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Abstract
We study the regularization method for solving the variational inclusion problem of
the sum of two monotone operators in Hilbert spaces. The strong convergence
theorem is then established under some relaxed conditions which mainly improves
and recovers that of Qin et al. (Fixed Point Theory Appl. 2014:75, 2014). We also apply
our main result to the convex minimization problem, the fixed point problem and the
variational inequality problem. Finally we provide numerical examples for supporting
the main result.
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1 Introduction
Let C be a nonempty subset of a real Hilbert space H . Define the domain and the range of
an operator B : H → H by D(B) = {x ∈ H : Bx �= ∅} and R(B) =

⋃{Bx : x ∈ D(B)}, respec-
tively. The inverse of B, denoted by B–, is defined by x ∈ B–y if and only if y ∈ Bx. We
study the problem of finding x̂ such that

 ∈ Ax̂ + Bx̂,

where A : C → H is an operator and B : D(B) ⊂ H → H is a set-valued operator. This
problem is called the variational inclusion problem. Some typical problems arising in var-
ious branches of science, applied sciences, economics, and engineering such as machine
learning, image restoration, and signal recovery can be viewed as this form. To be more
precise, it includes, as special cases, the variational inequality problem, the split feasibility
problem, the linear inverse problem, and the following convex minimization problem:

min
x∈H

F(x) + G(x),

where F : H → R is a smooth convex function, and G : H → R is a non-smooth convex
function. That is,

F(x̂) + G(x̂) = min
x∈H

F(x) + G(x) ⇔  ∈ ∇F(x̂) + ∂G(x̂),
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where ∇F is the gradient of F and ∂G is the subdifferential of G defined by

∂G(x) =
{

z ∈ H : 〈y – x, z〉 + G(x) ≤ G(y),∀y ∈ H
}

.

For r > , define the mapping Tr : C → D(B) as follows:

Tr = (I + rB)–(I – rA). (.)

We see that

Trx = x ⇔ x = (I + rB)–(x – rAx) ⇔ x – rAx ∈ x + rBx ⇔  ∈ Ax + Bx,

which shows that the fixed points set of Tr coincides with the solutions set of (A + B)–().
This suggests the following iteration process: x ∈ C and

xn+ = (I + rnB)–(xn – rnAxn) = Trn xn, n ≥ ,

where {rn} ⊂ (,∞) and D(B) ⊂ C. This method is called a forward-backward splitting
algorithm [, ]. If A ≡ , then we obtain the proximal point algorithm [–] and if B ≡ ,
then we obtain the gradient method []. However, it is noted that the sequences generated
by these schemes converge weakly in general. In the literature, many methods have been
suggested to solve the variational inclusion problem for maximal monotone operators;
see, e.g., [–].

Very recently, Qin et al. [] proved the following theorem in Hilbert spaces.

Theorem Q Let A : C → H be an α-inverse strongly monotone mapping and let B be a
maximal monotone operator on H . Assume that D(B) ⊂ C and (A + B)–() is nonempty.
Let f : C → C be a fixed k-contraction and let Jrn = (I + rnB)–. Let {zn} be a sequence in C
in the following process: z ∈ C and

wn = αnf (zn) + ( – αn)zn,

zn+ = Jrn (wn – rnAwn + en), n ≥ ,
(.)

where {αn} ⊂ (, ), {en} ⊂ H , and {rn} ⊂ (, α). If the control sequences satisfy the follow-
ing restrictions:

(a) αn → ,
∑∞

n= αn = ∞ and
∑∞

n= |αn+ – αn| < ∞;
(b)  < a ≤ rn ≤ b < α and

∑∞
n= |rn+ – rn| < ∞;

(c)
∑∞

n= ‖en‖ < ∞.
Then {zn} converges strongly to a point x ∈ (A + B)–(), where x = P(A+B)–()f (x).

In this paper, motivated by Qin et al. [], we prove that the above theorem still holds
even if the additional conditions that

∑∞
n= |αn+ –αn| < ∞ and

∑∞
n= |rn+ – rn| < ∞ are re-

moved. As a direct consequence, we obtain some results concerning the fixed point prob-
lem of strict pseudocontractions, the convex minimization problem and the variational
inequality problem. We also provide examples as well as numerical results.
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2 Preliminaries and lemmas
We now provide some basic concepts, definitions and lemmas which will be used in the
sequel.

Let C be a nonempty, closed, and convex subset of a real Hilbert space H with norm ‖ · ‖
and inner product 〈·, ·〉. For each x ∈ H , there exists a unique nearest point in C, denoted
by PCx, such that ‖x – PCx‖ = miny∈C ‖x – y‖. Then PC is called the metric projection of H
on to C. For x ∈ H , we know that

〈x – PCx, y – PCx〉 ≤  (.)

for all y ∈ C. Recall that the mapping T : C → C is said to be
(i) nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C;

(ii) k-contractive if there exists  < k <  such that

‖Tx – Ty‖ ≤ k‖x – y‖

for all x, y ∈ C;
(iii) firmly nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖ –
∥
∥(I – T)x – (I – T)y

∥
∥

for all x, y ∈ C.
(iv) monotone if 〈Tx – Ty, x – y〉 ≥  for all x, y ∈ C;
(v) α-inverse strongly monotone if there exists α >  such that

〈Tx – Ty, x – y〉 ≥ α‖Tx – Ty‖

for all x, y ∈ C. We denote by F(T) the fixed points set of T , that is,
F(T) = {x ∈ C : x = Tx}.

A set-valued operator B is said to be monotone if, for each x, y ∈ D(B),

〈u – v, x – y〉 ≥ , u ∈ Bx, v ∈ By.

A monotone operator A is said to be maximal if R(I + rB) = H for all r >  (see Minty
[]). For a maximal monotone operator B on H , and r > , we define the single-valued
resolvent Jr : H → D(B) by Jr = (I + rB)–. It is well known that Jr is firmly nonexpansive,
and F(Jr) = B–().

We now collect some crucial lemmas.

Lemma . [] Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let the mapping A : C → H be α-inverse strongly monotone and r >  be a constant. Then
we have

∥
∥(I – rA)x – (I – rA)y

∥
∥ ≤ ‖x – y‖ + r(r – α)‖Ax – Ay‖

for all x, y ∈ C. In particular, if  < r ≤ α, then I – rA is nonexpansive.

Lemma . [] Let A : C → H be a mapping and B : D(B) ⊂ H → H a monotone operator.
Then ‖x – Tsx‖ ≤ ‖x – Trx‖ for all  < s ≤ r and x ∈ C.
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Lemma . [] Let C be a nonempty, closed, and convex subset of a Hilbert space H , and
T : C → C be a nonexpansive mapping with F(T) �= ∅. If xn ⇀ x and ‖xn – Txn‖ → , then
x ∈ F(T).

Lemma . [] Let {an} and {cn} are sequences of nonnegative real numbers such that

an+ ≤ ( – δn)an + bn + cn, n ≥ ,

where {δn} is a sequence in (, ) and {bn} is a real sequence. Assume
∑∞

n= cn < ∞. Then
the following results hold:

(i) If bn ≤ δnM for some M ≥ , then {an} is a bounded sequence.
(ii) If

∑∞
n= δn = ∞ and lim supn→∞ bn/δn ≤ , then limn→∞ an = .

We need the following crucial lemma proved by He-Yang [].

Lemma . [] Assume {sn} is a sequence of nonnegative real numbers such that

sn+ ≤ ( – γn)sn + γnδn, n ≥ 

and

sn+ ≤ sn – ηn + ρn, n ≥ ,

where {γn} is a sequence in (, ), {ηn} is a sequence of nonnegative real numbers and {δn},
and {ρn} are real sequences such that

(i)
∑∞

n= γn = ∞,
(ii) limn→∞ ρn = ,

(iii) limk→∞ ηnk =  implies lim supn→∞ δnk ≤  for any subsequence {nk} of {n}.
Then limn→∞ sn = .

3 Main results
In this section, we present the main theorem of this paper.

Theorem . Let A : C → H be an α-inverse strongly monotone mapping and let B be a
maximal monotone operator on H such that D(B) ⊂ C and (A + B)–() is nonempty. Let
f : C → C be a k-contraction. Assume that {αn} ⊂ (, ), {en} ⊂ H , and {rn} ⊂ (, α) with
the following restrictions:

(a) αn →  and
∑∞

n= αn = ∞;
(b)  < a ≤ rn ≤ b < α;
(c)

∑∞
n= ‖en‖ < ∞ or ‖en‖/αn → .

Then the sequence {zn} generated by (.) converges strongly to a point x ∈ (A + B)–(),
where x = P(A+B)–()f (x).

Proof Let {xn} be a sequence generated by x ∈ C and

yn = αnf (xn) + ( – αn)xn,

xn+ = Jrn (yn – rnAyn), n ≥ .
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Firstly, we shall show that {xn} and {zn} are equivalent. Indeed,

‖yn – wn‖ =
∥
∥αn

(
f (xn) – f (zn)

)
+ ( – αn)(xn – zn)

∥
∥

≤ αnk‖xn – zn‖ + ( – αn)‖xn – zn‖
=

(
 – αn( – k)

)‖xn – zn‖.

Using Lemma ., condition (b), and the fact that Jrn is nonexpansive, we obtain

‖xn+ – zn+‖ =
∥
∥Jrn (yn – rnAyn) – Jrn (wn – rnAwn + en)

∥
∥

≤ ∥
∥(yn – rnAyn) – (wn – rnAwn + en)

∥
∥

≤ ‖yn – wn‖ + ‖en‖
≤ (

 – αn( – k)
)‖xn – zn‖ + ‖en‖.

Applying Lemma .(ii) with conditions (a) and (c), we conclude that ‖xn – zn‖ → .
On the other hand, it can be checked that P(A+B)–()f is a contraction. So there exists a

unique point x ∈ C such that

x = P(A+B)–()f (x). (.)

To finish our proof, it suffices to show that xn → x as n → ∞.
We next show that {xn} is bounded. Fixing p ∈ (A + B)–(), we obtain

‖yn – p‖ =
∥
∥αn

(
f (xn) – f (p)

)
+ αn

(
f (p) – p

)
+ ( – αn)(xn – p)

∥
∥

≤ αnk‖xn – p‖ + αn
∥
∥f (p) – p

∥
∥ + ( – αn)‖xn – p‖

=
(
 – αn( – k)

)‖xn – p‖ + αn
∥
∥f (p) – p

∥
∥.

It follows that

‖xn+ – p‖ =
∥
∥Jrn (yn – rnAyn) – Jrn (p – rnAp)

∥
∥

≤ ‖yn – p‖
≤ (

 – αn( – k)
)‖xn – p‖ + αn

∥
∥f (p) – p

∥
∥.

Hence {xn} is bounded by Lemma .(i). So are {f (xn)} and {yn}. Observing

‖yn – x‖ = αn
〈
f (xn) – f (x), yn – x

〉
+ αn

〈
f (x) – x, yn – x

〉
+ ( – αn)〈xn – x, yn – x〉

≤ αnk‖xn – x‖‖yn – x‖ + αn
〈
f (x) – x, yn – x

〉
+ ( – αn)‖xn – x‖‖yn – x‖

=
(
 – αn( – k)

)‖xn – x‖‖yn – x‖ + αn
〈
f (x) – x, yn – x

〉

≤ 

(
 – αn( – k)

)(‖xn – x‖ + ‖yn – x‖) + αn
〈
f (x) – x, yn – x

〉
,

we have

‖yn – x‖ ≤
(

 –
αn( – k)

 + αn( – k)

)

‖xn – x‖ +
αn

 + αn( – k)
〈
f (x) – x, yn – x

〉
.
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So, by Lemma . and the firm nonexpansiveness of Jrn , we have

‖xn+ – x‖ =
∥
∥Jrn (yn – rnAyn) – Jrn (x – rnAx)

∥
∥

≤ ∥
∥(yn – rnAyn) – (x – rnAx)

∥
∥

–
∥
∥(I – Jrn )(yn – rnAyn) – (I – Jrn )(x – rnAx)

∥
∥

≤ ‖yn – x‖ – rn(α – rn)‖Ayn – Ax‖

–
∥
∥(I – Jrn )(yn – rnAyn) – (I – Jrn )(x – rnAx)

∥
∥

≤
(

 –
αn( – k)

 + αn( – k)

)

‖xn – x‖ +
αn

 + αn( – k)
〈
f (x) – x, yn – x

〉

– rn(α – rn)‖Ayn – Ax‖

–
∥
∥(I – Jrn )(yn – rnAyn) – (I – Jrn )(x – rnAx)

∥
∥.

This implies that

‖xn+ – x‖ ≤
(

 –
αn( – k)

 + αn( – k)

)

‖xn – x‖ +
αn

 + αn( – k)
〈
f (x) – x, yn – x

〉
(.)

and

‖xn+ – x‖ ≤ ‖xn – x‖ – rn(α – rn)‖Ayn – Ax‖

–
∥
∥(I – Jrn )(yn – rnAyn) – (I – Jrn )(x – rnAx)

∥
∥

+
αn

 + αn( – k)
∥
∥f (x) – x

∥
∥‖yn – x‖. (.)

We set, for all n ≥ , sn = ‖xn – x‖, γn = αn(–k)
+αn(–k) , δn = 

–k 〈f (x) – x, yn – x〉, ρn =
αn

+αn(–k)‖f (x) – x‖‖yn – x‖, and ηn = rn(α – rn)‖Ayn – Ax‖ + ‖(I – Jrn )(yn – rnAyn) –
(I – Jrn )(x – rnAx)‖. We can check that all sequences satisfies conditions (i) and (ii) in
Lemma .. Then (.) and (.) can be rewritten as the following inequalities:

sn+ ≤ ( – γn)sn + γnδn, n ≥ 

and

sn+ ≤ sn – ηn + ρn, n ≥ .

To complete the proof, we verify that the condition (iii) in Lemma . is satisfied. Let
{nk} ⊂ {n} be such that ηnk → . Then, by condition (b), we have

lim
n→∞‖Aynk – Ax‖ = 

and

lim
n→∞

∥
∥(I – Jrnk

)(ynk – rnk Aynk ) – (I – Jrnk
)(x – rnk Ax)

∥
∥ = .



Cholamjiak et al. Journal of Inequalities and Applications  (2015) 2015:220 Page 7 of 10

Hence we obtain

lim
n→∞

∥
∥ynk – Jrnk

(ynk – rnk Aynk )
∥
∥ = .

By Lemma .(ii) and (b), we have

∥
∥Ja(ynk – aAynk ) – ynk

∥
∥ ≤ 

∥
∥Jrnk

(ynk – rnk Aynk ) – ynk

∥
∥ → ,

where Ja = (I + aB)–. Since {yn} is bounded, by Lemma ., we have ωw(ynk ) ⊂ (A + B)–().
Hence

lim sup
k→∞

〈
f (x) – x, ynk – x

〉
=

〈
f (x) – x, y – x

〉 ≤ ,

where y ∈ ωw(ynk ). It follows that lim supn→∞ δnk ≤ . So, by Lemma ., we conclude that
xn → x as n → ∞. We thus complete the proof. �

Remark . We remove the additionally required conditions:
∑∞

n= |αn+ – αn| < ∞ and
∑∞

n= |rn+ – rn| < ∞ proposed in the main theorem of Qin et al. [].

4 Applications and numerical examples
In this section, we give some applications of our result to the variational inequality prob-
lem, the fixed point problem of strict pseudocontractions and the convex minimization
problem.

4.1 Variational inequality problem
Let C be a nonempty subset of a Hilbert space H . The variational inequality problem is to
find x ∈ C such that

〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

The solution set of (.) is denoted by VI(A, C). It is well known that F(PC(I – rA)) =
VI(A, C) for all r > . Define the indicator function of C, denoted by iC , as iC(x) =  if
x ∈ C and iC(x) = ∞ if x /∈ C. We see that ∂iC is maximal monotone. So, for r > , we
can define Jr = (I + r∂iC)–. Moreover, x = Jry if and only if x = PCy. Hence we obtain the
following result.

Theorem . Let A : C → H be an α-inverse strongly monotone mapping such that
VI(A, C) is nonempty. Let f : C → C be a k-contraction. Let {zn} be a sequence in C de-
fined by z ∈ C and

wn = αnf (zn) + ( – αn)zn,

zn+ = PC(wn – rnAwn + en), n ≥ ,
(.)

where {αn} ⊂ (, ), {en} ⊂ H , and {rn} ⊂ (, α). Assume that
(a) αn →  and

∑∞
n= αn = ∞;

(b)  < a ≤ rn ≤ b < α;
(c)

∑∞
n= ‖en‖ < ∞ or ‖en‖/αn → .

Then {zn} converges strongly to a point x ∈ VI(A, C), where x = PVI(A,C)f (x).
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4.2 Fixed point problem of strict pseudocontractions
A mapping T : C → C is called β-strictly pseudocontractive if there exists β ∈ [, ) such
that

‖Tx – Ty‖ ≤ ‖x – y‖ + β
∥
∥(I – T)x – (I – T)y

∥
∥

for all x, y ∈ C. It is well known that if T is β-strictly pseudocontractive, then I – T is –β

 -
inverse strongly monotone. Moreover, by putting A = I – T , we have F(T) = VI(A, C). So
we immediately obtain the following result.

Theorem . Let T : C → C be a β-strict pseudocontraction such that F(T) �= ∅ and let
f : C → C be a k-contraction. Let {zn} be a sequence in C defined by z ∈ C and

wn = αnf (zn) + ( – αn)zn,

zn+ = PC
(
( – rn)wn + rnTwn + en

)
, n ≥ ,

(.)

where {αn} ⊂ (, ), {en} ⊂ H , and {rn} ⊂ (,  – β). Assume that
(a) αn →  and

∑∞
n= αn = ∞;

(b)  < a ≤ rn ≤ b <  – β ;
(c)

∑∞
n= ‖en‖ < ∞ or ‖en‖/αn → .

Then {zn} converges strongly to a point x ∈ F(T), where x = PF(T)f (x).

4.3 Convex minimization problem
We next consider the following convex minimization problem:

min
x∈H

F(x) + G(x),

where F : H → R is a convex and differentiable function and G : H →R is a convex func-
tion. It is well known that if ∇F is (/L)-Lipschitz continuous, then it is L-inverse strongly
monotone []. Moreover, ∂G is maximal monotone []. Putting A = ∇F and B = ∂G, we
then obtain the following result.

Theorem . Let H be a Hilbert space. Let F : H → R be a convex and differentiable
function with (/L)-Lipschitz continuous gradient ∇F and G : H → R be a convex and
lower semi-continuous function such that � := (∇F + ∂G)–() �= ∅. Let f : H → H be a
k-contraction. Let {zn} be generated by z ∈ H and

wn = αnf (zn) + ( – αn)zn,

zn+ = Jrn

(
wn – rn∇F(wn) + en

)
, n ≥ ,

(.)

where Jrn = (I + rn∂G)–, {αn} ⊂ (, ), {en} ⊂ H , and {rn} ⊂ (, L). Assume that
(a) αn →  and

∑∞
n= αn = ∞;

(b)  < a ≤ rn ≤ b < L;
(c)

∑∞
n= ‖en‖ < ∞ or ‖en‖/αn → .

Then {zn} converges strongly to a minimizer x of F + G, where x = P�f (x).
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Table 1 Numerical results of Example 4.4 for iteration process (4.4)

n zn = (tn, un, vn)T F(zn) + G(zn) ‖zn+1 – zn‖2

1 (–0.9999988000, 4.9999960000, 0.9999984000) 21.499964000010 3.6464868709E+00
2 (–0.8749992000, 1.6249970000, –0.3750010000) –1.601574899991 1.8007236270E+00
3 (–0.9004624463, 0.0000000000, –1.1504634130) –7.134189931344 4.1056538071E–01
4 (–0.9346061331, 0.0000000000, –1.5596065914) –7.400888643932 2.1362893808E–01
5 (–0.9593029918, 0.0000000000, –1.7718031709) –7.473134980367 1.1059145541E–01
6 (–0.9750218023, 0.0000000000, –1.8812718377) –7.492639856561 5.7254600304E–02
7 (–0.9845953935, 0.0000000000, –1.9377203595) –7.497941972237 2.9747437021E–02
8 (–0.9903445225, 0.0000000000, –1.9669069578) –7.499405811158 1.5563253898E–02
9 (–0.9938004751, 0.0000000000, –1.9820816494) –7.499820249302 8.2314060025E–03
10 (–0.9959001978, 0.0000000000, –1.9900407454) –7.499942002435 4.4231489769E–03
...

...
...

...
50 (–0.9999828882, 0.0000000000, –1.9999828718) –7.499999999707 1.4278683289E–06
51 (–0.9999838977, 0.0000000000, –1.9999838817) –7.499999999740 1.3175686638E–06
52 (–0.9999848292, 0.0000000000, –1.9999848135) –7.499999999770 1.2177300519E–06
53 (–0.9999856901, 0.0000000000, –1.9999856747) –7.499999999795 1.1271827509E–06
54 (–0.9999864870, 0.0000000000, –1.9999864719) –7.499999999817 1.0449069970E–06
55 (–0.9999872257, 0.0000000000, –1.9999872109) –7.499999999837 9.7001140362E–07

We next provide the example as well as its numerical results.

Example . Let H = R
. Minimize the following �-least square problem:

min
x∈R

‖x‖ +


‖x‖

 + (, , )x – ,

where x = (t, u, v)T .

Let F(x) = 
‖x‖

 + (, , )x –  and G(x) = ‖x‖. Then ∇F(x) = (t + , u + , v + )T . More-
over, ∇F is -Lipschitz continuous and hence it is -inverse strongly monotone.

From [] we know that, for r > ,

(I + r∂G)–(x)

=
(
max

{|t| – r, 
}

sign(t), max
{|u| – r, 

}
sign(u), max

{|v| – r, 
}

sign(v)
)T .

Let zn = (tn, un, vn)T . Set f (x) = x
 and choose αn = –

n+ , rn = ., and en = 
(n+) (, , )T .

For the initial point z = (t, u, v)T = (–, , )T , computing {zn} by the algorithm (.),
we obtain numerical results with an error – in Table .

From Table , we see that z∞ = (–, , –) is the minimizer of F + G and its minimum
value is –..
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