yang [] gave a more accurate reverse half-discrete Hilbert-type inequality, and Yang []
provided the following half-discrete Hilbert inequality with best constant factor:

∫ ∞


f (x)

∞∑

n=

an

x + n
dx < π‖f ‖‖a‖. (.)

In this paper, by means of weight functions and Hermite-Hadamard’s inequality, a new
half-discrete Mulholland-type inequality similar to (.) and (.) with a best possible con-
stant factor is given as follows:

∫ ∞


f (x)

∞∑

n=

an

 + ln x ln n
dx < π

{∫ ∞


xf (x) dx

∞∑

n=

na
n

} 


. (.)

Moreover, a best extension of (.) with multi-parameters, some equivalent forms, the
operator expressions as well as some particular cases are considered.
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2 Some lemmas
Lemma . If  < σ < λ (σ ≤ ), α > , β ≥ 

 , δ ∈ {–, }, the weight functions ω(n) and
� (x) are defined by

ω(n) := (lnβn)σ
∫ ∞


α

(lnαx)δσ–

x( + lnδ αx lnβn)λ
dx, n ∈ N\{}, (.)

� (x) := (lnαx)δσ
∞∑

n=

(lnβn)σ–

n( + lnδ αx lnβn)λ
, x ∈

(

α

,∞
)

, (.)

then we have

� (x) < ω(n) = B(σ ,λ – σ ). (.)

Proof Substituting t = lnδ αx lnβn in (.), and by a simple calculation, for δ ∈ {–, }, we
have

ω(n) =
∫ ∞




( + t)λ

tσ– dt = B(σ ,λ – σ ).

For fixed x > 
α

, in view of the conditions, it is easy to find that

h(x, y) :=
(lnβy)σ–

y( + lnδ αx lnβy)λ
=


y( + lnδ αx lnβy)λ(lnβy)–σ

is decreasing and strictly convex with h′
y(x, y) <  and h′′

y (x, y) > , for y ∈ ( 
 ,∞). Hence

by the Hermite-Hadamard inequality (cf. []), we find

� (x) < (lnαx)δσ
∫ ∞





y( + lnδ αx lnβy)λ(lnβy)–σ

dy

t=lnδ αx lnβy=
∫ ∞

lnδ αx ln( 
 β)

tσ–

( + t)λ
dt ≤ B(σ ,λ – σ ),

and then (.) follows. �

Lemma . Let the assumptions of Lemma . be fulfilled and, additionally, let p > , 
p +


q = , an ≥ , n ∈ N\{}, f (x) is a non-negative measurable function in ( 

α
,∞). Then we

have the following inequalities:

J :=

{ ∞∑

n=


n

(lnβn)pσ–
[∫ ∞


α

f (x)
( + lnδ αx lnβn)λ

dx
]p

} 
p

≤ [
B(σ ,λ – σ )

] 
q

{∫ ∞


α

� (x)xp–(lnαx)p(–δσ )–f p(x) dx
} 

p
, (.)

L :=

{∫ ∞


α

(lnαx)qδα–

x[� (x)]q–

[ ∞∑

n=

an

( + lnδ αx lnβn)λ

]q

dx

} 
q

≤
{

B(σ ,λ – σ )
∞∑

n=

nq–(lnβn)q(–σ )–aq
n

} 
q

. (.)
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Proof By Hölder’s inequality (cf. []) and (.), it follows that

[∫ ∞


α

f (x) dx
( + lnδ αx lnβn)λ

]p

=
{∫ ∞


α


( + lnδ αx lnβn)λ

[
(lnαx)(–δσ )/q

(lnβn)(–σ )/p
x


q f (x)

n

p

]

×
[

(lnβn)(–σ )/p

(lnαx)(–δσ )/q
n


p

x

q

]

dx
}p

≤
∫ ∞


α

xp–(lnαx)(–δσ )(p–)

( + lnδ αx lnβn)λ
f p(x) dx

n(lnβn)–σ

×
{∫ ∞


α

nq–

( + lnδ αx lnβn)λ
(lnβn)(–σ )(q–)

x(lnαx)–δσ
dx

}p–

=
{
ω(n)nq–(lnβn)q(–σ )–}p–

∫ ∞


α

xp–(lnαx)(–δσ )(p–)

( + lnδ αx lnβn)λ
f p(x) dx

n(lnβn)–σ

=
[
B(σ ,λ – σ )

]p–n(lnβn)–pσ

∫ ∞


α

xp–(lnαx)(–δσ )(p–)

( + lnδ αx lnβn)λ
f p(x) dx

n(lnβn)–σ
.

Then by Lebesgue term-by-term integration theorem (cf. []), we have

J ≤ [
B(σ ,λ – σ )

] 
q

{ ∞∑

n=

∫ ∞


α

xp–(lnαx)(–δσ )(p–)

( + lnδ αx lnβn)λ
f p(x) dx

n(lnβn)–σ

} 
p

=
[
B(σ ,λ – σ )

] 
q

{∫ ∞


α

∞∑

n=

xp–(lnαx)(–δσ )(p–)

( + lnδ αx lnβn)λ
f p(x) dx

n(lnβn)–σ

} 
p

=
[
B(σ ,λ – σ )

] 
q

{∫ ∞


α

� (x)xp–(lnαx)p(–δσ )–f p(x) dx
} 

p
,

hence, (.) follows.
By Hölder’s inequality again, we have

[ ∞∑

n=

an

( + lnδ αx lnβn)λ

]q

=

{ ∞∑

n=


( + lnδ αx lnβn)λ

[
(lnαx)(–δσ )/q

(lnβn)(–σ )/p
x


q

n

p

]

×
[

(lnβn)(–σ )/p

(lnαx)(–δσ )/q
n


p an

x

q

]}q

≤
{ ∞∑

n=

xp–(lnαx)(–δσ )(p–)

n( + lnδ αx lnβn)λ(lnβn)–σ

}q–

×
∞∑

n=

nq–

( + lnδ αx lnβn)λ
(lnβn)(–σ )(q–)

x(lnαx)–δσ
aq

n

=
x[� (x)]q–

(lnαx)qδσ–

∞∑

n=

nq–

x( + lnδ αx lnβn)λ
(lnαx)δσ–(lnβn)(–σ )(q–)aq

n.
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By the Lebesgue term-by-term integration theorem, we have

L ≤
{∫ ∞


α

∞∑

n=

nq–

x( + lnδ αx lnβn)λ
(lnαx)δσ–(lnβn)(–σ )(q–)aq

n dx

} 
q

=

{ ∞∑

n=

[

(lnβn)σ
∫ ∞


α

(lnαx)δσ– dx
x( + lnδ αx lnβn)λ

]

nq–(lnβn)q(–σ )–aq
n

} 
q

=

{ ∞∑

n=

ω(n)nq–(lnβn)q(–σ )–aq
n

} 
q

,

and in view of (.), inequality (.) follows. �

3 Main results
We introduce the functions

�δ(x) := xp–(lnαx)p(–δσ )–
(

x >

α

)

,

(n) := nq–(lnβn)q(–σ )– (
n ∈ N\{}),

wherefrom [�δ(x)]–q = 
x (lnαx)qδσ–, and [(n)]–p = 

n (lnβn)pσ–.

Theorem . If  < σ < λ (σ ≤ ), α > , β ≥ 
 , δ ∈ {–, }, p > , 

p + 
q = , f (x), an ≥ ,

f ∈ Lp,�( 
α

,∞), a = {an}∞n= ∈ lq, , ‖f ‖p,�δ
> , and ‖a‖q, > , then we have the following

equivalent inequalities:

I :=
∞∑

n=

an

∫ ∞


α

f (x) dx
( + lnδ αx lnβn)λ

=
∫ ∞


α

f (x)
∞∑

n=

an dx
( + lnδ αx lnβn)λ

< B(σ ,λ – σ )‖f ‖p,�δ
‖a‖q, , (.)

J =

{ ∞∑

n=

[
(n)

]–p
[∫ ∞


α

f (x) dx
( + lnδ αx lnβn)λ

]p
} 

p

< B(σ ,λ – σ )‖f ‖p,�δ
, (.)

L :=

{∫ ∞


α

[
�δ(x)

]–q
[ ∞∑

n=

an

( + lnδ αx lnβn)λ

]q

dx

} 
q

< B(σ ,λ – σ )‖a‖q, , (.)

where the constant B(σ ,λ – σ ) is the best possible in the above inequalities.

Proof The two expressions for I in (.) follow from Lebesgue’s term-by-term integration
theorem. By (.) and (.), we have (.). By Hölder’s inequality, we have

I =
∞∑

n=

[


–
q (n)

∫ ∞


α

f (x) dx
( + lnδ αx lnβn)λ

]
[



q (n)an

] ≤ J‖a‖q, . (.)

Then by (.), we have (.).
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On the other hand, assuming that (.) is valid, we set

an :=
[
(n)

]–p
[∫ ∞


α

f (x) dx
( + lnδ αx lnβn)λ

]p–

, n ∈ N\{}.

It follows that Jp– = ‖a‖q, . By (.), we find J < ∞. If J = , then (.) is trivially valid; if
J > , then by (.), we have

‖a‖q
q, = Jq(p–) = Jp = I < B(σ ,λ – σ )‖f ‖p,�δ

‖a‖q, ,

namely, ‖a‖q–
q, = J < B(σ ,λ – σ )‖f ‖p,�δ

. That is, (.) is equivalent to (.).
By (.) we have [� (x)]–q > [B(σ ,λ – σ )]–q. Then in view of (.), we have (.). By

Hölder’s inequality, we find

I =
∫ ∞


α

[
�


p
δ (x)f (x)

]
[

�
–
p

δ (x)
∞∑

n=

an

( + lnδ αx lnβn)λ

]

dx ≤ ‖f ‖p,�δ
L. (.)

Then by (.), we have (.).
On the other hand, assume that (.) is valid. Setting

f (x) :=
[
�δ(x)

]–q
[ ∞∑

n=

an

( + lnδ αx lnβn)λ

]q–

, x ∈
(


α

,∞
)

,

then Lq– = ‖f ‖p,�δ
. By (.), we find L < ∞. If L = , then (.) is trivially valid; if L > ,

then by (.), we have

‖f ‖p
p,�δ

= Lp(q–) = Lq = I < B(σ ,λ – σ )‖f ‖p,�δ
‖a‖q, ,

therefore ‖f ‖p–
p,�δ

= L < B(σ ,λ – σ )‖a‖q, , that is, (.) is equivalent to (.). Hence, in-
equalities (.), (.), and (.) are equivalent.

For  < ε < p(λ – σ ), setting Eδ := {x; x > 
α

, lnδ αx ∈ (, )},

f̃ (x) =

x

(lnαx)δ(σ+ ε
p )–, x ∈ Eδ ; f̃ (x) = ,

{

x; x >

α

}

\Eδ ,

and ãn = 
n (lnβn)σ– ε

q –, n ∈ N\{}, if there exists a positive number k (≤ B(σ ,λ – σ )), such
that (.) is valid when replacing B(σ ,λ – σ ) with k, then in particular, for δ = ±, setting
u = lnδ αx, it follows that

∫

Eδ

dx
x(lnαx)–δε+ =

∫ 



|δ|uδ–

u–ε+δ
du =


ε

,

Ĩ :=
∞∑

n=

∫ ∞


α


( + lnδ αx lnβn)λ

ãñf (x) dx < k‖̃f ‖p,�δ
‖̃a‖q,

= k
{∫

Eδ

dx
x(lnαx)–δε+

} 
p
{


(ln β)ε+ +

∞∑

n=


n(lnβn)ε+

} 
q
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< k
(


ε

) 
p
{


(ln β)ε+ +

∫ ∞




x(lnβx)ε+ dx

} 
q

=
k
ε

{
ε

(ln β)ε+ +


(ln β)ε

} 
q

, (.)

Ĩ =
∞∑

n=


n

(lnβn)σ– ε
q –

∫

Eδ

(lnαx)δ(σ+ ε
p )–

x( + lnδ αx lnβn)λ
dx

t=lnδ αx lnβn=
∞∑

n=


n(lnβn)ε+

∫ lnβn




( + t)λ

tσ+ ε
p – dt

= B
(

σ +
ε

p
,λ – σ –

ε

p

) ∞∑

n=


n(lnβn)ε+ – A(ε)

> B
(

σ +
ε

p
,λ – σ –

ε

p

)∫ ∞




y(lnβy)ε+ dy – A(ε)

=


ε(ln β)ε
B
(

σ +
ε

p
,λ – σ –

ε

p

)

– A(ε),

A(ε) :=
∞∑

n=


n(lnβn)ε+

∫ ∞

lnβn


(t + )λ

tσ+ ε
p – dt. (.)

We find

 < A(ε) ≤
∞∑

n=


n(lnβn)ε+

∫ ∞

lnβn


tλ

tσ+ ε
p – dt

=


λ
 – ε

p

∞∑

n=


n(lnβn)σ+ ε

q + < ∞,

and so A(ε) = O()(ε → +). Hence by (.) and (.), it follows that


(ln β)ε

B
(

σ +
ε

p
,λ – σ –

ε

p

)

– εO() < k
{

ε

(ln β)ε+ +


(ln β)ε

} 
q

,

and B(σ ,λ – σ ) ≤ k(ε → +). Hence k = B(σ ,λ – σ ) is the best value of (.).
By the equivalence of the inequalities, the constant factor B(σ ,λ – σ ) in (.) ((.)) is

the best possible. Otherwise, we would reach the contradiction by (.) ((.)) that the
constant factor in (.) is not the best possible. �

Remark . (i) Define the first type half-discrete Hilbert-type operator T : Lp,�δ
( 
α

,∞) →
lp,–p as follows: For f ∈ Lp,�δ

( 
α

,∞), we define Tf ∈ lp,–p by

Tf (n) =
∫ ∞


α


( + lnδ αx lnβn)λ

f (x) dx, n ∈ N\{}.

Then by (.), ‖Tf ‖p,–p ≤ B(σ ,λ – σ )‖f ‖p,�δ
and so T is a bounded operator with

‖T‖ ≤ B(σ ,λ – σ ). Since by Theorem ., the constant factor in (.) is best possible,
we have ‖T‖ = B(σ ,λ – σ ).
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(ii) Define the second type half-discrete Hilbert-type operator T : lq, → Lq,�–q
δ

( 
α

,∞)
as follows: For a ∈ lq, , we define Ta ∈ Lq,�–q

δ

( 
α

,∞) by

Ta(x) =
∞∑

n=


( + lnδ αx lnβn)λ

an, x ∈
(


α

,∞
)

.

Then by (.), ‖Ta‖q,�–q
δ

≤ B(σ ,λ – σ )‖a‖q, and so T is a bounded operator with
‖T‖ ≤ B(σ ,λ – σ ). Since by Theorem ., the constant factor in (.) is best possible,
we have ‖T‖ = B(σ ,λ – σ ).

Remark . For p = q = , λ = , σ = 
 , δ =  in (.), (.), and (.), (i) if α = β = , then

we have (.) and the following equivalent inequalities:

∞∑

n=


n

(∫ ∞



f (x)
 + ln x ln n

dx
)

< π
∫ ∞


xf (x) dx, (.)

∫ ∞




x

( ∞∑

n=

an

 + ln x ln n

)

dx < π
∞∑

n=

na
n; (.)

(ii) if α = β = 
 , then we have the following equivalent inequalities:

∫ ∞




∞∑

n=

anf (x) dx
 + ln 

 x ln 
 n

< π

{∫ ∞




xf (x) dx
∞∑

n=

na
n

} 


, (.)

∞∑

n=


n

(∫ ∞




f (x)
 + ln 

 x ln 
 n

dx
)

< π
∫ ∞




xf (x) dx, (.)

∫ ∞





x

( ∞∑

n=

an

 + ln 
 x ln 

 n

)

dx < π
∞∑

n=

na
n. (.)

Remark . For δ = – in (.), (.), and (.), setting F(x) = lnλ(αx)f (x), μ = λ – σ (> ),
and �(x) := xp–(lnαx)p(–μ)–, we have the following new equivalent inequalities with the
same best possible constant factor B(σ ,μ):

∞∑

n=

an

∫ ∞


α

F(x) dx
lnλ(αβnx)

=
∫ ∞


α

F(x)
∞∑

n=

an

lnλ(αβnx)
dx

< B(σ ,μ)‖F‖p,�‖a‖q, , (.)
{ ∞∑

n=

[
(n)

]–p
[∫ ∞


α

F(x) dx
lnλ(αβnx)

]p
} 

p

< B(σ ,μ)‖F‖p,�, (.)

{∫ ∞


α

[
�(x)

]–q
[ ∞∑

n=

an

lnλ(αβnx)

]q

dx

} 
q

< B(σ ,μ)‖a‖q, . (.)
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6. Yang, BC, Brnetić, I, Krnić, M, Pečarić, J: Generalization of Hilbert and Hardy-Hilbert integral inequalities. Math. Inequal.

Appl. 8(2), 259-272 (2005)
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