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Abstract
In this paper, let H be a real Hilbert space and let C be a nonempty, closed, and
convex subset of H. We assume that (A + B)–10∩ U �= ∅, where A : C → H is an
α-inverse-strongly monotone mapping, B : H → H is a maximal monotone operator,
the domain of B is included in C. Let U denote the solution set of the constrained
convex minimization problem. Based on the viscosity approximation method, we use
a gradient-projection algorithm to propose composite iterative algorithms and find a
common solution of the problems which we studied. Then we regularize it to find a
unique solution by gradient-projection algorithm. The point q ∈ (A + B)–10∩ U which
we find solves the variational inequality 〈(I – f )q,p – q〉 ≥ 0, ∀p ∈ (A + B)–10∩ U. Under
suitable conditions, the constrained convex minimization problem can be
transformed into the split feasibility problem. Zeros of the sum of two operators can
be transformed into the variational inequality problem and the fixed point problem.
Furthermore, new strong convergence theorems and applications are obtained in
Hilbert spaces, which are useful in nonlinear analysis and optimization.
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1 Introduction
Throughout this paper, let H be a real Hilbert space with the inner product 〈·, ·〉 and norm
‖ · ‖. Let C be a nonempty, closed, and convex subset of H . Let N and R be the sets of posi-
tive integers and real numbers, respectively. In the following, we introduce some operators
which will be used in this paper.

• f : C → C is a contraction if there exists k ∈ (, ) such that ‖f (x) – f (y)‖ ≤ k‖x – y‖
for all x, y ∈ C.

• T : C → C is nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C.
• V : C → C is Lipschitz continuous if there exists a constant L >  such that

‖Vx – Vy‖ ≤ L‖x – y‖ for all x, y ∈ C.
• W : C → H is a strict pseudo-contraction [] if there exists t ∈R with  ≤ t <  such

that ‖Wx – Wy‖ ≤ ‖x – y‖ + t‖(I – W )x – (I – W )y‖ for all x, y ∈ C.
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• PC : H → C is metric projection if ‖x – PCx‖ ≤ ‖x – y‖ for all x ∈ H and y ∈ C. PC is
firmly nonexpansive if ‖PCx – PCy‖ ≤ 〈PCx – PCy, x – y〉 for all x, y ∈ H .

• A : H → H is monotone if 〈x – y, Ax – Ay〉 ≥  for all x, y ∈ H .
• Given a number η > , A : H → H is η-strongly monotone if

〈x – y, Ax – Ay〉 ≥ η‖x – y‖ for all x, y ∈ H .
• Given a number α > , A : C → H is α-inverse strongly monotone (α-ism) if

〈x – y, Ax – Ay〉 ≥ α‖Ax – Ay‖ for all x, y ∈ H .
We first consider the problem of zero points of the maximal monotone operator:

B– = {x ∈ H :  ∈ Bx},

where B is a mapping of H into H , the effective domain of B is denoted by dom B or
D(B), that is, dom B = {x ∈ H : Bx �= ∅}. A multi-valued mapping B is said to be a monotone
operator on H if 〈x – y, u – v〉 ≥  for all x, y ∈ dom B, u ∈ Bx, v ∈ By. A monotone operator
B on H is said to be maximal if its graph is not properly contained in the graph of any other
monotone operator on H . For a maximal monotone operator B on H and r > , we may
define a single-valued operator Jr = (I + rB)– : H → dom B, which is called the resolvent
of B for r. It is well known that B– = Fix(Jr) for all r >  and the resolvent Jr is firmly
nonexpansive, i.e.,

‖Jrx – Jry‖ ≤ 〈x – y, Jrx – Jry〉, ∀x, y ∈ H . (.)

Some authors introduced various algorithms to solve zeros of the operators (see []) and
monotone operators (see []).

We consider the following constrained convex minimization problem:

min
x∈C

g(x), (.)

where g : C → R is a real-valued convex function. Assume that the constrained convex
minimization problem (.) is solvable, and let U denote the solution set of (.). For solv-
ing constrained convex minimization problems, some methods were proposed by some
authors (see [] and []). The gradient-projection algorithm generates a sequence {xn}∞n=

according to the recursive formula:

xn+ = PC(I – β∇g)xn, ∀n ≥ , (.)

or more generally,

xn+ = PC(I – βn∇g)xn, ∀n ≥ , (.)

where the parameters βn are real positive numbers, and PC is the metric projection from H
onto C. It is well known that the convergence of the algorithms (.) depends on the behav-
ior of the gradient ∇g . If the gradient ∇g is only assumed to be inverse-strongly monotone,
then the sequence {xn} defined by the algorithm (.) and (.) can only converge weakly
to a minimizer of (.). If the gradient ∇g is Lipschitz continuous and strongly monotone,
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then the sequence generated by (.) and (.) can converge strongly to a minimizer of
(.).

However, we all know that the minimization problem (.) has more than one solution
under suitable conditions, so regularization is essential in finding the unique solution of
the minimization problem (.). Some authors used methods with regularization to solve
the minimization problems (see []), and the other methods for hierarchical minimization
problems (see []). Now, we consider the following regularized minimization problem:

min
x∈C

gλ(x) := g(x) +
λ


‖x‖,

where λ >  is the regularization parameter, g is a convex function with a /L-ism continu-
ous gradient ∇g . Then the regularized gradient-projection algorithm generates a sequence
{xn}∞n= by the following recursive formula:

xn+ = PC(I – β∇gλn )xn = PC
(
xn – β(∇g + λnI)(xn)

)
, (.)

where the parameter λn > , β is a constant with  < β < /L, and PC is the metric pro-
jection from H onto C. We all know that the sequence {xn}∞n= generated by algorithm
(.) converges weakly to a minimizer of (.) in the setting of infinite-dimensional spaces
(see []).

The subdifferential of the lower semicontinuous convex function and indicator function
will also be used in this paper. See the introduction from Section  for more details as
regards ∂h and ∂iC .

In , Moudafi [] introduced the viscosity approximation method for nonexpansive
mappings, extended in []. Let f be a contraction on H , starting with an arbitrary initial
x ∈ H , define a sequence {xn} recursively by

xn+ = αnf (xn) + ( – αn)Txn, n ≥ , (.)

we use Fix(T) to denote the set of fixed points of the mapping T , i.e., Fix(T) = {x ∈ H : x =
Tx}.

In , for finding a common element of equilibrium problem EP(F) and a fixed point
problem, Takahashi and Takahashi [] introduced the following iterative scheme by the
viscosity approximation method in a Hilbert space: x ∈ H and

{
F(un, y) + 

rn
〈y – un, un – xn〉 ≥ , ∀y ∈ C,

xn+ = αnf (xn) + ( – αn)T(un), ∀n ∈N,
(.)

where {αn} ⊂ (, ) and {γn} ⊂ (,∞) satisfy some appropriate conditions. Further, they
proved {xn} and {un} converge strongly to z ∈ Fix(T) ∩ EP(F), where z = PFix(T)∩EP(F)f (z).

In , Tian and Liu [] introduced the following iterative method in a Hilbert space:
x ∈ C and

{
F(un, y) + 

rn
〈y – un, un – xn〉 ≥ , ∀y ∈ C,

xn+ = αnγ f (un) + (I – αnA)Tn(un), ∀n ∈N,
(.)
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where F : C × C → R, un = Qβn (xn), PC(I – λn∇g) = θnI + ( – θn)Tn, θn = –λnL
 , and

{λn} ⊂ (, /L), and {αn}, {rn}, {θn} satisfy appropriate conditions. Further, they proved the
sequence {xn} converges strongly to a point q ∈ U ∩ EP(F), which solves the variational
inequality

〈
(A – γ f )q, q – z

〉 ≤ , z ∈ U ∩ EP(F).

It is the first time that the equilibrium and constrained convex minimization problems
have been solved.

Also in , Lin and Takahashi [] proposed the following iterative sequence in a
Hilbert space: x = x ∈ H and {xn} ⊂ H a sequence generated by

xn+ = αnγ g(xn) + (I – αnV )Jλn (I – λnA)Trn xn, ∀n ∈N. (.)

Under appropriate conditions, it is proved that the sequence {xn} generated by (.)
converges strongly to a point z ∈ (A + B)– ∩ F– which is a unique fixed point of
P(A+B)–∩F–(I – V + γ g) in (A + B)– ∩ F–. This point z is also a unique solution of
the hierarchical variational inequality

〈
(V – γ g)z, q – z

〉 ≥ , ∀q ∈ (A + B)– ∩ F–.

In , Kong et al. [] proposed a multistep hybrid extragradient method for triple
hierarchical variational inequalities.

In this paper, motivated and inspired by the above results, we introduce two new iterative
algorithms, the one is: x ∈ C and

{
un = Jrn (I – rnA)(xn),
xn+ = αnf (xn) + ( – αn)Tn(un), ∀n ∈N,

(.)

to find a common element of (A + B)– ∩ U , where Tn = PC(I – βn∇g),  < b ≤ βn ≤ /L.
The other is: x ∈ C and

{
un = Jrn (I – rnA)(xn),
xn+ = αnf (xn) + ( – αn)Tλn (un), ∀n ∈N,

(.)

to find a unique solution of (A + B)– ∩ U , where Tλn = PC(I – β∇gλn ), ∇gλn = ∇g + λnI ,
β ∈ (, /L).

Under suitable conditions, it is proved that both of the sequences {xn} generated by (.)
and (.) converge strongly to a point q ∈ (A + B)– ∩ U , which solves the variational
inequality

〈
(I – f )q, q – p

〉 ≤ , ∀p ∈ (A + B)– ∩ U . (.)

Equivalently, q = P(A+B)–∩U f (q).
The main purpose of this paper is to find a solution of (A + B)– ∩ U by using the

gradient-projection algorithm. Then we use the regularized gradient-projection compos-
ite iterative method to find a unique solution of (A+B)–∩U . In the case that the maximal
monotone operator B = ∂iC , the problem of finding a unique solution in (A + B)– ∩ U is
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equivalent to the problem of finding a unique solution in VI(C, A) ∩ U . In the case B = ∂iC

and A = I – W , (A + B)– is equivalent to Fix(W ).
The paper is organized as follows: in Section , we introduce some useful properties and

lemmas. In Section , we prove our main results and apply our results to the variational
inequality, fixed point problem and the split feasibility problem. In the final section, we
give our conclusion due to the main results.

We will use the following notations:
. ‘⇀’ for weak convergence and ‘→’ for strong convergence;
. Fix(T) denotes the set of fixed points of the mapping T ;
. U denotes the solution set of (.).
. ‘GPA’ for the gradient-projection algorithm and ‘RGPA’ for the regularized

gradient-projection algorithm.

2 Preliminaries
In this section, we give our preliminaries which will be useful for the main results in the
next section.

Throughout this paper, we always assume that C is a nonempty, closed, and convex sub-
set of a real Hilbert space H .

The following inequality holds in an inner product space X:

‖x + y‖ ≤ ‖x‖ + 〈y, x + y〉, ∀x, y ∈ X. (.)

We need some facts and tools in a real Hilbert space H which are listed as lemmas below.
Firstly, we recall the metric (nearest point) projection from H onto C is the mapping

PC : H → C which is defined as follows: given x ∈ H , PCx is the unique point in C with the
property

‖x – PCx‖ = inf
y∈C

‖x – y‖ =: d(x, C).

PC is characterized as follows.

Lemma . Given x ∈ H and y ∈ C. Then y = PCx if and only if the following inequality
holds:

〈x – y, y – z〉 ≥ , ∀z ∈ C.

Then we introduce the following lemma which is about the resolvent of the maximal
monotone operator.

Lemma . (see [–]) Let H be a real Hilbert space and let B be a maximal monotone
operator on H . For r >  and x ∈ H , define the resolvent Jrx. Then the following holds:

s – t
s

〈Jsx – Jtx, Jsx – x〉 ≥ ‖Jsx – Jtx‖

for all s, t >  and x ∈ H . In particular,

‖Jsx – Jtx‖ ≤ (|s – t|/s
)‖x – Jsx‖

for all s, t >  and x ∈ H .
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Besides, the following two lemmas are extremely important in the proof of theorems.

Lemma . [] Assume that {an}∞n= is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + γnδn + βn, n ≥ ,

where {γn}∞n= and {βn}∞n= are sequences in (, ) and {δn}∞n= is a sequence in R such that
(i)

∑∞
n= γn = ∞;

(ii) either lim supn→∞ δn ≤  or
∑∞

n= γn|δn| < ∞;
(iii)

∑∞
n= βn < ∞.

Then limn→∞ an = .

The so-called demiclosed principle for nonexpansive mappings will often be used.

Lemma . (Demiclosed principle []) Let T : C → C be a nonexpansive mapping with
F(T) �= ∅. If {xn}∞n= is a sequence in C weakly converging to x and if {(I – T)xn}∞n= converges
strongly to y, then (I – T)x = y. In particular, if y = , then x ∈ F(T).

The lemma below shows the uniqueness of solution of the variational inequality (.).

Lemma . [] Let H be a Hilbert space, C a closed convex subset of H , and f : C → C a
contraction with coefficient α < . Then

〈
x – y, (I – f )x – (I – f )y

〉 ≥ ( – α)‖x – y‖, x, y ∈ C.

That is, I – f is strongly monotone with coefficient  – α.

3 Main results
We always assume that H is a real Hilbert space and C is a nonempty, closed, and convex
subset of H . Let PC : H → C be the metric projection. Let f : C → C be a contraction
with the constant k ∈ (, ). Let A : C → H be an α-inverse-strongly monotone mapping
with α > , and let B : H → H be a maximal monotone operator and the domain of B is
included in C. Let Jr = (I + rB)– be the resolvent of B for r > . Suppose that ∇g is /L-ism
continuous. Consider the two mappings Gn and Sn,

Gn(x) = αnf (x) + ( – αn)TnJrn (I – rnA)(x), ∀x ∈ C, n ∈N, (.)

Sn(x) = αnf (x) + ( – αn)Tλn Jrn (I – rnA)(x), ∀x ∈ C, n ∈N, (.)

where Tn = PC(I – βn∇g), Tλn = PC(I – β∇gλn ),  < b ≤ βn ≤ /L,∇gλn = ∇g + λnI , λn ∈
(, /β – L), β ∈ (, /L), {αn} ⊂ (, ). It is easy to prove that ∇gλn is 

L+λn
-ism, Tλn is non-

expansive. It is easy to see that if  < r ≤ α, then I – rA is nonexpansive of C into H .
Indeed, we have, for all x, y ∈ C,

∥∥(I – rA)x – (I – rA)y
∥∥ =

∥∥x – y – r(Ax – Ay)
∥∥

= ‖x – y‖ – r〈x – y, Ax – Ay〉 + r‖Ax – Ay‖

≤ ‖x – y‖ – rα‖Ax – Ay‖ + r‖Ax – Ay‖
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= ‖x – y‖ + r(r – α)‖Ax – Ay‖

≤ ‖x – y‖. (.)

Thus, I – rA is nonexpansive of C into H .
Then we can claim that both of Gn and Sn are contractions. Indeed, by (.) and (.)-

(.), we have, for each x, y ∈ C,

∥
∥Gn(x) – Gn(y)

∥
∥ =

∥
∥(

αnf (x) – αnf (y)
)

+ ( – αn)
(
TnJrn (I – rnA)(x) – TnJrn (I – rnA)(y)

)∥∥

≤ αnk‖x – y‖ + ( – αn)
∥
∥Jrn (I – rnA)(x) – Jrn (I – rnA)(y)

∥
∥

≤ αnk‖x – y‖ + ( – αn)
∥∥(I – rnA)(x) – (I – rnA)(y)

∥∥

≤ αnk‖x – y‖ + ( – αn)‖x – y‖
=

(
 – αn( – k)

)‖x – y‖.

Similarly,

∥
∥Sn(x) – Sn(y)

∥
∥ ≤ (

 – αn( – k)
)‖x – y‖.

Since  <  – αn( – k) < , it follows that both of Gn and Sn are contractions. Thus, by the
Banach contraction principle, Gn has a unique fixed point xf

n ∈ C such that

xf
n = αnf

(
xf

n
)

+ ( – αn)TnJrn (I – rnA)
(
xf

n
)
.

Similarly, Sn has a unique fixed point x∗
n ∈ C such that

x∗
n = αnf

(
x∗

n
)

+ ( – αn)Tλn Jrn (I – rnA)
(
x∗

n
)
.

For simplicity, we will write xn for xf
n and x∗

n provided no confusion occurs. Furthermore,
we prove the convergence of {xn}, while we claim the existence of the q ∈ (A + B)– ∩ U ,
which solves the variational inequality

〈
(I – f )q, p – q

〉 ≥ , ∀p ∈ (A + B)– ∩ U . (.)

Equivalently, q = P(A+B)–∩U f (q).
The following is our main result.

Theorem . Let H be a real Hilbert space and let C be a nonempty, closed, and convex
subset of H . Let PC : H → C be the metric projection. Let f : C → C be a contraction with
the constant k ∈ (, ). Let A : C → H be an α-inverse-strongly monotone mapping with
α > . Let B : H → H be a maximal monotone operator and the domain of B is included
in C. Let Jr = (I + rB)– be the resolvent of B for r > . Suppose that ∇g is /L-ism continuous
with L > . Assume that (A + B)– ∩ U �= ∅. Use GPA and let the sequences {un} and {xn}
be generated by

{
un = Jrn (I – rnA)(xn),
xn = αnf (xn) + ( – αn)Tn(un), ∀n ∈N,

(.)
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when regularize it by using RGPA, the sequences generated by (.) changed into the fol-
lowing sequence:

{
un = Jrn (I – rnA)(xn),
xn = αnf (xn) + ( – αn)Tλn (un), ∀n ∈N,

(.)

where Tn = PC(I – βn∇g), Tλn = PC(I – β∇gλn ), ∇gλn = ∇g + λnI , β ∈ (, /L),  < b ≤ βn ≤
/L. Let {αn}, {rn}, and {λn} satisfy the following conditions:

(i) {αn} ⊂ (, ), limn→∞ αn = ;
(ii) {rn} ⊂ (,∞),  < l ≤ rn ≤ α;

(iii) {λn} ⊂ (, /β – L), λn = o(αn).
Then the sequence {xn} converges strongly to a point q ∈ (A + B)– ∩ U , which solves the
variational inequality (.).

Proof It is well known that x̃ ∈ C solves the minimization problem (.) if and only if for
each fixed  < β < /L, x̃ solves the fixed point equation

x̃ = PC(I – β∇g)x̃ = Tx̃.

It is clear that x̃ = Tx̃, i.e., x̃ ∈ U = Fix(T). Since T is nonexpansive, U is closed and convex.
As in [], we have, for any r > ,

q ∈ (A + B)– ⇐⇒  ∈ Aq + Bq

⇐⇒  ∈ rAq + rBq

⇐⇒ q – rAq ∈ q + rBq

⇐⇒ q = Jr(I – rA)q

⇐⇒ q ∈ Fix
(
Jr(I – rA)

)
. (.)

If  < r ≤ α, we see from (.) and (.) that Jr(I – rA) is nonexpansive. Thus Fix(Jr(I –
rA)) is closed and convex.

In the first step, we show that {xn} is bounded. Indeed, pick any p ∈ (A + B)– ∩ U , put
Mn = Jrn (I – rnA), since un = Jrn (I – rnA)(xn), and p = Jrn (I – rnA)(p), we know that for any
n ∈N,

‖un – p‖ =
∥∥Mn(xn) – Mn(p)

∥∥ ≤ ‖xn – p‖. (.)

For x ∈ C, we note that

PC(I – β∇gλn )x = Tλn x

and

PC(I – β∇g)x = Tx.
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Then we get

‖Tλn x – Tx‖ =
∥∥PC(I – β∇gλn )x – PC(I – β∇g)x

∥∥ ≤ λnβ‖x‖. (.)

Thus, by (.) and (.), we derive that

‖xn – p‖ =
∥∥αnf (xn) + ( – αn)Tn(un) – p

∥∥

≤ ∥
∥αnf (xn) – αnf (p)

∥
∥ +

∥
∥αnf (p) – αnp

∥
∥ + ( – αn)

∥
∥Tn(un) – Tn(p)

∥
∥

≤ αnk‖xn – p‖ + αn
∥
∥(I – f )p

∥
∥ + ( – αn)‖un – p‖

≤ (
 – αn( – k)

)‖xn – p‖ + αn
∥∥(I – f )p

∥∥.

Then we have

‖xn – p‖ ≤ 
 – k

∥∥(I – f )p
∥∥,

and hence {xn} is bounded. From (.), we also derive that {un} is bounded.
Similarly, by (.) and (.), we obtain

‖xn – p‖ =
∥∥αnf (xn) + ( – αn)Tλn (un) – p

∥∥

≤ ∥∥αnf (xn) – αnf (p)
∥∥ +

∥∥αnf (p) – αnp
∥∥ + ( – αn)

∥∥Tλn (un) – Tλn (p)
∥∥

+ ( – αn)
∥
∥Tλn (p) – T(p)

∥
∥

≤ αnk‖xn – p‖ + αn
∥
∥(I – f )p

∥
∥ + ( – αn)‖un – p‖ + ( – αn)

∥
∥Tλn (p) – T(p)

∥
∥

≤ (
 – αn( – k)

)‖xn – p‖ + αn
∥∥(I – f )p

∥∥ + ( – αn)
∥∥Tλn (p) – T(p)

∥∥.

It follows from (.) that

‖xn – p‖ ≤ 
 – k

∥
∥(I – f )p

∥
∥ +

 – αn

αn( – k)
∥
∥Tλn (p) – T(p)

∥
∥

≤ 
 – k

∥∥(I – f )p
∥∥ +

( – αn)β
 – k

· λn

αn
‖p‖.

Since λn = o(αn), there exists a real number R >  such that λn
αn

≤ R, and

‖xn – p‖ ≤ 
 – k

∥
∥(I – f )p

∥
∥ +

( – αn)β
 – k

R‖p‖ =
‖(I – f )p‖ + ( – αn)βR‖p‖

 – k
.

Hence {xn} is bounded. From (.), we also see that {un} is bounded.
In the second step, we prove that ‖xn – un‖ → . Indeed, for any p ∈ (A + B)– ∩ U , by

(.), we derive that

‖un – p‖ =
∥
∥Jrn (I – rnA)(xn) – Jrn (I – rnA)(p)

∥
∥

≤ 〈
(I – rnA)(xn) – (I – rnA)(p), un – p

〉

= 〈xn – p, un – p〉 – rn〈Axn – Ap, un – p〉



Tian et al. Journal of Inequalities and Applications  (2015) 2015:227 Page 10 of 27

=


(‖xn – p‖ + ‖un – p‖ – ‖un – xn‖) – rn〈Axn – Ap, un – p〉

≤ 

(‖xn – p‖ + ‖un – p‖ – ‖un – xn‖).

This implies that

‖un – p‖ ≤ ‖xn – p‖ – ‖un – xn‖. (.)

From (.), (.) and (.), we derive that

‖xn – p‖ =
∥
∥αnf (xn) + ( – αn)Tn(un) – p

∥
∥

=
∥∥αnf (xn) – αnp + ( – αn)Tn(un) – ( – αn)Tn(p)

∥∥

≤ ( – αn)‖un – p‖ + αn
〈
f (xn) – p, xn – p

〉

≤ ‖xn – p‖ – ‖un – xn‖ + αn
(
k‖xn – p‖ +

∥∥(I – f )p
∥∥) · ‖xn – p‖.

Since αn → , it follows that limn→∞ ‖xn – un‖ = .
Similarly, from (.), (.), (.), and (.), we derive that

‖xn – p‖ ≤ ( – αn)
(‖xn – p‖ – ‖un – xn‖ + ‖un – p‖ · λnβ‖p‖ + λ

nβ
‖p‖)

+ αn
(
k‖xn – p‖ +

∥∥(I – f )p
∥∥) · ‖xn – p‖.

Hence, we obtain

( – αn)‖un – xn‖ ≤ (αnk – αn)‖xn – p‖ + ( – αn)λnβ‖un – p‖ · ‖p‖
+ ( – αn)λ

nβ
‖p‖ + αn

∥∥(I – f )p
∥∥ · ‖xn – p‖.

Since both {xn} and {un} are bounded and αn → , λn → , it follows that ‖un – xn‖ → .
In the third step, from (.), we show that ‖xn – Tn(xn)‖ → . Indeed,

∥∥xn – Tn(xn)
∥∥ =

∥∥xn – Tn(un) + Tn(un) – Tn(xn)
∥∥

≤ ∥∥xn – Tn(un)
∥∥ +

∥∥Tn(un) – Tn(xn)
∥∥

≤ αn
∥
∥f (xn) – Tn(un)

∥
∥ + ‖un – xn‖.

Since αn →  and ‖xn – un‖ → , we obtain ‖xn – Tn(xn)‖ → .
Thus,

∥
∥un – Tn(un)

∥
∥ =

∥
∥un – xn + xn – Tn(xn) + Tn(xn) – Tn(un)

∥
∥

≤ ‖un – xn‖ +
∥∥xn – Tn(xn)

∥∥ +
∥∥Tn(xn) – Tn(un)

∥∥

≤ ‖un – xn‖ +
∥
∥xn – Tn(xn)

∥
∥ + ‖xn – un‖

and

∥
∥xn – Tn(un)

∥
∥ ≤ ‖xn – un‖ +

∥
∥un – Tn(un)

∥
∥,

we have ‖un – Tn(un)‖ →  and ‖xn – Tn(un)‖ → .
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Similarly, from (.), we show that ‖xn – Tλn (xn)‖ → . Indeed,

∥∥xn – Tλn (xn)
∥∥ ≤ αn

∥∥f (xn) – Tλn (un)
∥∥ + ‖un – xn‖.

Since αn →  and ‖un – xn‖ → , we obtain ‖xn – Tλn (xn)‖ → .
Therefore,

∥∥un – Tλn (un)
∥∥ ≤ ‖un – xn‖ +

∥∥xn – Tλn (xn)
∥∥ + ‖xn – un‖

and

∥∥xn – Tλn (un)
∥∥ ≤ ‖un – xn‖ +

∥∥Tλn (un) – un
∥∥,

we have ‖un – Tλn (un)‖ →  and ‖xn – Tλn (un)‖ → .
In the fourth step, we show that q ∈ (A + B)– ∩ U .
Consider a subsequence {uni} of {un}. Since {un} is bounded, without loss of generality,

we can assume that uni ⇀ q.
We first see the gradient-projection algorithm generated by (.), from the boundedness

of {uni}, βni → β , and ‖uni – Tni (uni )‖ → , we distinguish two cases to show q ∈ U .
Case . limi→∞ βni = β = 

L .
Observe that

∥
∥∥
∥PC

(
I –


L

∇g
)

uni – uni

∥
∥∥
∥ ≤

∥
∥∥
∥PC

(
I –


L

∇g
)

uni – PC(I – βni∇g)uni

∥
∥∥
∥

+
∥
∥PC(I – βni∇g)uni – uni

∥
∥

≤
∥∥
∥∥

(
I –


L

∇g
)

uni – (I – βni∇g)uni

∥∥
∥∥

+
∥∥PC(I – βni∇g)uni – uni

∥∥

≤
(


L

– βni

)∥∥∇g(uni )
∥∥ +

∥∥Tni (uni ) – uni

∥∥.

Then we conclude that

lim
i→∞

∥
∥∥
∥uni – PC

(
I –


L

∇g
)

uni

∥
∥∥
∥ = .

Since ∇g is 
L -ism, PC(I – 

L∇g) is nonexpansive self-mapping on C. Indeed, we have for
each x, y ∈ C

∥∥
∥∥PC

(
I –


L

∇g
)

x – PC

(
I –


L

∇g
)

y
∥∥
∥∥



≤
∥∥
∥∥

(
I –


L

∇g
)

x –
(

I –

L

∇g
)

y
∥∥
∥∥



=
∥∥
∥∥x – y –


L

(∇g(x) – ∇g(y)
)
∥∥
∥∥



= ‖x – y‖ –

L

〈
x – y,∇g(x) – ∇g(y)

〉

+

L

∥∥∇g(x) – ∇g(y)
∥∥
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≤ ‖x – y‖ –

L

∥∥∇g(x) – ∇g(y)
∥∥

+

L

∥∥∇g(x) – ∇g(y)
∥∥

= ‖x – y‖.

Case .  < b ≤ limi→∞ βni = β < 
L .

Observe that

∥∥PC(I – β∇g)uni – uni

∥∥ ≤ ∥∥PC(I – β∇g)uni – PC(I – βni∇g)uni

∥∥

+
∥∥PC(I – βni∇g)uni – uni

∥∥

≤ ∥∥(I – β∇g)uni – (I – βni∇g)uni

∥∥

+
∥∥PC(I – βni∇g)uni – uni

∥∥

≤ |β – βni | ·
∥∥∇g(uni )

∥∥ +
∥∥Tni (uni ) – uni

∥∥.

Then we conclude that

lim
i→∞

∥∥uni – PC(I – β∇g)uni

∥∥ = .

Since PC(I – 
L∇g) and PC(I – β∇g) are both nonexpansive. Then, by the above two cases

and Lemma ., we derive that

q = PC(I – β∇g)q = Tq.

This shows that q ∈ Fix(T) = U .
When we regularize it, we see the sequences generated by (.), which use RGPA. By

(.), we have

∥∥un – T(un)
∥∥ ≤ ∥∥un – Tλn (un)

∥∥ +
∥∥Tλn (un) – T(un)

∥∥

≤ ∥∥un – Tλn (un)
∥∥ + λnβ‖un‖.

Since ‖un – Tλn (un)‖ →  and λn → , we have ‖un – T(un)‖ → . Thus, we get by
Lemma . that q ∈ Fix(T) = U .

In the fifth step, we show that q ∈ (A + B)–.
Take r ∈ [l, α]. Putting zn = (I – rnA)xn, we have from Lemma . that

∥
∥Jr (I – rA)xn – un

∥
∥ ≤ ∥

∥Jr (I – rA)xn – Jr (I – rnA)xn
∥
∥

+
∥
∥Jr (I – rnA)xn – un

∥
∥

≤ ∥
∥(I – rA)xn – (I – rnA)xn

∥
∥

+
∥∥Jr (zn) – Jrn (zn)

∥∥

≤ |rn – r| ·
∥∥A(xn)

∥∥

+
|rn – r|

r

∥∥Jr (zn) – zn
∥∥, (.)
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we also have

∥
∥Jr (I – rA)xn – xn

∥
∥ ≤ ∥

∥Jr (I – rA)xn – un
∥
∥ + ‖un – xn‖. (.)

Take any subsequence {xni} of {xn}. Since {xn} is bounded, {xni} is bounded and {rni} ⊂
[l, α]. Without loss of generality, there exist a subsequence {xnij

} of {xni} and a sub-
sequence {rnij

} of {rni} such that xnij
⇀ q and rnij

→ r for some {r} ⊂ [l, α]. Since
{xnij

} ⊂ C and C is closed and convex, we have q ∈ C. Using rnij
→ r and (.), we have

∥
∥Jr (I – rA)xnij

– unij

∥
∥ → .

Furthermore, we have from ‖xnij
– unij

‖ →  and (.)

∥∥Jr (I – rA)xnij
– xnij

∥∥ → .

Since Jr (I – rA) is nonexpansive, we have from Lemma . q = Jr (I – rA)q. By (.), we
obtain q ∈ (A + B)–.

Thus, we have q ∈ (A + B)– ∩ U .
On the other hand, from the sequence {xn} generated by (.), we note that

xn – q = αnf (xn) + ( – αn)Tn(un) – q

= αnf (xn) – αnf (q) + αnf (q) – αnq + ( – αn)
(
Tn(un) – q

)
.

Hence, we obtain from (.) that

‖xn – q‖ = αn
〈
(f – I)q, xn – q

〉

+
〈
αn

(
f (xn) – f (q)

)
+ ( – αn)

(
Tn(un) – Tn(q)

)
, xn – q

〉

≤ αn
〈
(f – I)q, xn – q

〉

+ αnk‖xn – q‖ + ( – αn)‖un – q‖ · ‖xn – q‖
≤ αn

〈
(f – I)q, xn – q

〉
+

(
 – αn( – k)

)‖xn – q‖.

It follows that

‖xn – q‖ ≤ 
 – k

〈
(f – I)q, xn – q

〉
.

In particular,

‖xni – q‖ ≤ 
 – k

〈
(f – I)q, xni – q

〉
. (.)

Since xni ⇀ q, it follows from (.) that xni → q as i → ∞.
Similarly, from using RGPA, and by the sequence {xn} generated by (.), we note that

xn – q = αnf (xn) – αnf (q) + αnf (q) – αnq + ( – αn)
(
Tλn (un) – q

)
.
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Hence, we obtain from (.) and (.)

‖xn – q‖ ≤ αn
〈
(f – I)q, xn – q

〉
+ ( – αn + αnk)‖xn – q‖

+ ( – αn)λnβ‖q‖ · ‖xn – q‖.

It follows that

‖xn – q‖ ≤ 〈(f – I)q, xn – q〉
 – k

+
( – αn)λnβ‖q‖ · ‖xn – q‖

( – k)αn
.

In particular,

‖xni – q‖ ≤ ( – αn)β
 – k

· λni

αni

‖q‖ · ‖xni – q‖ +


 – k
〈
(f – I)q, xni – q

〉
. (.)

Since xni ⇀ q and λn = o(αn), it follows from (.) that xni → q as i → ∞.
Finally, we show that q solves the variational inequality (.).
From the sequence {xn} generated by (.), we observe that

xn = αnf (xn) + ( – αn)Tn(un)

= αnf (xn) + ( – αn)TnJrn (I – rnA)(xn).

Hence, we conclude that

(I – f )(xn) = –

αn

(
I – TnJrn (I – rnA)

)
(xn) – TnJrn (I – rnA)(xn) + xn.

Since TnJrn (I – rnA) is nonexpansive, we find that I – TnJrn (I – rnA) is monotone. Note that,
for any given z ∈ (A + B)– ∩ U ,

〈
(I – f )xn, xn – z

〉
= –


αn

〈(
I – TnJrn (I – rnA)

)
xn

–
(
I – TnJrn (I – rnA)

)
z, xn – z

〉
–

〈
Tn(un) – xn, xn – z

〉

≤ ∥∥Tn(un) – xn
∥∥ · ‖xn – z‖.

Now, replacing n with ni in the above inequality, and letting i → ∞, since {xn} is bounded,
‖Tn(un) – xn‖ → , we have

〈
(I – f )q, q – z

〉
= lim

i→∞
〈
(I – f )xni , xni – z

〉 ≤ .

From a similar step, we observe the sequence {xn} generated by (.) has similar results,
namely as follows:

(I – f )(xn) = –

αn

(
I – Tλn Jrn (I – rnA)

)
(xn) – Tλn Jrn (I – rnA)(xn) + xn.

Since Tλn Jrn (I – rnA) is nonexpansive, we have I – Tλn Jrn (I – rnA) is monotone. Note that
for any given z ∈ (A + B)– ∩ U , by (.), we get

〈
(I – f )(xn), xn – z

〉 ≤ λn

αn
β‖z‖ · ‖xn – z‖ +

∥
∥Tλn (un) – xn

∥
∥ · ‖xn – z‖.
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Then replacing n with ni in the above inequality, and letting i → ∞, since λn = o(αn),
‖Tλn (un) – xn‖ → , we also have

〈
(I – f )q, q – z

〉
= lim

i→∞
〈
(I – f )xni , xni – z

〉 ≤ .

Therefore from the above two sequences generated by GPA (.) and RGPA (.), we ob-
tain the same results:

Because of the arbitrariness of z ∈ (A + B)– ∩ U , we see that q ∈ (A + B)– ∩ U is a
solution of the variational inequality (.). Further, by the uniqueness of the solution of
the variational inequality (.), we conclude that xn → q as n → ∞.

The variational inequality (.) can be rewritten as

〈
f (q) – q, q – z

〉 ≥ , ∀z ∈ (A + B)– ∩ U .

By Lemma ., it is equivalent to the following fixed point equation:

P(A+B)–∩Uf (q) = q.

This completes the proof. �

Theorem . Let H be a real Hilbert space and let C be a nonempty, closed, and convex
subset of H . Let PC : H → C be the metric projection. Let f : C → C be a contraction with
the constant k ∈ (, ). Let A : C → H be an α-inverse-strongly monotone mapping with
α >  and let B : H → H be a maximal monotone operator and the domain of B is included
in C. Let Jr = (I + rB)– be the resolvent of B for r > . Suppose that ∇g is /L-ism continuous
with L > . Assume that (A + B)– ∩ U �= ∅. Let the sequences {un} and {xn} be generated
by x ∈ C and

{
un = Jrn (I – rnA)(xn),
xn+ = αnf (xn) + ( – αn)Tn(un), ∀n ∈N,

(.)

when regularize it by using RGPA, the sequences generated by (.) changed into the fol-
lowing sequences:

{
un = Jrn (I – rnA)(xn),
xn+ = αnf (xn) + ( – αn)Tλn (un), ∀n ∈N,

(.)

where Tn = PC(I – βn∇g), Tλn = PC(I – β∇gλn ), ∇gλn = ∇g + λnI ,  < b ≤ βn ≤ 
L ,

∑∞
n= |βn –

βn+| < ∞, β ∈ (, /L). Let {αn}, {rn}, and {λn} satisfy the following conditions:
(C) {αn} ⊂ (, ), limn→∞ αn = ,

∑∞
n= αn = ∞,

∑∞
n= |αn+ – αn| < ∞;

(C) {rn} ⊂ (,∞),  < l ≤ rn ≤ α,
∑∞

n= |rn+ – rn| < ∞;
(C) {λn} ⊂ (, /β – L), λn = o(αn),

∑∞
n= |λn+ – λn| < ∞.

Then the sequences {xn} from (.) and (.) are both converge strongly to a point q ∈
(A + B)– ∩ U , which solves the variational inequality (.).
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Proof It is clear that x̂ ∈ C solves the minimization problem (.) if and only if for each
fixed  < b ≤ β ≤ /L, x̂ solves the fixed point equation

x̂ = PC(I – β∇g)x̂ = Tx̂,

and x̂ = Tx̂, i.e., x̂ ∈ U = Fix(T).
Now, we first show that {xn} is bounded. Indeed, pick any p ∈ (A + B)– ∩ U , and by

(.) and (.) we derive that

‖xn+ – p‖ =
∥∥αnf (xn) + ( – αn)Tn(un) – p

∥∥

≤ αn
∥
∥f (xn) – f (p)

∥
∥ + ( – αn)

∥
∥Tn(un) – Tn(p)

∥
∥ + αn

∥
∥f (p) – p

∥
∥

≤ αnk‖xn – p‖ + ( – αn)‖un – p‖ + αn
∥∥f (p) – p

∥∥

≤ (
 – αn( – k)

)‖xn – p‖ + αn
∥
∥f (p) – p

∥
∥.

By induction, we have

‖xn – p‖ ≤ max

{
‖x – p‖,


 – k

∥∥f (p) – p
∥∥
}

, n ≥ .

Hence, {xn} is bounded. From (.), we also see that {un} is bounded.
Similarly, we derive from (.) and (.) that

‖xn+ – p‖ ≤ (
 – αn( – k)

)‖xn – p‖

+ αn( – k)
[

λnβ( – αn)
αn( – k)

‖p‖ +
αn

αn( – k)
· ∥∥f (p) – p

∥∥
]

.

Since λn = o(αn), there exists a real number a >  such that λn
αn

≤ a.
Thus,

‖xn+ – p‖ ≤ (
 – αn( – k)

)‖xn – p‖ + αn( – k)
aβ‖p‖ + ‖f (p) – p‖

 – k
.

By induction, we have

‖xn – p‖ ≤ max

{
‖x – p‖,


 – k

(
aβ‖p‖ +

∥∥f (p) – p
∥∥)

}
, n ≥ .

Hence, {xn} is bounded. From (.), we also see that {un} is bounded.
Next, we show that ‖xn+ – xn‖ → .
Indeed, since ∇g is /L-ism, PC(I – βn∇g) is nonexpansive, we derive from (.) that

∥∥Tn(un–) – Tn–(un–)
∥∥ =

∥∥PC(I – βn∇g)(un–) – PC(I – βn–∇g)(un–)
∥∥

≤ ∥
∥(I – βn∇g)(un–) – (I – βn–∇g)(un–)

∥
∥

= |βn – βn–| ·
∥∥∇g(un–)

∥∥.
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Thus, we get

‖xn+ – xn‖ =
∥∥αnf (xn) + ( – αn)Tn(un) –

(
αn–f (xn–)

+ ( – αn–)Tn–(un–)
)∥∥

≤ αn
∥
∥f (xn) – f (xn–)

∥
∥ +

∥
∥αnf (xn–) – αn–f (xn–)

∥
∥

+ ( – αn)
∥
∥Tn(un) – Tn(un–)

∥
∥

+ ( – αn)
∥∥Tn(un–) – Tn–(un–)

∥∥

+
∥
∥( – αn)Tn–(un–) – ( – αn–)Tn–(un–)

∥
∥

≤ αnk‖xn – xn–‖ + ( – αn)‖un – un–‖
+ ( – αn)|βn – βn–| ·

∥∥∇g(un–)
∥∥

+ |αn – αn–|
(∥∥f (xn–)

∥∥ +
∥∥Tn–(un–)

∥∥)

≤ αnk‖xn – xn–‖ + ( – αn)‖un – un–‖
+ M

(|βn – βn–| + |αn – αn–|
)

(.)

for some appropriate constant M >  such that

M ≥ max
{∥∥∇g(un–)

∥∥,
∥∥f (xn–)

∥∥ +
∥∥Tn–(un–)

∥∥}
, ∀n ≥ .

Similarly, since ∇g is /L-ism, PC(I – β∇gλn ) = Tλn is nonexpansive, we derive from (.)
that

∥∥Tλn (un–) – Tλn– (un–)
∥∥ ≤ β|λn – λn–|‖un–‖.

Thus, we get

‖xn+ – xn‖ ≤ αnk‖xn – xn–‖ + ( – αn)‖un – un–‖
+ ( – αn)β|λn – λn–| · ‖un–‖
+ |αn – αn–|

(∥∥f (xn–)
∥∥ +

∥∥Tλn– (un–)
∥∥)

≤ αnk‖xn – xn–‖ + ( – αn)‖un – un–‖
+ M′


(|λn – λn–| + |αn – αn–|

)
(.)

for some appropriate constant M′
 >  such that

M′
 ≥ max

{
β‖un–‖,

∥∥f (xn–)
∥∥ +

∥∥Tλn– (un–)
∥∥}

, ∀n ≥ .

Since un+ = Jrn+ (I –rn+A)(xn+) and un = Jrn (I –rnA)(xn), we get from Lemma . and (.)
that

‖un+ – un‖ =
∥
∥Jrn+ (I – rn+A)(xn+) – Jrn (I – rnA)(xn)

∥
∥

≤ ∥∥Jrn+ (I – rn+A)(xn+) – Jrn+ (I – rn+A)(xn)
∥∥
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+
∥∥Jrn+ (I – rn+A)(xn) – Jrn+ (I – rnA)(xn)

∥∥

+
∥∥Jrn+ (I – rnA)(xn) – Jrn (I – rnA)(xn)

∥∥

≤ ∥∥xn+ – xn
∥∥ + |rn+ – rn| ·

∥∥A(xn)
∥∥

+
|rn+ – rn|

rn+

∥
∥Jrn+ (I – rnA)(xn) – (I – rnA)(xn)

∥
∥.

Since  < l ≤ rn ≤ α, we have

‖un+ – un‖ ≤ ‖xn+ – xn‖ + |rn+ – rn| ·
∥∥A(xn)

∥∥

+
|rn+ – rn|

l
∥
∥Jrn+ (I – rnA)(xn) – (I – rnA)(xn)

∥
∥

≤ ‖xn+ – xn‖ + |rn+ – rn|M, (.)

where M = sup{‖A(xn)‖, 
l ‖Jrn+ (I – rnA)(xn) – (I – rnA)(xn)‖ : n ∈N}.

From (.) and (.), we obtain

‖xn+ – xn‖ ≤ αnk‖xn – xn–‖ + ( – αn)‖un – un–‖
+ M

(|λn – λn–| + |αn – αn–|
)

≤ αnk‖xn – xn–‖ + ( – αn)
(‖xn – xn–‖ + |rn – rn–|M

)

+ M
(|λn – λn–| + |αn – αn–|

)

≤ (
 – αn( – k)

)‖xn – xn–‖ + M|rn – rn–|
+ M

(|λn – λn–| + |αn – αn–|
)

≤ (
 – αn( – k)

)‖xn – xn–‖
+ M

(|rn – rn–| + |λn – λn–| + |αn – αn–|
)
,

where M = max{M, M}. Hence by Lemma ., we have

lim
n→∞‖xn+ – xn‖ = . (.)

Then, from (.), (.), and |rn+ – rn| → , we have

lim
n→∞‖un+ – un‖ = . (.)

For any p ∈ (A + B)– ∩ U , by the same argument as in the proof of Theorem ., we have

‖un – p‖ ≤ ‖xn – p‖ – ‖un – xn‖. (.)

Then, for the GPA, generated by (.) and from (.), by the same argument as in the
proof of Theorem ., we derive that

‖xn+ – p‖ =
∥∥αnf (xn) + ( – αn)Tn(un) – p

∥∥

=
∥∥αn

(
f (xn) – p

)
+ ( – αn)Tn(un) – ( – αn)Tn(p)

∥∥
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≤ α
n
∥∥f (xn) – p

∥∥ + αn( – αn)
∥∥f (xn) – p

∥∥ · ‖un – p‖ + ( – αn)‖un – p‖

≤ αn
(∥∥f (xn) – p

∥∥ + 
∥∥f (xn) – p

∥∥ · ‖un – p‖) + ‖un – p‖

≤ αn
(∥∥f (xn) – p

∥∥ + 
∥∥f (xn) – p

∥∥ · ‖un – p‖)

+ ‖xn – p‖ – ‖un – xn‖,

and hence

‖xn – un‖ ≤ ‖xn – p‖ – ‖xn+ – p‖

+ αn
(∥∥f (xn) – p

∥∥ + 
∥∥f (xn) – p

∥∥ · ‖un – p‖)

= ‖xn – xn+‖ + 〈xn – xn+, xn+ – p〉
+ αn

(∥∥f (xn) – p
∥
∥ + 

∥
∥f (xn) – p

∥
∥ · ‖un – p‖)

≤ ‖xn – xn+‖ + ‖xn – xn+‖ · ‖xn+ – p‖
+ αn

(∥∥f (xn) – p
∥
∥ + 

∥
∥f (xn) – p

∥
∥ · ‖un – p‖).

Since {xn} is bounded, αn →  and ‖xn – xn+‖ → , we have

lim
n→∞‖xn – un‖ = . (.)

Next, we derive that

∥
∥xn – Tn(xn)

∥
∥ =

∥
∥xn – xn+ + xn+ – Tn(xn)

∥
∥

≤ ‖xn – xn+‖ +
∥∥αnf (xn) + ( – αn)Tn(un) – Tn(xn)

∥∥

≤ ‖xn – xn+‖ + αn
∥∥f (xn) – Tn(xn)

∥∥ + ( – αn)‖un – xn‖.

From (.), (.), and αn → , we have

∥∥xn – Tn(xn)
∥∥ → ,

it follows that ‖un – Tn(un)‖ → .
Similarly, for the RGPA, generated by (.) and from (.) and (.), by the same ar-

gument as in the proof of Theorem ., we derive that

‖xn+ – p‖ ≤ ‖xn – p‖ – ‖un – xn‖ + ‖un – p‖ · λnβ‖p‖ + λ
nβ

‖p‖

+ αn
(

(‖un – p‖ + λnβ‖p‖) · ∥∥f (xn) – p

∥∥ +
∥∥f (xn) – p

∥∥)

and hence

‖xn – un‖ ≤ ‖xn+ – xn‖
(‖xn – p‖ + ‖xn+ – p‖)

+ βλn‖un – p‖ · ‖p‖ + λ
nβ

‖p‖

+ αn
(

(‖un – p‖ + βλn‖p‖) · ∥∥f (xn) – p

∥∥ +
∥∥f (xn) – p

∥∥).
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Since both {xn}, {f (xn)} and {un} are bounded, αn → , λn → , and ‖xn+ – xn‖ → , we
also derive the result (.).

Next, we derive that

∥
∥xn – Tλn (xn)

∥
∥ ≤ ‖xn – xn+‖ + αn

∥
∥f (xn) – Tλn (un)

∥
∥ + ‖un – xn‖.

From (.), (.), and αn → , we also have

∥∥xn – Tλn (xn)
∥∥ → .

It follows that ‖un – Tλn (un)‖ → .
Now we show that

lim sup
n→∞

〈
xn – q, –(I – f )q

〉 ≤ ,

where q ∈ (A + B)– ∩ U is a unique solution of the variational inequality (.).
Indeed, take a subsequence {xnk } of {xn} such that

lim sup
n→∞

〈
xn – q, –(I – f )q

〉
= lim

k→∞
〈
xnk – q, –(I – f )q

〉
.

Since {xn} is bounded, without loss of generality, we may assume that xnk ⇀ x̂.
By the same argument as in the proof of Theorem ., we have x̂ ∈ (A + B)– ∩ U .
Since q = P(A+B)–∩Uf (q), it follows that

lim sup
n→∞

〈
(I – f )q, q – xn

〉
=

〈
(I – f )q, q – x̂

〉 ≤ . (.)

Finally, we show that xn → q.
In fact, for the GPA, generated by (.),

xn+ – q = αnf (xn) + ( – αn)Tn(un) – q

= αn
(
f (xn) – f (q)

)
+ αn

(
f (q) – q

)
+ ( – αn)

(
Tn(un) – Tn(q)

)
.

So, from (.) and (.), we obtain

‖xn+ – q‖ =
∥∥αn

(
f (xn) – f (q)

)
+ αn

(
f (q) – q

)
+ ( – αn)

(
Tn(un) – Tn(q)

)∥∥

≤ ( – αn)∥∥Tn(un) – Tn(q)
∥
∥

+ αn
〈
f (xn) – f (q) – (I – f )q, xn+ – q

〉

≤ ( – αn)‖un – q‖ + αnk‖xn – q‖ · ‖xn+ – q‖
+ αn

〈
–(I – f )q, xn+ – q

〉

≤ ( – αn)‖xn – q‖ + αnk
(‖xn – q‖ + ‖xn+ – q‖)

+ αn
〈
–(I – f )q, xn+ – q

〉
.
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It follows that

‖xn+ – q‖ ≤  – αn + αnk
 – αnk

‖xn – q‖ +
α

n
 – αnk

‖xn – q‖

+
αn

 – αnk
〈
–(I – f )q, xn+ – q

〉

≤ (
 – ( – k)αn

)‖xn – q‖ +
α

n
 – αnk

‖xn – q‖

+
αn

 – αnk
〈
–(I – f )q, xn+ – q

〉

≤ (
 – ( – k)αn

)‖xn – q‖ + ( – k)αn

[
αn

( – k)( – αnk)
M

+


( – k)( – αnk)
〈
–(I – f )q, xn+ – q

〉]

=
(
 – ( – k)αn

)‖xn – q‖ + ( – k)αnδn,

where δn = αn
(–k)(–αnk) M + 

(–k)(–αnk) 〈–(I – f )q, xn+ – q〉, and M = sup{‖xn – q‖ : n ∈N}.
It is easy to see that limn→∞ ( – k)αn = ,

∑∞
n= ( – k)αn = ∞, and lim supn→∞ δn ≤ 

by (.). Hence, by Lemma ., the sequence {xn} converges strongly to q.
Similarly, for the RGPA, generated by (.),

xn+ – q = αn
(
f (xn) – f (q)

)
+ αn

(
f (q) – q

)
+ ( – αn)

(
Tλn (un) – Tλn (q)

)

+ ( – αn)
(
Tλn (q) – T(q)

)
.

So, from (.) and (.), we derive

‖xn+ – q‖ ≤ (
 – αn( – k)

)‖xn – q‖ · ‖xn+ – q‖ + λnβ‖q‖ · ‖xn+ – q‖
+ αn

〈
–(I – f )q, xn+ – q

〉

≤ (
 – αn( – k)

) 

(‖xn – q‖ + ‖xn+ – q‖)

+ αn

(〈
–(I – f )q, xn+ – q

〉
+

λn

αn
β‖q‖ · ‖xn+ – q‖

)
.

It follows that

‖xn+ – q‖ ≤ (
 – αn( – k)

)‖xn – q‖

+
αn

 + αn( – k)

(〈
–(I – f )q, xn+ – q

〉
+

λn

αn
β‖q‖ · ‖xn+ – q‖

)

since {xn} is bounded, we can take a constant M′ >  such that

M ≥ ‖xn+ – q‖, n ≥ .

Then we obtain

‖xn+ – q‖ ≤ (
 – αn( – k)

)‖xn – q‖ + αnδn, (.)

where δn = 
+αn(–k) [〈–(I – f )q, xn+ – q〉 + λn

αn
β‖q‖M′].
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By (.) and λn = o(αn), we get lim supn→∞ δn ≤ . Now applying Lemma . to (.)
concludes that xn → q as n → ∞. The variational inequality (.) can be rewritten as

〈
f (q) – q, q – z

〉 ≥ , ∀z ∈ (A + B)– ∩ U .

By Lemma ., it is equivalent to the following fixed point equation:

P(A+B)–∩Uf (q) = q.

This completes the proof. �

In this following, based on Theorem . and taking the RGPA for example, from the
sequences generated by (.), we will give new strong convergence theorems in Hilbert
space, which are useful in nonlinear analysis and optimization.

In , Censor and Elfving [] introduced the split feasibility problem (SFP). Then
various algorithms were introduced by some authors to solve it (see [, , ], and [,
, ]). Recently, many authors have paid attention to the split feasibility problem (SFP)
due to its wide application in signal processing and image reconstructions (see [, ] and
[]).

Let C and Q be nonempty, closed, and convex subset of real Hilbert space H and H,
respectively. Then the SFP under consideration in this paper can mathematically be for-
mulated as finding a point x satisfying the following property:

x ∈ C and Fx ∈ Q, (.)

where F : H → H is a bounded linear operator. It is clear that x∗ is a solution to the split
feasibility problem (.) if and only if x∗ ∈ C and Fx∗ –PQFx∗ = . We define the proximity
function g by

g(x) =


‖Fx – PQFx‖.

Consider the constrained convex minimization problem

min
x∈C

g(x) = min
x∈C



‖Fx – PQFx‖. (.)

Then x∗ solves the SFP (.) if and only if x∗ solves the minimization problem (.) with
the minimize equal to .

In particular, Byrne [] introduced the so-called CQ algorithm. Take an initial guess
x ∈ H arbitrarily, and define {xn} recursively as follows:

xn+ = PC
(
I – βF∗(I – PQ)F

)
xn, n ≥ , (.)

where  < β < /‖A‖ and PC denotes the projector onto C. Then the sequence {xn} gen-
erated by (.) converges weakly to a solution of the SFP.

Let α >  and let A be an α-inverse-strongly monotone mapping of C into H . Let B be
a maximal monotone operator on Hilbert space H , such that the domain of B is included
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in C. Let Jr = (I + rB)– be the resolvent of B for r > . In order to obtain a strong conver-
gence iterative sequence to solve the SFP, we propose a new algorithm as follows: x ∈ C,

{
un = Jrn (I – rnA)(xn),
xn+ = αnf (xn) + ( – αn)Tλn (un), ∀n ∈N,

(.)

where f : C → C is a contraction with the constant k ∈ (, ), and {Tλn} satisfy Tλn = PC(I –
β(F∗(I – PQ)F + λnI)) for all n, and β ∈ (, /‖F‖). We can show that the sequence {xn}
generated by (.) converges strongly to a solution of the SFP (.) if the sequence {αn} ⊂
(, ). Applying Theorem ., we obtain the following result.

Theorem . Assume that the split feasibility problem (.) is consistent. Let the sequence
{xn} be generated by (.). Here the sequence {αn} and {λn} satisfy the conditions (C) and
(C). Then the sequence {xn} converges strongly to a point q ∈ (A + B)– ∩ V , which V
denote the solution set of SFP (.).

Proof By the definition of the proximity function g , we have

∇g(x) = F∗(I – PQ)Fx,

since PQ is /-averaged mapping, then I – PQ is -ism, for ∀x, y ∈ C, we obtain

〈∇g(x) – ∇g(y), x – y
〉
– /‖F‖ · ∥∥∇g(x) – ∇g(y)

∥
∥

=
〈
F∗(I – PQ)Fx – F∗(I – PQ)Fy, x – y

〉

– /‖F‖ · ∥∥F∗(I – PQ)Fx – F∗(I – PQ)Fy
∥
∥

=
〈
F∗((I – PQ)Fx – (I – PQ)Fy

)
, x – y

〉

– /‖F‖ · ∥∥F∗((I – PQ)Fx – (I – PQ)Fy
)∥∥

=
〈
(I – PQ)Fx – (I – PQ)Fy, Fx – Fy

〉

– /‖F‖ · ∥∥F∗((I – PQ)Fx – (I – PQ)Fy
)∥∥

≥ ∥
∥(I – PQ)Fx – (I – PQ)Fy

∥
∥ –

∥
∥(I – PQ)Fx – (I – PQ)Fy

∥
∥

= .

So, ∇g is /‖F‖-ism.
Set gλn (x) = g(x) + λn

 ‖x‖, consequently,

∇gλn (x) = ∇g(x) + λnI(x) = F∗(I – PQ)Fx + λnx.

Then the iterative scheme (.) is equivalent to

{
un = Jλn (I – λnA)(xn),
xn+ = αnf (xn) + ( – αn)Tλn (un), ∀n ∈N,

where Tλn = PC(I – β∇gλn ) for all n, and β ∈ (, /‖F‖). �
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On the other hand, based on Theorem ., we will give another two applications of it.
Let h be a proper lower semicontinuous convex function on Hilbert space H into

(–∞,∞]. Then the subdifferential ∂h of h is defined as follows:

∂h(x) =
{

z ∈ H : h(x) + 〈z, y – x〉 ≤ h(y),∀y ∈ H
}

for all x ∈ H . From Rockafellar [], we known that ∂h is a maximal monotone operator.
Let iC be the indicator function of C (C is a nonempty, closed, and convex subset of H),
i.e.,

iC(x) =

{
, x ∈ C,
∞, x /∈ C.

Then iC is a proper lower semicontinuous convex function on H and the subdifferential
∂iC of iC is a maximal monotone operator. So we can define the resolvent Jr of ∂iC for r > ,
i.e.,

Jrx = (I + r∂iC)–x

for all x ∈ H . We have, for any x ∈ H and q ∈ C,

q = Jrx ⇐⇒ x ∈ q + r∂iC(q)

⇐⇒ x ∈ q + rNC(q)

⇐⇒ x – q ∈ rNC(q)

⇐⇒ 
r
〈x – q, p – q〉 ≤ , ∀p ∈ C

⇐⇒ 〈x – q, p – q〉 ≤ , ∀p ∈ C

⇐⇒ q = PCx,

where NC(q) is the normal cone to C at q, i.e.,

NC(q) =
{

z ∈ H : 〈z, p – q〉 ≤ ,∀p ∈ C
}

.

Based on Theorem ., we prove a strong convergence theorem for inverse-strongly
monotone operators in a Hilbert space.

Theorem . Let C be a nonempty, closed, and convex subset of the Hilbert space H . Let
A : C → H be an α-inverse-strongly monotone mapping with α > . Let f : C → C be a k-
contraction mapping with  < k < . Suppose that ∇g is /L-ism with L > . Let x = x ∈ C
and let {xn} ⊂ C be a sequence generated by

xn+ = αnf (xn) + ( – αn)Tλn PC(I – λnA)(xn)

for all n ∈ N, where Tλn = PC(I – β∇gλn ), ∇gλn = ∇g + λnI , β ∈ (, /L). Let {αn}, {rn}, and
{λn} satisfy the conditions (C)-(C) which appear in the Theorem .. Suppose VI(C, A) ∩
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U �= ∅. Then {xn} converges strongly to a point q ∈ VI(C, A) ∩ U , where q ∈ VI(C, A) ∩ U
is a unique fixed point of PVI(C,A)∩U f . This point q ∈ VI(C, A) ∩ U is also a unique solution
of the hierarchical variational inequality

〈
(I – f )q, z – q

〉 ≥ , z ∈ VI(C, A) ∩ U .

Proof Put B = ∂iC in Theorem .. Then for rn > , we have that Jrn = PC . Furthermore we
have (A + ∂iC)– = VI(C, A). Indeed, for q ∈ C, we have

q ∈ (A + ∂iC)– ⇐⇒  ∈ Aq + ∂iC(q)

⇐⇒  ∈ Aq + NC(q)

⇐⇒ –Aq ∈ NC(q)

⇐⇒ 〈–Aq, p – q〉 ≤ , ∀p ∈ C

⇐⇒ 〈Aq, p – q〉 ≥ , ∀p ∈ C

⇐⇒ q ∈ VI(C, A).

Thus we obtain the desired result by Theorem .. �

Recall the mapping W : C → H is called a widely strict pseudo-contraction if there exists
r ∈R with r <  such that

‖Wx – Wy‖ ≤ ‖x – y‖ + r
∥
∥(I – W )x – (I – W )y

∥
∥, ∀x, y ∈ C.

We call such W a widely r-strict pseudo-contraction. If  ≤ r < , then W is a strict pseudo-
contraction. Based on Theorem ., we obtain the following result, which generalizes
Zhou’s strong convergence theorem [] for strict pseudo-contractions in a Hilbert space.

Theorem . Let C be a nonempty, closed, and convex subset of Hilbert space H . Let W :
C → H be a widely r-strict pseudo-contraction with r <  (r ∈R), suppose that Fix(W ) �= ∅.
Let f : C → C be a k-contraction with  < k < . Suppose that ∇g is /L-ism with L > . Let
x = x ∈ C and let {xn} ⊂ C be a sequence generated by

xn+ = αnf (xn) + ( – αn)Tλn PC
{

( – tn)W + tnI
}

(xn)

for all n ∈ N, where Tλn = PC(I – β∇gλn ), ∇gλn = ∇g + λnI , β ∈ (, /L). Let {αn} and {λn}
satisfy the conditions (C) and (C), respectively, which appear in Theorem .. {tn} satisfy:

() {tn} ⊂ (–∞, );
() r ≤ tn ≤ b < ;
()

∑∞
n= |tn – tn+| < ∞.

Then {xn} converges strongly to a point q ∈ Fix(W ) ∩ U which is a unique fixed point of
PFix(W )∩Uf in Fix(W ) ∩ U .

Proof Put B = ∂iC and A = I – W in Theorem .. Furthermore, we put a =  – b, rn =  – tn,
and α =  – r in Theorem .. From {tn} ⊂ (–∞, ) and r ≤ tn ≤ b < , we get {rn} ⊂ (,∞)
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and  < a ≤ rn ≤ α. We also get

∞∑

n=

|rn+ – rn| =
∞∑

n=

|tn+ – tn| < ∞

and

I – rnA = I – ( – tn)(I – W ) = ( – tn)W + tnI.

Furthermore we have (A + ∂iC)– = Fix(W ). Indeed, for q ∈ C, we have

q ∈ (A + ∂iC)– ⇐⇒  ∈ Aq + ∂iC(q)

⇐⇒  ∈ q – Wq + NC(q)

⇐⇒ Wq – q ∈ NC(q)

⇐⇒ 〈Wq – q, p – q〉 ≤ , ∀p ∈ C

⇐⇒ PCW (q) = q.

Since Fix(W ) �= ∅, we get from [] Fix(PCW ) = Fix(W ). Thus we obtain the desired result
by Theorem .. �

Referring to Theorem ., we will immediately give our conclusion in the next section.

4 Conclusion
In a real Hilbert space, methods for solving the constrained convex minimization problem
have been extensively studied. Recently, Tian and Liu were first to propose composite it-
erative algorithms to find a common solution of an equilibrium and a constrained convex
minimization problem. However, in this paper, for solving constrained convex minimiza-
tion problems and finding zeros of the sum of two operators in Hilbert spaces, we use two
algorithms; one is the gradient-projection algorithm (GPA), the other is the regularized
gradient-projection algorithm (RGPA). We use them to propose new strong convergence
theorems, which find a common solution by GPA and a unique solution by RGPA. Take
RGPA for example, some new strong convergence theorems are obtained. Under suitable
conditions, the constrained convex minimization problem can be transformed into the
SFP problem, zeros of the sum of two operators can be transformed into the variational
inequality problem and the fixed point problem, which play important roles in nonlinear
analysis and optimization problems.
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